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Sleep disordered breathing (SDB) affects 3–5% of the pediatric population, including

neonates who are highly susceptible due to an underdeveloped ventilatory control

system, and REM-dominated sleep. Although pediatric SDB is associated with

poor cognitive outcomes, very little research has focused on models of pediatric

SDB, particularly in neonates. In adults and neonates, intermittent hypoxia (IH), a

hallmark of SDB, recapitulates multiple physiological aspects of severe SDB, including

neuronal apoptosis, sex-specific cognitive deficits, and neuroinflammation. Microglia,

resident CNS immune cells, are important mediators of neurodevelopment and

neuroinflammation, but to date, no studies have examined the molecular properties

of microglia in the context of neonatal IH. Here, we tested the hypothesis that

neonatal IH will enhance microglial inflammation and sex-specifically lead to long-term

changes in working memory. To test this hypothesis, we exposed post-natal day

(P1) neonates with dams to an established adult model of pathological IH consisting

of 2min cycles of 10.5% O2 followed by 21% O2, 8 h/day for 8 days. We then

challenged the offspring with bacterial lipopolysaccharide (LPS) at P9 or at 6–8 weeks

of age and immunomagnetically isolated microglia for gene expression analyses and

RNA-sequencing. We also characterized neonatal CNS myeloid cell populations by

flow cytometry analyses. Lastly, we examined working memory performance using a

Y-maze in the young adults. Contrary to our hypothesis, we found that neonatal IH

acutely augmented basal levels of microglial anti-inflammatory cytokines, attenuated

microglial responses to LPS, and sex-specifically altered CNS myeloid populations. We

identified multiple sex differences in basal neonatal microglial expression of genes related

to chemotaxis, cognition, and aging. Lastly, we found that basal, but not LPS-induced,

anti-inflammatory cytokines were augmented sex-specifically in the young adults, and

that there was a significant interaction between sex and IH on basal working memory.

Our results support the idea that neonates may be able to adapt to IH exposures that are

pathological in adults. Further, they suggest that male and female microglial responses

to IH are sex-specific, and that these sex differences in basal microglial gene expression

may contribute to sexual dimorphisms in vulnerability to IH-induced cognitive disruption.
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INTRODUCTION

Obstructive sleep apnea (OSA), a form of sleep disordered
breathing (SDB) characterized by repetitive episodes of
intermittent hypoxia (IH), is present in up to 5% of the total
pediatric population including infants (1). Further, up to 80% of
infants with craniofacial abnormalities, such as those associated
with Down Syndrome will present with OSA (2), and some
evidence suggests a higher occurrence in males (3). Despite
the common occurrence of OSA in infants, it remains poorly
characterized in terms of clinical presentation, partly due to
its co-morbidity with other early life complications (4, 5). In
addition to the poorly characterized clinical presentations, the
long-term effects of infant OSA are unknown. In older pediatric
populations, OSA is associated with poor behavioral outcomes
and neurocognitive dysfunction (6). Although vulnerable infant
populations (i.e., preterm or low-birthweight) are at risk for
OSA (7), systemic infection (8), and adverse neurodevelopment
(9), little is known about how OSA contributes to these
co-morbid processes.

Rodent models of OSA suggest IH alone recapitulates
multiple deficits that characterize OSA, including neuronal
apoptosis (10), peripheral and central inflammation (11, 12),
and cognitive deficits (13). In neonates, long term exposure to
IH causes lower weight gain (14), hippocampal apoptosis (15),
hypomyelination (16), changes in sympathetic nerve activity
(17–19) and attenuation of adult male spatial memory (10).
Additionally, neonatal IH enhances the male, but not female,
hypoxic ventilatory response (20). Thus, IH recapitulates some of
the sex-differences observed in human neonatal populations, and
suggests that similar to the findings for preterm infants [reviewed
in (21)], males may be a particularly vulnerable population.

Microglia, CNS resident macrophages, are important
mediators of both neuroinflammation and neurodevelopmental
processes (22–28), including learning and memory (29). Further,
changes in microglia morphology and/or function are associated
with abnormal neurodevelopment (30–32). Preterm infants,
who are susceptible to both OSA (7) and long-term cognitive
dysfunction (33), have altered microglia accumulation at sites of
white matter injury (34). In adult rats, IH augments microglial
expression of classic inflammatory molecules such as toll-
like receptor 4 (TLR4), cyclooxygenase-2 (COX-2), inducible
nitrogen oxide synthase (iNOS), and interleukin-1 (IL-1) (11),
and attenuation of inflammation using inhibitors of COX-2 and
iNOS improves cognitive outcomes (13, 35). While pediatric
OSA and neonatal IH are associated with systemic and carotid
body inflammation (19, 36–38), it is unknown if OSA or IH
alters microglial inflammation during postnatal development, or
if this is associated with differences in cognitive outcomes.

Similar to neonatal hypoxic responses, there are
developmental sex differences in microglia, including their
morphology (39) and dynamics (40), which, when perturbed,
may account for the sex differences in neurodevelopmental
disorders (41) [reviewed in (42)]. The phagocytic capacity of
microglia is also sexually dimorphic, with female microglia
phagocytosing more neural progenitor cells in the early postnatal
period (43). Although not yet directly linked to a microglial

source, brain expression of key inflammatory cytokines, such
as interleukin-1β, and C-x-c motif cluster inflammatory
chemokines including Cxcl9, Cxcl10, and Cxcl11, also differs
between males and females in the neonatal rat (39), suggesting
basal sex differences in microglial inflammatory responses. The
sex-specific effects of neonatal IH on microglial expression of
these immune related genes has never been tested.

We thus hypothesized that neonatal IH would sex-specifically
augment microglial pro-inflammatory gene expression both
acutely and long-term, and correlate with long-term deficits
in working memory. Surprisingly, we found that neonatal IH
enhanced gene expression related to type I interferon responses
and “anti-inflammatory” signaling in both males and females,
effects which persisted long-term in males. Additionally, in the
presence of systemic inflammation, IH-exposed females, but not
males had attenuated cytokine expression, and enrichment of a
putative CNS monocyte-derived population. RNAseq analyses of
male and female microglia confirmed these results and identified
sex differences in genes related to leukocyte chemotaxis and
cognition. Finally, behavioral analyses of adults exposed to IH
as neonates demonstrated that while there was a significant
interaction between the effects of IH and sex, neonatal IH had
no effect on working memory.

