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High-velocity projectile impact induced 9R phase in
ultrafine-grained aluminium
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Aluminium typically deforms via full dislocations due to its high stacking fault energy.

Twinning in aluminium, although difficult, may occur at low temperature and high strain rate.

However, the 9R phase rarely occurs in aluminium simply because of its giant stacking fault

energy. Here, by using a laser-induced projectile impact testing technique, we discover a

deformation-induced 9R phase with tens of nm in width in ultrafine-grained aluminium with

an average grain size of 140 nm, as confirmed by extensive post-impact microscopy analyses.

The stability of the 9R phase is related to the existence of sessile Frank loops. Molecular

dynamics simulations reveal the formation mechanisms of the 9R phase in aluminium. This

study sheds lights on a deformation mechanism in metals with high stacking fault energies.
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Coarse-grained (CG) metals with face-centered-cubic (FCC)
structure typically deform by glide of full dislocations1.
When the stacking fault energy (SFE) is low, deformation

of FCC metals is often accommodated by abundant partial dis-
locations2. Furthermore, prior studies show that grain size can
tailor the nature of dislocations during deformation. For instance,
ultrafine-grained (UFG, with grain sizes of 100–1000 nm) and
nanocrystalline (NC, with grain sizes of 100 nm or less) FCC
metals can deform via slip of partial dislocations or by twinning
(consecutive emission of partial dislocations on adjacent {111}
planes)3, 4, since the Frank–Read sources become more difficult to
operate when the grain size is < 1 µm5, 6. But in FCC metals with
high SFEs, deformation twinning is in general difficult7, 8 because
full dislocations are the major carriers for plastic deformation7, 8.
By using molecular dynamics (MD) simulations, Van Swygen-
hoven et al.9 have shown that deformation twinning tends not to
occur in NC aluminium (Al) (with a grain size of 12 nm or less)
with a high SFE, ~160mJ/m2, because the high ratio γsf=γusf
(γsf SFE, γusf unstable SFE) facilitates the nucleation and emission
of trailing partials, which eliminate SFs stemming from the glide
of the leading partials. Yamakov et al.10 have theoretically pre-
dicted that deformation twinning can occur in NC Al with grain
sizes of 45 and 70 nm. Experimental studies show that deforma-
tion twins indeed form in NC and CG Al at low temperature and
high strain rate11–13, but with a very low probability11–13. This
could be ascribed to the GB-mediated deformation mechanisms
that reduce the probability of deformation twinning14, 15.

The 9R phase has been observed in FCC metals with low SFEs,
such as Cu (45 mJ/m2)16, 17, Ag (22 mJ/m2)18 and Au (40 mJ/m2)

19. The 9R structure is comprised of a stacking fault ribbon
consisting of a repeating unit of 9 {111} atomic layers (6 stacking
fault planes and 3 normal stacking planes). Thus, the 9R phase
has a much higher formation energy than that of a twin (con-
taining only two stacking fault planes). Although deformation
twinning has been observed in high SFE metals under extreme
deformation conditions, the formation of the 9R phase via plastic
deformation has never been reported in pure Al because the 9R
phase is difficult to nucleate and is highly unstable even if
nucleated.

In this study, we investigate the deformation mechanisms of
sputter-deposited UFG Al thin film (containing a certain fraction
of growth twins20) subjected to high-velocity micro-projectile
impacts by using a laser-induced projectile impact test (α-LIPIT)
technique21–23. Extensive post-mortem transmission electron
microscopy (TEM) studies reveal several tens of nm wide, 9R
phase regions in the impacted UFG Al, as well as abundant dis-
location networks, along with grain rotation and fragmentation.
A mechanism for the formation of 9R phase has been discovered
in Al by using MD simulations. To accommodate the plastic
deformation under high strain rate, the formation of 9R phase via
dissociations of incoherent twin boundaries (ITBs) can occur
even if there is a high-energy barrier. Frank loops play an
important role to stabilize the 9R phase in Al.