METHODS

Animals and Intermittent Hypoxia
(IH) Exposures
All animal experimental procedures were performed according
to the NIH guidelines set forth in the Guide for the Care and
Use of Laboratory Animals and were approved by the University
of Wisconsin-Madison Institutional Animal Care and Use
Committee. Timed-pregnant Sprague-Dawley rats (E16) were
obtained from Charles River (RRID:RGD_734476; Wilmington,
MA) and housed in AAALAC-accredited facilities with 12 h:12 h
light–dark conditions. Food and water were provided ad libitum.
Beginning at postnatal day (P) 1, dams with neonates were
exposed to 8 days of an IH paradigm which consisted of
alternating 2-min hypoxic (45 s down to 10.5%O2) and normoxic
(15 s up to 21% O2) episodes for 8 h/day (9:00 am−5:00 pm)
as previously reported (44). This produces an apnea hypopnea
index (AHI) of 15 events/h which mimics kinetics of moderate
sleep apnea in pediatric populations and adults (45). Normoxic
(Nx) controls received alternating room air. At∼16 h or 6 weeks
following the final IH episode, animals were weighed and injected
intraperitoneally with either HBSS vehicle (Cellgro; Herndon,
VA) or a sublethal 0.1 mg/kg lipopolysaccharide (LPS E. coli
O11:B4; 500,000 EU/mg; Sigma-Aldrich; St. Louis, MO) for 3 h.
Following LPS, pups were sacrificed via decapitation and brains
isolated in HBSS for removal of meninges and blood. Pulse-
oximetry was performed at P1 on sentinel rats (n = 4) using
STARR MouseOx Rev 6.3.13; these rats were excluded from
microglial analyses.

Microglia Isolation
CD11b/c+ cells were immunomagnetically isolated from the
whole brain (minus the cerebellum and olfactory bulbs) as
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previously described (11) using the Miltenyi OX-42 antibody
(Miltenyi Biotec Inc., Auburn, CA Cat# 130-105-634). Myelin
was removed using 26% Percoll (GE HealthCare; Madison,
WI). Cells were then either resuspended in a modified zinc-
based fixative (mZBF) for subsequent flow cytometry analyses
(46) or column separated according to the Miltenyi MACs
protocol. Column separation results in 97.9% viable cells and
88–96% of CD11b+ cells were microglia (CD11b/CD45low)
(47). Isolated CD11b+ cells were resuspended in TriReagent
(Invitrogen, Carlsbad, CA), and total RNA extracted according
to the manufacturer’s instructions.

Quantitative RT-PCR
cDNA was synthesized as previously described (48). MMLV
Reverse Transcriptase was purchased from Invitrogen. Oligo dT,
Random Primers, and RNAse inhibitor were purchased from
Promega (Madison, WI). qRT-PCR using power SYBR green
(ThermoFisher Scientific) was performed as previously described
using an Applied Biosystems 7500 Fast Real Time PCR System
(11). All primers (Table 1) were tested for efficiency using serial
dilutions, and results were normalized to 18S RNA levels; data
analyses were performed using the delta-delta CT method (49).

PCR Gene Array
cDNA for microglia derived from male Nx LPS- and IH LPS-
treated neonates was synthesized as for RT-PCR, aliquotted to
the Qiagen (Hilden, Germany) NF-κB Signaling Targets RT2

Profiler PCR Array (cat # PARN-225Z) and run on the Applied
Biosystems 7500 Fast Real Time PCR System. Results were
analyzed using Qiagen software and exported to Microsoft Excel
to generate heatmaps.

Total RNA Sequencing and
Bioinformatics Analyses
Total microglial RNA was isolated from neonatal pups exposed
to 8 days of IH followed by vehicle or LPS challenge. Three
biological replicates from each treatment were submitted to the
UW-Madison Biotechnology Resource Center for sequencing
and quality control. Stranded cDNA libraries were prepared
using the Truseq Stranded mRNA kit (Illumina; San Diego,
CA). Sequencing was performed using an Illumina HiSeq 2500.

TABLE 1 | Primers used for quantitative PCR.

Gene

target

Forward primer Reverse primer

Inos GCTTGGGTCTTGTTAGCCTAGT GTTGTTGGGCTGGGAATAGC

Il1β GACTTCACCATGGAACCCGT GGAGACTGCCCATTCTCGAC

Ifnβ1 GCTGAGGTTGAGCCTTCCAT TGCCCTCTCCATCGACTACA

Il1α CGCTTGAGTCGGCAAAGAAAT CCTTGAAGGTGAAGGTGGACA

Cxcl10 CCGCATGTTGAGATCATTGCC CTAGCCGCACACTGGGTAAA

Il4 GTTAGGACATGGAAGTGCAGGA CGTGAATGAGTCCACGCTCA

Cox2 TGTTCCAACCCATGTCAAAA CGTAGAATCCAGTCCGGGTA

Stat3 TGGAAAAGGACATCAGTGGCAAGA TACCTGGGTCAGCTTCAGGGT

18S CGGGTGCTCTTAGCTGAGTGTCCC CTCGGGCCTGCTTTGAACAC

After sequencing and quality control, Fastq files containing ∼10
million reads for each biological replicate (n= 3/treatment) were
aligned using TopHat 2.1.0 with the following parameters: –
no-novel-juncs, – Library type fr – firststrand. BAM files were
converted to SAM with SAMtools. Read counts were obtained
using HTSeq v. 0.6.1 with the stranded reverse option. Count
files were imported to R and filtered such that only genes
with a CPM >1 expressed in three samples were retained.
Counts were normalized using the Trimmed Mean of M-Values
method (TMM), and analyzed for differential expression using
EdgeR (50, 51). Genes with an FDR < 0.05 were considered
differentially expressed. Results were uploaded to NCBI Geo
Datasets (GEO GSE126946). To specifically probe RNA-seq data
for changes in NFκB signaling target genes obtained from the
Qiagen PCR array (section PCR Gene Array), NFκB target
genes were ranked by p-value and FDRs calculated for the
specific set of genes. NFκB target genes with an FDR < 0.05
were considered differentially expressed. Gene ontology was
performed on differentially expressed genes using both DAVID
(52, 53) and Panther (54) for GO class Biological Process. For GO
analyses, background files were generated using the filtered count
files. Motif analysis of rat promoters for gene lists was performed
using the find.Motifs.pl script in Homer (55). Protein-protein
interaction networks were created using STRING (56).

Flow Cytometry
Single cell suspensions of P9 whole brain homogenates were
created by pushing the tissue through 40µm filter with ice-cold
HBSS supplemented with 0.01 mg/ml DNase and 0.1mM EDTA.
Myelin was removed by high-speed centrifugation at 850 g for
15min in a solution consisting of 26% Percoll in 0.1M PBS.
Dissociated cells were washed in ice-cold HBSS and pelleted
by centrifugation at 350 g for 5min. Cells were resuspended
in mZBF (0.5% zinc chloride, 0.5% zinc trifluoroacetate,
0.05% calcium acetate in 0.1M Tris–HCL, pH 6.4–6.7) and
glycerol (1:1) (46). Prior to fixation, cells were incubated
with eFluor 780 live/dead (eBioscience cat # 65-0865-14). The
following mouse anti-rat antibodies were used: CD11b/c-PE
(BD Pharmingen cat # 554862; RRID:AB_395562), CD45-PE-
Cy7 (BD Pharmingen cat # 561588; RRID:AB_10893200), and
CD4-APC (BD Pharmingen cat # 550057; RRID:AB_398458).
Flow cytometry was performed using a BD Fortessa Flow
Cytometer (gating strategy, Supplementary Figure 1). FCS files
were analyzed using FlowJO v.10.0.7 software.

Spontaneous Alternation Test
The Y-maze is a measure of working memory and was performed
as previously described (57, 58). Animals were between 6 and 8
weeks of age and behaviorally naïve prior to the start of testing.
Arm entry was quantified when an animal had its hind paws
completely within a maze arm. Animals were placed into the
Y-maze and allowed 15min to explore. Analysis of arm entries
began after the animal entered each arm once and arm choices
were recorded for 10min. The number of times 3 successive arm
alternations weremade correctly (clockwise or counterclockwise)
was summed and then divided by the total number of arm
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entries minus two. The resulting number is the % of spontaneous
alternations, with 50% being considered chance levels.

Statistical Analyses
All statistical analyses were performed using SigmaPlot (Systat
Software, San Jose CA) unless otherwise noted. Data that were
not normally distributed were natural log transformed. The
Grubb’s Test was used to identify outliers. Statistical significance
(set at p < 0.05) was determined using a Two-way analysis of
variance (Two-way ANOVA) or Student’s t-test, followed by a
Holm-Sidak post hoc test when applicable. P-values between 0.05
and 0.1 were considered to be statistical trends.

RESULTS

Neonatal IH for 8 Days Reduces SpO2 and
Weight in Both Males and Females and
Increases CNS Cell Death
To test the effects of 8 days of neonatal IH on microglial gene
expression, we used a model of IH that is used in adult rat
microglial studies (11) and is similar to models used in neonate
studies (14, 38). We recorded blood oxygen saturation (SpO2)
using pulse-oximetry at P1 (Figure 1A). Weights were recorded
after 8 days of Nx or IH, just prior to LPS injections (Figure 1B).
IH reduced SpO2 to just below 60% in both males and females.
Additionally, pups exposed to 8 days of IH weighed less than
their normoxic counterparts by P9; this was true for both males
(p = 0.032, n = 20/tx) and females (p < 0.001, n = 20/tx) and is

consistent with previous observations (14). In a separate cohort
of animals, whole brains were isolated to assess cell death by
flow cytometric analysis (Figure 1C). Using the live/dead dye
eFluor 780, we found that IH significantly increased the percent
of labeled cells (p = 0.017, n = 12/tx, mixed sex), indicating
that IH induces neonatal CNS cell death. Thus, this model of
IH which mimics moderate OSA and an infant apnea-hypopnea
index (AHI) of 15 (45) causes blood O2 desaturations, reduces
weight gain, and increases CNS cell death.

Neonatal IH Sex-Specifically Upregulates
Microglial Anti-inflammatory Cytokine and
Attenuates LPS-Induced Cytokine
Gene Expression
Based on observations in adult rats, we predicted that IH
exposure would enhance microglial expression of classic pro-
inflammatory cytokines/enzymes under basal and inflammatory
(LPS) conditions. Prior to testing this prediction in all
treatments and samples, we performed a preliminary screen
for candidate genes altered by IH in whole brain microglia
immunomagnetically isolated from LPS-treated pups exposed
to 8 days of either Nx or IH, using the Qiagen NF-κB
Signaling Pathway PCR Array (Figure 2). These preliminary
results suggested that the most pronounced gene expression
changes (with fold changes> 4 in IH LPS vs. Nx LPS) were not in
classic inflammatory cytokines as we had originally hypothesized.
Rather, the changes appeared to be in cytokines related to
anti-inflammatory responses or T-helper cell responses, such as

FIGURE 1 | Neonatal IH decreases SpO2 and weight. (A) Pulse-oximetry was recorded in P1 neonatal males (left) and females (right). (B) At P9, after 8 days of Nx or

IH exposure, male (left; n = 20/tx) and female (right; n = 20/tx) pups were weighed. (C) At P9 after 8 days of Nx or IH exposures, whole brains from male

(n = 6/treatment) and female (n = 6/treatment) pups were isolated for flow cytometric analysis of cell death. *p < 0.05, ***p < 0.001, t-test.
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FIGURE 2 | Neonatal IH increases the expression of NFκB-related cytokines. Heatmap represents the results of the Qiagen NF-κB signaling targets gene array. Colors

represent the fold change between IH LPS and Nx LPS samples. “High” represents the highest fold change and “Low” represents the lowest fold change.
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interferon-β (Ifnβ1), interleukin-4 (Il4), and interleukin-2 (Il2).
In further support of this anti-inflammatory effect in microglia
isolated from the IH-exposed neonate, IH exposure tended to
attenuate LPS-induced inflammatory gene expression instead of
augmenting it (Figure 2). Thus, for the remaining experiments,
we focused on genes identified in the array, in addition to the
key inflammatory cytokines/enzymes identified from previous
microglia research (11, 39).