Results
Microstructure characterization. The electron backscatter dif-
fraction (EBSD) micrograph and the corresponding orientation
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Fig. 1 Microstructures of as-deposited ultrafine grained (UFG) Al thin film. a EBSD micrograph showing orientation map along the sample surface normal
direction; the red lines indicate ∑3 twin boundaries. Scale bar, 1 µm. b The boundary rotation axis (BRA) map reveals the incoherent twin boundary (ITB)
(when BRA//TB) and coherent twin boundary (CTB) (when BRA⊥TB). Scale bar, 1 µm. c, d Plan-view TEM images showing growth twins in as-deposited
UFG Al thin films (inset of d shows the selected area diffraction (SAD) pattern of a grain containing growth twins). Scale bar, 20 nm
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mapping analysis (Fig. 1) show that the as-deposited films have
ultrafine grains with high-angle grain boundaries (GBs). The
grain size of the as-deposited Al films (Supplementary Fig. 1)
varies from 60 to 350 nm, with an average of ~140 nm. The red
lines in Fig. 1a indicate the ∑3 {111} twin boundaries (TBs) in
the as-deposited films. In order to differentiate the ∑3 coherent
TBs (CTBs) and and ITBs, we need to examine the boundary
rotation axis (BRA). As shown in Fig. 1b, the BRA is parallel to
the ITB, but perpendicular to the CTB. TEM micrographs
(Fig. 1c, d) and the inserted selected area diffraction (SAD) pat-
terns confirm the formation of CTBs in the as-deposited UFG Al
film. A plan-view TEM micrograph (Fig. 2a) and the inserted
SAD patterns show the polycrystalline nature of the UFG Al film.
A cross-sectional TEM micrograph shows that the grains are
columnar (Fig. 2b).

As shown schematically in Fig. 2c, individual SiO2 micro-
spheres (3.7 μm in diameter) were launched to impact the free-
standing UFG Al films deposited on TEM grids. The projectile
velocity was 600 m/s corresponding to strain rates of ~107–108/s.
A plan-view scanning electron microscopy (SEM) micrograph of
the impacted film is shown in Fig. 2d. Most of the perforated
holes have a circular shape with a diameter similar to that of the
SiO2 projectiles (Supplementary Fig. 2). The TEM micrograph in
Fig. 2e shows a representative circular hole after micro-projectile
penetration. TEM studies show that a majority of the impacted
zones have limited number of radial cracks surrounding the
perforated holes (Supplementary Fig. 3).

Formation of the 9R phase. A striking phenomenon is the for-
mation of 9R phase regions in highly deformed areas near the

edge of the perforation. Figure 3a shows a typical deformation
twin formed near the edge of a perforation. The white dashed
lines indicate two parallel CTBs. At the end of the two CTBs, a
dashed orange line marks the boundary of an 80 nm wide 9R
phase. The curved phase boundaries (PBs) separating the 9R
phase from matrix are marked as PB1 and PB2. The two PBs
associated with the 9R region are comprised of arrays of Shockley
partial dislocations24. Specifically there is an array of edge type of
Shockley partial dislocations located on one side of the 9R phase
(forming PB1), and an array of mixed Shockley partial disloca-
tions located on the opposite side of the 9R phase (forming PB2)
(Supplementary Fig. 4). The two sets of partial dislocations on the
PBs attract each other as the edge components of the two sets of
partial dislocations have opposite signs.

One section of the 9R phase near the upper TB is analyzed by
high-resolution TEM (HRTEM). The magnified view of the 9R
phase in Fig. 3c confirms the periodic stacking sequence typically
observed in the 9R phase17. As shown in Fig. 3b, near the left side
of the giant 9R phase, multiple SFs are observed. Besides SFs,
numerous Frank partial dislocations were also identified within
the 9R phase. The magnified view of box 2 (in Fig. 3d) shows the
deformation-induced CTB containing numerous Shockley par-
tials. The schematics illustrate the formation of the 9R phase and
CTBs in Fig. 3e, which will be discussed later in the paper.