We next tested the effects of neonatal IH on inflammatory
gene expression in male (Figure 3A) and female (Figure 3B)
microglia, as well as peripheral spleen macrophages
(Supplementary Figure 2) following either vehicle or LPS
treatment (Figure 3). In basal conditions (Figures 3A,B),
there were no main effects of IH on male nor female neonatal
microglial expression of the pro-inflammatory molecules Inos,

Cox-2, and Il1β , nor the pro-inflammatory type I interferon
targets Il1a and Cxcl10 (Tables 2, 3; each table contains F-values,
p-values, and n for all genes). Therefore, IH was not a strong
stimulus for classic pro-inflammatory molecules. However, as
expected, there was a main effect of LPS (Figures 3C,D) on
each of these cytokines/enzymes (p-values for each gene in
Tables 2, 3), indicating that neonatal microglia from these pups
retain the capacity to respond to an inflammatory challenge.
Surprisingly, IH appeared to have sexually dimorphic effects on
the anti-inflammatory molecules Ifnβ1 and Il4. For males, there
was a main effect of IH on Ifnβ1 (Table 2); post-hoc analyses
showed that IH increased Ifnβ1 in both vehicle (p = 0.017) and
LPS conditions (p = 0.012). There was a statistical trend for a
main effect of LPS on Ifnβ1 expression in males (p = 0.071), but
there was no interaction with IH (p= 0.961). In females however,

FIGURE 3 | Neonatal IH augments anti-inflammatory cytokine and sex-specifically attenuates LPS-induced inflammatory cytokine gene expression. (A,B) Basal gene

expression was analyzed in neonatal male (A) and female (B) microglia after 8 days of IH. (C,D) Microglial gene expression was analyzed in male (C) and female (D)

pups exposed to IH followed by LPS challenge. Values represent average fold change +/– SEM *p < 0.05, **p < 0.01, ***p < 0.001 relative to respective Nx control,

Two-way ANOVA.
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TABLE 2 | Statistical Values for P9 Males (Two-Way ANOVA).

Main effect IH Main effect LPS Interaction IH vs. LPS

Gene n/tx (Nx, Nx LPS, IH, IH LPS) F p F p F p

Inos 10,9,9,8 0.162 0.690 504.092 < 0.001 0.427 0.518

Il1β 10,10,10,9 0.0000135 0.999 71.199 < 0.001 1.062 0.310

Ifnβ1 9,10,9,9 13.379 <0.001 3.492 0.071 0.00237 0.961

Il1α 9,10,10,9 0.756 0.391 8.954 0.005 1.167 0.288

Cxcl10 10,10,10,8 0.0856 0.772 106.505 < 0.001 1.203 0.280

Il4 9,10,9,10 10.909 0.002 0.415 0.524 0.219 0.643

Cox2 10,10,10,9 1.188 0.285 49.052 < 0.001 1.647 0.208

Stat3 10,9,10,8 1.229 0.276 26.101 < 0.001 1.779 0.191

TABLE 3 | Statistical Values for P9 Females (Two-way ANOVA).

Main effect IH Main effect LPS Interaction IH vs. LPS

Gene n/tx (Nx, Nx LPS, IH, IH LPS) F p F p F p

Inos 8,8,8,8 0.296 0.590 625.399 < 0.001 0.396 0.590

Il1β 8,8,8,7 0.422 0.522 182.814 < 0.001 1.362 0.253

Ifnβ1 7,8,8,7 1.907 0.179 8.647 0.007 6.624 0.016

Il1α 8,8,8,7 4.165 0.051 6.623 0.016 4.053 0.054

Cxcl10 8,8,8,7 2.035 0.165 119.280 < 0.001 2.384 0.134

Il4 7,8,8,8 0.628 0.435 12.601 0.001 3.820 0.061

Cox2 7,8,7,8 0.0287 0.867 73.894 < 0.001 1.440 0.241

Stat3 8,8,8,8 0.0186 0.893 31.537 < 0.001 0.251 0.621

while there was no main effect IH on Ifnβ1 expression (Table 3),
there was a statistically significant effect of LPS (p = 0.007) and
a significant interaction with IH (p = 0.016); post-hoc analyses
showed a significant increase in Ifnβ1 only in vehicle conditions
(p= 0.010), and not after LPS treatment (p= 0.407). Il4 followed
a similar trend to Ifnβ1; in males, IH increased Il4 (Table 2) in
vehicle-treated animals (p = 0.012) and trended to increase it
after LPS treatment (p = 0.054), but there was no main effect
of LPS (p = 0.524), nor any interaction with IH (p = 0.643).
In contrast, there was no main effect of IH on Il4 in females
(Table 3), although there was a main effect of LPS (p = 0.001)
and a trending interaction with IH (p= 0.061). Post-hoc analyses
for female Il4 showed a statistical trend for IH to increase Il4 in
microglia from vehicle-treated pups (p = 0.067) but not from
LPS-treated pups (p= 0.410).

While there were no statistically significant interactions
between IH and LPS for most inflammatory cytokines, post-
hoc analyses of the main effects of LPS revealed that IH
significantly attenuated the LPS-induced interferon targets Il1a
(p = 0.009) and Cxcl10 (p = 0.049) in females but not males
(Figures 3C,D), corroborating the findings for Ifnb1 and Il4.
Interestingly, all these effects were specific to CNS macrophages,
as these observations were not present in peripheral (spleen)
macrophages (Supplementary Figure 2). There was no main
effect of IH nor any interaction between LPS and IH in
spleen macrophages from males (Supplementary Figure 2A) or
females (Supplementary Figure 2B) at this developmental stage.
Therefore, even though both male and female microglia had

similar basal levels of IH-induced cytokine gene expression,
IH attenuated female, but not male, microglial responses to a
subsequent inflammatory LPS challenge, effects that were specific
to the CNS.

Since 8 days of IH resulted in altered microglial cytokine
expression, we further assessed if these changes occurred earlier
in the IH time course. For these analyses, we exposed a
separate cohort of pups to IH at P1 for 1 day only, and then
challenged them (i.p.) with vehicle or LPS at P2. Microglia were
assessed for cytokine expression (Supplementary Figures 2C,D).
Although there was a main effect of IH on male Ifnβ1 expression
(p= 0.027), post-hoc analyses only revealed a trend for increased
Ifnβ1 expression in IH LPS conditions (p = 0.059). No other
significant changes were identified for any cytokine in males or
females. However, these results suggest that males may be more
sensitive to IH effects at an earlier time point than females, and
that Ifnβ1may be one of the cytokines driving the effects of IH.

Neonatal IH Sex-Specifically Changes
Leukocyte Recruitment in the CNS
Previous studies demonstrated brain region-specific sex-
differences in microglia number during early postnatal
development (39). To determine if changes in microglia
frequency and/or leukocyte recruitment could explain the sex-
specific effects of IH on gene expression (Figure 4), we performed
flow cytometry for CD11b, CD45, and CD4. Surprisingly, we
found no main effect of IH (F = 0.290, p = 0.630) nor sex
(F = 0.974, p = 0.335) on the frequency of CD11b+/CD45low
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FIGURE 4 | IH increases a novel population of CD11b+/CD45high cells in

females. Whole brains from males (Top) and females (Bottom) were

dissociated into single cell suspensions and assessed by flow cytometry for

CD11b and CD45 expression. Each panel shows a representative flow density

plot for neonates exposed to 8 days of Nx or IH. The numbers represent the %

of live cells gated.

microglia in the whole brain. However, we found a leukocyte
population (∼0.8–1% of cells) that was CD11b+/CD45high in
both males (Figures 4, 5A) and females (Figures 4, 5B), which
was augmented by IH only in females (p = 0.005) and not in
males (p = 0.550). Because the antibody we used to label CD11b
shares a common antigen with CD11c, it is possible that this
population is comprised of monocyte-derived dendritic cells
given the intermediate CD11b/c expression and their high CD45
levels. However, further analyses are needed to conclusively
identify this leukocyte population.

Given our gene expression analyses suggesting that microglia
are increasing their expression of cytokines are associated
with T-helper cell immunity (59, 60), we next tested whether
the increases in Ifnβ1 and Il4 expression corresponded to
recruitment of CD4+ T-helper cells (Figure 6A). While we
were able to detect a low frequency (∼1%) population of
CD4+/Cd45high/CD11b− cells indicative of T cells, they did
not differ by sex or treatment. Interestingly however, ∼3–
5% of CNS cells were CD4+, the majority of which were
CD11bhigh (Figure 6B). While very few of these cells were
microglia (CD11b+/CD45low), it is established that CD4 labels
monocytes in the rat (61), suggesting that CD4 may be
a marker of bone-marrow derived macrophages/monocytes.
The total number of CD4+ cells did not change by sex or

treatment. Together, these findings demonstrate that CD4+ T-
cell recruitment to the CNS is not altered by IH.

Microglia RNA-Seq Reveals
Sex-Differences in Basal and
Inflammatory Conditions
The sex differences we identified in IH-induced gene expression
and leukocyte recruitment may be indicative of gene pathways
that are sexually dimorphic in either basal or inflammatory
conditions, independent of IH exposure. Therefore, we used
RNA-seq to assess sex differences in the neonatal microglial
transcriptome after 8 days of IH exposure following vehicle
or LPS treatment (Nx, IH, Nx LPS, IH LPS) (Figure 7).
EdgeR bioinformatics analyses revealed that in basal (no LPS)
conditions, 39 genes differed between males and females,
independent of IH effects (Figure 7A, left). Males had more
genes upregulated (than downregulated) relative to females.
MDS analysis revealed that samples had high variability overall
(Figure 7A, right), but clustered together based on sex, rather
than IH treatment, suggesting that sex accounted for more of
the variability between samples than IH treatment. Indeed, when
analyzing vehicle-treated samples for an effect of IH, only a few
genes were modified by IH in both males and females (Table 4).

In LPS-treated samples (Figure 7B), 98 genes were
differentially regulated between male and female pups. Similar to
basal conditions, MDS analysis revealed that samples clustered
based on sex and not IH treatment (Figure 7B, right). Further,
when compared to females, more genes were upregulated in
males than downregulated. Interestingly, although the effects of
IH were not strong enough to reveal many significant differences
with n = 3 biological replicates (and 10 million reads), the
bioinformatics analyses did confirm that multiple LPS-induced
inflammatory genes, including Il1a, were attenuated by IH in
females, but not in males (Table 4 and Figure 3D). When we
probed RNA-seq samples for the effect of IH on LPS-stimulated
NF-κB signaling targets previously identified using the gene
array, we found that multiple LPS-induced type I IFN genes
were attenuated (Table 4) by IH pre-exposure in females only,
confirming our previous findings.

Genes upregulated in males relative to females in both basal
(Figure 7C, left) and inflammatory conditions (Figure 7C, right)
were functionally annotated using DAVID for Gene Ontology
(GO) class Biological Process. In basal conditions, males and
females differed in genes related to the categories of “hypoxia,”
“lymphocyte chemotaxis,” and “neutrophil chemotaxis,”
observations that may contribute to the previous findings that
certain leukocyte populations are sex-specifically recruited to
the brain during IH. Additionally, several of the genes involved
in chemotaxis, including the chemokine receptor Ccr3, were
differentially expressed between males and females, as has been
reported previously in the P4 rat brain (39).