Grain fragmentation. In addition to the discovery of the impact-
induced 9R phase, grain fragmentation was also frequently
observed. A dark-field TEM micrograph in Fig. 4a shows the
microstructure of the impacted films can be separated into two
different zones based on the morphology of grains: a highly
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Fig. 2 A laser-induced projectile impact testing (α-LIPIT) for UFG Al films with a thickness of 140 nm. a A plan-view TEM micrograph showing the
as-deposited UFG Al film. Scale bar, 200 nm. b The cross-sectional view of the as-deposited Al thin film showing columnar grains. Scale bar, 100 nm. c A
schematic of the α-LIPIT experiment. d A low magnification SEM micrograph showing the perforations induced by micro-projectiles in the UFG Al film
supported by Cu TEM grid. Scale bar, 100 µm. e A representative TEM image showing the film morphology around a circular perforation. Scale bar, 2 µm
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deformed zone 1 adjacent to the edge of the circular perforation,
with a width of ~1.5 µm, and a less deformed annular zone 2
outside zone 1. Most grains in zone 2 have well-defined GBs and
relatively uniform contrast, while inside zone 1, especially nearest
the edge of the perforation, much smaller grains with irregular
GBs are frequently observed. Comparison of the grain size dis-
tributions in the two zones (Fig. 4b) shows that the average grain
size is reduced in zone 1 near perforated holes (Supplementary
Fig. 5). Although grain fragmentation dominates the evolution of
grain morphology inside the highly deformed area, grain coar-
sening has also been observed occasionally. As shown in Fig. 4c, a
large elongated grain containing a large number of dislocations

was observed near the edge of a different perforation. The
inserted SAD pattern from the area marked by the white dash-dot
line shows the single-crystal like diffraction pattern captured
along the [001] zone axis. The large misorientation angle (> 20°)
in the stretched {220} diffraction spots indicates grain rotation
during the formation of the large grain.

Dislocation network. Furthermore, a large number of disloca-
tions induced by the high-strain-rate impact were observed in the
deformed grains, and the defect density varies inversely with the
relative distance of the grains to the perforated holes. In general, a
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Fig. 3 Projectile impact induced 9R phase in UFG Al films. a Overview of the microstructures of UFG Al adjacent to the edge of the perforated hole. CTBs
bounding a giant 9R phase are identified. The phase boundaries (PB1 and PB2) separating the 9R phase from the matrix are also labeled. Two white boxes
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micrograph of the CTB from area 2. High-density Shockley partials are identified along the CTB. Scale bar, 2 nm. d HRTEM micrograph of the white box in b
showing the 9R phase. Scale bar, 5 nm. e A schematic shows the deformation-induced 9R phase and the TBs. A section of the GB has the nature of an ITB
with one Shockley partial on each adjacent {111} plane. High-strain-rate impact triggers the migration of partials along the ITB. The giant 9R region is over
100 nm long and is bounded between PB1 and PB2. Sessile Frank partials also form within the 9R phase and pin the trailing partials, stabilizing the 9R phase
after the high-strain-rate impact.
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large number of dislocations are frequently observed in grains
located within zone 1 as shown in Fig. 5a. Moreover, many grains
in zone 1 have irregular shapes and complex stress contours.
Figure 5b shows tangled dislocations aligned nearly orthogonal to
one another in a large grain in area B of zone 1. Another adjacent
large grain in area C of zone 1 contains prominent parallel dis-
location networks (Fig. 5c). TEM tilting experiments were per-
formed to examine dislocations in these deformed grains
(Supplementary Fig. 6). Although grains in zone 2 typically have
less internal defects, arrays of dislocations are frequently observed
in grains containing CTBs (growth twins). Figure 5d shows the
enlarged image of the box D in zone 2, where an array of black
dots was observed running straight across the entire grain. The
black dots arise from the edge-on view of dislocation cores, and
the straight line is a CTB of a growth twin inside the grain.
Similar arrays of dislocations have been frequently observed in
numerous other grains in zone 2 containing growth twins (Sup-
plementary Fig. 7).

Discussion
In FCC metals with low SFE, the core of a 1/2 <110> full dis-
location can dissociate into two Shockley partial dislocations
connected by a SF, which is also referred to as an extended dis-
location1, 25. Abundant deformation twins or SFs have been
observed in deformed FCC metals with low SFEs4, 26–32. In
contrast, plastic deformation of monolithic CG Al typically does
not lead to deformation twins or SFs due to the high SFE of
aluminium33, 34. However, there is increasing evidence of defor-
mation twinning in NC Al both experimentally and computa-
tionally11–13, 35–37. MD simulations35 reveal several twinning
mechanisms in NC Al, including the overlap of two extended
dislocations on adjacent slip planes; successive emission of mul-
tiple Shockley partial dislocations from GBs; and GB splitting and
migration induced formation of TBs. Zhu et al.4 reviewed various
twin formation scenarios related to the successive slip of partial
dislocations in NC Al, Ni, and Cu. Briefly there are two partial
dislocation emission processes, including monotonic activation of
partial dislocations (MAPs) with the same Burgers vector and
random activation of partial dislocations (RAPs)38. Wu et al.38