To further examine relationships between all the genes
that were significantly changed by sex irrespective of IH,
we used STRING analysis of functional protein association
networks (Supplementary Figure 3). The results showed two
main gene networks: one involving cytokines/chemokines,
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FIGURE 5 | Quantification of the novel CD11b+/CD45high population. Whole brains from IH or Nx-exposed neonatal males (A); n = 6/treatment) and females (B);

n = 6/treatment) were assessed by flow cytometry for % of live cells expressing CD11b and CD45. Values represent the average % of live cells +/– SEM, **p < 0.001,

t-test.

FIGURE 6 | Flow cytometry analysis of CD4+ cells in whole brains isolated

from neonatal rats. (A) CD4+ cells were gated and analyzed for concomitant

CD45 and CD11b expression in Nx and IH conditions. T cells exhibit high

CD45 with low CD11b expression. (B) Approximately 3–4% of total live cells

were CD4+, the majority of which were high in both CD11b and CD45

expression; microglia are CD11b+/CD45low.

and the other involving cellular proliferation/survival
(Supplementary Figure 3A). These findings support the
notion that IH-induced differences in cytokine expression
(Figure 3) may be related to basal and IH-induced differences
in leukocyte trafficking (supported by Figures 4, 5), and/or the
ability of certain cell populations to proliferate.

Surprisingly, in inflammatory conditions (irrespective of IH),
sex-specific changes were identified in gene categories related to
“learning” and “long-term synaptic potentiation” (Figure 7C).
Additional analyses examining Biological Process in Panther
similarly revealed 8 genes enriched in the category “cognition”:
Ptn, BDNF/NT-3, Dbi, Atp1a, Stra6, Fam107a, Agt, and Slc6a1
(Supplementary Figure 3B). Motif analyses of the promoters
for these cognition-related genes revealed a common binding
motif for the androgen receptor (Figure 7D), suggesting that
the androgen receptor may play an important role in sex-
related differences in neonatal susceptibility to cognitive deficits.
Together, these results support the idea that sex-differences exist
in P9 whole brain microglia in both basal and inflammatory
conditions and suggest multiple candidate gene targets by
which early life insults may change microglial function and
impact cognition.

Weight Gain in Young Adults Is Not Altered
by Neonatal IH
Because weight changes observed acutely following neonatal IH
exposure were previously reported to persist into adulthood
(14), we also tested this in 6 week-old young adults that were
neonatally exposed to 8 days of IH starting at P1 (Figures 8A,B).
The average weight of adult males (Figure 8A) exposed to
neonatal Nx (n = 21) was 235.14 g +/– 4.25 g and neonatal IH
(n = 19) was 231.79 g +/– 5.16 g. Similarly, the average weight
of females (Figure 8B) exposed to neonatal Nx (n = 14) was
176.14 g +/– 3.63 g and neonatal IH (n = 18) was 174.42 g +/–
3.97 g. There was no statistical difference in weight for males
(t = 0.505, p = 0.616) nor females (t = 0.312, p = 0.757),
suggesting that the paradigm of IH used in these studies does not
exert effects on weight that persist into adulthood.

Neonatal IH Sex-Specifically Disrupts
Microglial Ifnβ1 and Il4
Expression Long-Term
We next assessed whether neonatal IH-induced changes in
microglial cytokine gene expression were maintained long-
term, into early adulthood. Six week-old males and females
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FIGURE 7 | RNA-seq analyses of neonatal male and female microglia. (A) Heatmap of z-scores (left) and MDS analysis (right) for normalized gene expression in male

and female microglia in basal conditions. (B) Heatmap (left) and MDS analysis (right) of normalized gene expression in male and female microglia in inflammatory (LPS)

conditions. (C) Gene ontology for genes upregulated in males relative to females in basal (left) and inflammatory (right) conditions. (D) The top-ranking match for

Homer motif analysis of the 8 genes identified in the GO category “cognition”.
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TABLE 4 | Differentially Expressed Genes from RNA-seq Results Analyzed in EdgeR.

Treatment

Comparison

Male Genes Up in IH Male Genes

Down in IH

Female Genes

Up in IH

Female Genes Down in IH Female NFκB Signaling

Target Genes Down in IH

Nx vs. Hx ENSRNOG00000043342 (Gpr15l)

ENSRNOG00000062158

(AC134224.3)

– – ENSRNOG00000029478

(Cyp4f39)

Not Applicable

Nx LPS vs.

Hx LPS

ENSRNOG00000030616

(Slc25a45)

ENSRNOG00000036674 (Cd7)

ENSRNOG00000053494 (Mcpt1l1)

– – ENSRNOG00000046184

(RGD1561143)

ENSRNOG00000004575 (Il1a)

ENSRNOG00000019018 (Plat)

ENSRNOG00000014524 (S1pr3)

ENSRNOG00000004575 (Il1a)

ENSRNOG00000005731

(Birc3)

ENSRNOG00000008525 (Csf3)

ENSRNOG00000002802

(Cxcl1)

ENSRNOG00000022256

(Cxcl10)

ENSRNOG00000002525

(Ptgs2)

ENSRNOG00000008144 (Irf1)

ENSRNOG00000002723 (Sele)

ENSRNOG00000022242

(Cxcl9)

ENSRNOG00000018092

(Cd83)

ENSRNOG00000020679

(Icam1)

ENSRNOG00000010278 (Il6)

exposed to Nx or IH as neonates were injected with LPS
(i.p. for 3 h), and microglia were isolated for gene expression
analyses (Figures 8C–F). The majority of cytokines in adult
males (Figure 8C and Table 5) and females (Figure 8D and
Table 6) were unchanged in basal conditions, and 3 h of LPS
was sufficient to increase the expression of most inflammatory
cytokines. Interestingly, in adult males (but not females) there
was a significant main effect of neonatal IH on Ifnβ1 expression
(p < 0.001) and Il4 (p = 0.003). Post-hoc analyses showed that
IH augmented both Ifnβ1 and Il4 expression in vehicle- (Ifnβ1
p = 0.004; Il4 p = 0.020) and LPS-treated (Ifnβ1 p = 0.020;
Il4 p = 0.047) conditions. Thus, the effects of neonatal IH on
male Ifnβ1 and Il4 microglial gene expression persisted into
adulthood, whereas those effects on female microglia did not.
Surprisingly, while LPS significantly increased both Ifnβ1 and
Il4 in adult males, there was no effect of LPS on these cytokines
in adult females (Table 6), despite the interaction between LPS
and IH in neonatal females (Table 3). Together, these results
support the idea that neonatal IH has sex-specific effects that
persist into early adulthood in males, and that some responses
to LPS differ developmentally.