hypothesize that RAP is more favorable than MAP twinning
mechanism since RAP induces little macroscopic strain due to
zero net macroscopic strain, alleviating the strain on neighboring
grains. Distinctive from the MAP and RAP deformation twinning

mechanisms, a growth-induced 9R phase with zero net shear
strain has been observed in FCC metals with low SFE39–42 and in
CuZn alloys43. However, instead of the MAP and RAP
mechanisms, the new deformation-induced 9R phase results from
the consecutive slip of three partial dislocations on adjacent slip
planes in a periodic manner. In Ag, the nucleation and migration
of a ∑3{112} ITBs facilitate the formation of the 9R phase24.
However, deformation twinning in Al remains a difficult, high-
energy process as shown by the spontaneous detwinning during
in situ TEM tensile experiments44, 45. Also, a deformation-
induced 9R phase in Al has, to our knowledge, not yet been
previously reported. Hence the formation of 80 nm wide 9R phase
regions in UFG Al is unexpected. The following section will
discuss the detailed formation mechanism of deformation-
induced 9R phase in Al as revealed by MD simulations.

The non-equilibrium MD (NEMD) method has been used for
the investigation of shockwave response of solids, because the
large-scale MD simulations can generate steady plastic (or split
elastic–plastic) waves. Prior MD simulations and experimental
studies on shock response of single crystals and polycrystalline
materials have shown qualitative and, in some cases, quantitative
agreement46–51. To investigate the mechanisms for the formation
of 9R phase in Al, we simulated the shock response of nanoscale
columnar grains in Al using the plate spallation experiment46, 52.
The stress state in surrounding zones around the perforated holes
is quite complex during the penetration of a projectile through
the film. As a projectile impacts, the film is stretched, resulting in
an axisymmetric tensile stress. The tensile stresses generate
resolved shear stresses acting on partial dislocations in ITBs. It is
however very challenging to generate a tensile shock wave in MD
simulations. We thus simulated the formation of the 9R phase in
UFG Al with a compressive shock wave, because an effective
resolved shear stress is naturally responsible for the gliding of
partial dislocations.

To inspect the influence of GB structures on the formation of
9R phases, we examined the shock response of NC Al with two
different types of GBs under shock at a speed of 1 km/s. In the
first case, NC Al contains four grains that have twin relation and
form ∑3 {112} ITBs. The columnar grain size is 15 nm and the
height is 75 nm. Topological analysis and microscopic char-
acterization show that ∑3 {112} ITBs in FCC metals consist of a
repeatable pattern involving three Shockley partial dislocations as
one unit in three adjacent {111} atomic planes (Supplementary
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Fig. 8(a1–a3))17, 29. In comparison, we also shocked the columnar
NC Al that contains ∑11 asymmetrical tilt GBs. The GB plane is
parallel to (252) and (414) in the neighboring grains. The GB
contains Shockley partial dislocations every seven {111} atomic
planes (Supplementary Fig. 8 (b1, b2))53. Partial dislocations were
nucleated at GBs and emitted into grains in two simulations
(Fig. 6). Most importantly, the 9R phase is only observed in the
NC Al containing ∑3 {112} ITBs (Fig. 6c). The formation of the
9R phase is ascribed to the emission of pre-existing Shockley
partial dislocations. Under high shear stresses, it is expected that
one set of partial dislocations on PB1 (Supplementary Fig. 4) in
Al can glide along one direction away from the compacted ∑3
{112} and the rest of partial dislocations that have screw com-
ponents with opposite signs on PB2 may glide towards the
opposite direction if the gliding force acting on partials exceeds
the Peierls barrier24. As a result, the 9R phase can propagate.