Neonatal IH Does Not Impair Adult
Working Memory
Since adult males exposed to neonatal IH demonstrated changes
in the expression of microglial Ifnβ1 and Il4, cytokines with
mixed effects on learning and memory (62–65), we next
examined working memory in young adult (6–8 wk) male and
female rats (Figure 9). Spontaneous alternation in behaviorally
naïve rats was tested in a Y-maze, a frontal cortex and
hippocampal-dependent working memory task (57, 58, 66).
While there was a significant interaction between sex and

IH treatment (F = 4.568, p = 0.038, Two-way ANOVA),
post-hoc analyses identified no significant differences between
the treatment groups. There was a statistical trend for better
performance in females compared to males exposed to neonatal
Nx (t = 1.879, p = 0.067), and a trending decrease in
spontaneous alternation performance in neonatal IH-exposed
females compared to neonatal Nx-exposed females (t = 1.613,
p = 0.114); however, the effects were modest at best. Together,
these results suggest that 8 days of neonatal IH does not strongly
impair spatial memory in otherwise naïve animals, although
there are sexual dimorphisms in the effects of IH on spatial
working memory.

DISCUSSION

In this work, we initially hypothesized that neonatal IH
would sex-specifically augment microglial inflammatory gene
expression in both basal and inflammatory conditions, and
that these effects would persist into adulthood. Contrary
to our hypothesis, we found that neonatal IH augmented
anti-inflammatory and type I interferon-related cytokines,
and sex-specifically altered CNS myeloid populations, while
attenuating LPS-induced inflammatory cytokine/chemokine
expression acutely following IH. While these changes persisted
into adulthood only in males, they were not associated with
overall impairments in workingmemory nor alterations in spleen
macrophage gene expression.

Our work also demonstrated sex differences in the effects of
IH both acutely and long term. Acutely, neonatal IH increased
anti-inflammatory cytokines in both P9 males and females, but
only impaired LPS responses in P9 females. One intriguing
explanation for the acute effects of IH on LPS responses in female
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FIGURE 8 | Neonatal IH augments anti-inflammatory cytokine gene expression in adult males. (A,B) Adult weights were unchanged in males (A) and females (B) 6

weeks following the last IH exposure. (C,D) Basal gene expression was analyzed in adult male (C) and female (D) microglia 6 weeks post neonatal IH exposure.

(E,F) Microglial gene expression was analyzed in male (E) and female (F) neonates exposed to IH followed by LPS challenge. Values represent average fold change

+/– SEM *p < 0.05, **p < 0.01, relative to respective Nx control, Two-way ANOVA.

vs. male microglia is a sex difference in the capacity to respond
apoptotic CNS cells via phagocytosis (efferocytosis). Our results
showed that IH increased CNS cell death by ∼13–16% in both

sexes. While we were not able to determine by flow cytometry
if cell death was apoptotic (vs. necrotic), the lack of basal pro-
inflammatory gene expression at both P1 and P9 following
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TABLE 5 | Statistical Values for Adult Males (Two-Way ANOVA).

Main effect IH Main effect LPS Interaction IH vs. LPS

Gene n/tx (Nx, Nx LPS, IH, IH LPS) F p F p F p

Inos 7,9,7,9 0.0389 0.845 141.421 < 0.001 0.318 0.577

Il1β 7,9,7,10 1.090 0.305 74.278 < 0.001 0.146 0.705

Ifnβ1 7,10,7,9 15.610 <0.001 12.239 0.001 0.640 0.430

Il1α 7,10,7,10 0.127 0.724 4.742 0.037 0.0151 0.903

Cxcl10 7,10,6,10 0.0253 0.875 54.175 < 0.001 2.518 0.123

Il4 7,10,7,10 10.283 0.003 5.028 0.032 0.305 0.585

Stat3 6,8,6,9 0.872 0.360 18.598 < 0.001 0.357 0.556

TABLE 6 | Statistical Values for Adult Females (Two-way ANOVA).

Main effect IH Main effect LPS Interaction IH vs. LPS

Gene n/tx (Nx, Nx LPS, IH, IH LPS) F p F p F p

Inos 6,7,6,7 0.421 0.523 388.729 < 0.001 1.732 0.202

Il1β 6,8,6,9 0.367 0.550 69.935 < 0.001 0.00204 0.964

Ifnβ1 6,8,6,8 0.0755 0.786 0.102 0.753 0.227 0.638

Il1α 6,8,6,8 0.162 0.691 5.597 0.026 0.525 0.476

Cxcl10 6,7,6,7 0.381 0.544 69.251 < 0.001 0.489 0.492

Il4 6,7,6,7 0.00872 0.926 0.321 0.577 0.0702 0.793

Stat3 6,8,6,7 0.449 0.509 21.908 < 0.001 0.0145 0.905

FIGURE 9 | IH sex-specifically affects spontaneous alternation in naïve young

adults. Behaviorally naïve adults who were exposed to Nx or IH as neonates

were tested in the Y-maze spontaneous alternation task. Nx males (n = 9), IH

males (n = 14), Nx females (n = 11) females and IH females (n = 12). The

spontaneous alternation index is defined as the number of times a rat made

three consecutively correct arm entries/total arm entries minus two. Results

represent the average % alternation index in rats from three independent litters

+/– SEM, Two-way ANOVA.

neonatal IH, and previous work in neonatal IH models (15),
would support a non-inflammatory mechanism of cell death (i.e.,
apoptosis). It is well-established that macrophage efferocytosis is
an anti-inflammatory process which can attenuate LPS responses

(67–69). Since males and females exhibit differences in microglial
phagocytosis in early postnatal life (43), female microglia may
be more responsive to CNS apoptosis/cell death. Our RNA-
seq data support sex differences in genes associated with
apoptosis and efferocytosis; for example, the nuclear receptor
Nr4a1, which contributes to the anti-inflammatory effects of
efferocytosis in peripheral macrophages (70), is differentially
expressed in our male and female microglia under basal
conditions (Supplementary Figure 3). The idea that CNS cell
death may account for the sex differences in LPS response
would explain why changes in female LPS responses are acute,
as IH-induced cell death would no longer be present in young
adulthood and therefore would not induce an anti-inflammatory
effect in microglia.

Another possible explanation for the acute effects of IH on
LPS responses is the recruitment of other innate immune cells,
which we predict is transient, but have not yet confirmed. By
flow cytometry, we observed that IH sex-specifically increased
a population of CD11b+/CD45high cells that are likely to be
other monocyte-derived cell types. Recent research in mice has
identified a neonatal subpopulation of CD11c+ microglia that
express CD4 and contribute to myelogenesis; it is possible that
the myeloid population identified here has similar function (71).
Alternatively, this myeloid cell population could be dendritic
cells, which are important antigen presenting cells present in the
choroid plexus under homeostatic conditions (72), but can also
be derived from monocytes in the presence of IL-4 and IFNβ

(73), two of the genes we find to be augmented by IH in the
brain. Additionally, dendritic cells are strong producers of IFNβ
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(74). Thus, it remains unclear whether the changes we observe in
Ifnβ1 and Il4 gene expression are truly a reflection of alterations
in microglial gene expression, or if they reflect responses to the
unidentified alternative monocyte cell population. However, if
the changes in Ifnβ1 and Il4 are a consequence of changing
CNS myeloid populations, it would suggest that males and
females have different sources of these two genes, as only
females exhibited a change in myeloid populations. Future work
will need to investigate this possibility by characterizing the
different myeloid populations identified for the first time here.
Our RNA-seq data further supported the potential for a sex
difference in the myeloid cell recruitment to the CNS, as a
network of chemokine-related genes was differentially expressed
(Supplementary Figure 3).

In addition to the sex differences in microglial gene expression
following acute IH, there were multiple sex effects identified
by RNA-seq that were independent of IH treatment. From
the RNA-seq data, we observed changes in “cognition”-related
genes in the context of inflammation, not in basal conditions.
This is important given that OSA is often comorbid with
other illnesses involving systemic inflammation. These results
suggest that cognitive vulnerabilities may be unmasked because
of infection. Motif analyses for DNA binding proteins that may
be common regulators of these cognition genes identified a
binding motif for the androgen receptor. Androgen receptors
mediate inflammatory responses (75, 76) and CNS pathology
(77), and androgens activate signaling pathways that influence
the cognition-related genes identified in this study, including the
GABA transporter Slc6a (78–81). Indeed, at least one study has
even demonstrated that androgen receptors contribute to male-
specific GABAA-mediated excitotoxicity in the hippocampus
(79), which might underlie male vulnerability to cognitive
dysfunction in early life. Thus, the microglial genes identified
in this study may be useful candidates for future studies that
investigate sexual dimorphism in cognitive dysfunction after
neonatal stressors, such as IH.

Unlike females, males maintained their basal gene expression
of anti-inflammatory cytokines acutely and long-term. Since
males did not exhibit an acute increase in CNS myeloid
populations, there is an as yet unidentified mechanism
contributing to these long-term changes in Ifnβ1 and Il4
expression in males. We posit that IH-induces modifications to
the chromatin landscape, as has been reported for the carotid
body (82). While the consequences of upregulated microglial
cytokines in the male are unknown, type I interferons can inhibit
synaptic plasticity associated with learning (83), and increased
levels of IFNβ and IL-4 in the choroid plexus are associated with
cognitive dysfunction in aging (62, 63). Although our results
suggest that basal working memory is not impaired in young
adults (6–8 wks) exposed to IH as neonates, it is unknown for
how long the augmentation of these anti-inflammatory cytokines
persists, or if they contribute to cognitive dysfunction in aging.

Our IH model recapitulates multiple aspects of other models
of infant OSA, including SpO2 nadir to ∼60% and poor weight
gain (5). However, the severity of O2 desaturation caused by IH
exposures in rats compared to infant OSA is questionable due
to species differences in the oxygen reserve, suggesting that the

60%SpO2 nadir in neonatal rats is likely less severe than 60% in
human newborns (84). Nonetheless, for experimentally modeling
the effects of OSA, rats remain a good mammalian option (as
compared to mice) since their oxygen dissociation curve is closer
to that of humans (85). Other limitations include exposure
of pups with dams during IH treatment, which others have
suggested might reduce lactation, resulting in reduced neonatal
weight gain (16); this has not been directly tested. Nevertheless,
repeating these findings using a cross-fosteringmodel which does
not alter weight gain (16) may be beneficial to better understand
the direct effects of IH on the pups independent of the mother.
Lastly, the neonates were exposed to 15, uniformly distributed,
hypoxic episodes/h, for 8 h periods during the light phase of
each day. Since rat neonates do not establish diurnal/nocturnal
patterns for wake/sleep until P16-P20 (86), this IH model does
not necessarily recapitulate apneas experienced only during sleep.
However, despite these constraints, the weight and SpO2 results
we obtained are similar to those in other neonatal IHmodels used
by others (14, 20, 38, 87).

Overall, the results presented here support the idea that IH
is an early life stimulus that acutely modifies microglial function
and induces long-lasting changes in microglial gene expression.
Future studies will need to establish the functional consequences
of IH-induced microglial gene changes in the context of long-
term CNS inflammation and cognitive function.
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