Several factors may contribute to the stabilization of the 9R phase
induced by the high-strain-rate deformation. The high-resolution
microscopy (Fig. 3b) shows the formation of numerous Frank
partials inside the 9R phase. The Frank partials may arise from the
interactions among high-density Shockley partials that are activated
on different slip systems during projectile impact. These sessile
Frank partials may act as barriers to block partials aligned on PB2
and thus enhance the stability of the 9R phase.

Besides the pinning effect from the sessile dislocations, the
interaction force between the partials of b1 and partials of b2 and
b3 (Supplementary Fig. 4) also plays a role in stabilizing the 9R
phase. Different from the conventional repulsion between a

leading partial and trailing partial dislocation bounding a stacking
fault ribbon, the ∑3 (112) ITB consists of a periodic array of
three different partial dislocations, b1, b2, and b3 (Supplementary
Fig. 4a). These three partials have a net zero Burgers vector17, 29.
As shown in Fig. 3e, at stage 1, a portion of the GB consists of∑3
{112} ITBs, which are confirmed by HRTEM images and EBSD
data in Fig. 1a, b. Under high-strain-rate impact, one set of partial
dislocations b1 on PB1 (as shown in Supplementary Fig. 4b) and
the other set of partial dislocations (b2 and b3 on PB2) glide on
{111} planes towards the opposite direction because the edge
component of their Burgers vectors has an opposite sign. Con-
sequently a 9R phase forms bounded by PB1 and PB2 (Supple-
mentary Fig. 4c). However, PB2 will experience a high friction
force due to its two-atomic layer core of the b2 and b3. Thus PB1
moves faster than PB2. As a consequence, PB2 will move towards
PB1 in order to minimize the system energy due to the formation
of the 9R phase, as shown in stage 2 in Fig. 3e29. Finally, the
partials in PB1 stop when the shock-induced stress is insufficient
to drive their further migration (stage 3). Meanwhile, with the
increasing separation distance, the attraction force between par-
tials dislocations on PB1 and PB2 also quickly decreases and
becomes insufficient to go over the barrier stress resulting from
Peierls friction stress or the Frank partials, leading to the stable
pinning of the 9R phase in the impacted UFG Al.

For a thin film specimen, free surfaces play different roles on
the formation and annihilation of the 9R phase in our Al thin
film. As the projectile penetrates through the Al film, the high
shear stresses trigger the glide of dislocations. Once a dislocation
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glides away from the ITB into the grain, the image force due to
free surfaces attracts the dislocation. For full dislocations, this
attraction process reduces the dislocation density in the grains.
While for partial dislocations, this attraction process facilitates the
formation of the broad 9R phase. However, the 9R phase is a
high-energy structure and can be considered to some extent as a
high-density stacking fault. Hence after the projectile impact, free
surfaces act as sources to nucleate partial dislocations that may
annihilate 9R phase regions to reduce the system energy. As a
consequence of the nearby free surfaces, less 9R phase regions will
exist inside the thin film. The influence of the free surfaces might
also explain why certain grains in the impacted zone do not
appear to have a large number of dislocations. Although TBs are
rare in monolithic CG Al prepared by rolling and annealing,
numerous studies have shown that deformation twins can be
introduced into NC Al11, 13, 54, 55. It is likely that high-strain-rate
deformation may also introduce the 9R phase in NC Al con-
taining deformation twins. Such a hypothesis requires further
validation by experimental investigations.

In addition to the observation of deformation twins and the 9R
phase near the perforations, dislocation slips and the formation of
dislocation networks during projectile impact are ubiquitous
during the plastic deformation of UFG Al12. In the highly
deformed regions, the dislocation density can reach the order of
1012/cm2, comparable to that in heavily cold worked metals. The
dislocation networks manifested by the complex stress contours
accommodate the plastic deformation and facilitate energy dis-
sipation during projectile impact. The impact induced grain
fragmentation could be related to the formation of dislocation cell
walls in the grains or significant shear induced grain rotation and
refinement. Our recent study also shows that the as-deposited
UFG Al films contain a certain fraction of growth twins20. These
growth twins interact with the impact induced dislocations and
act as pinning centers to store dislocations (Fig. 5d).

In summary, broad 9R phase regions have been discovered in
UFG Al subjected to high-velocity projectile impact in spite of the
characteristic high SFE of Al. The 9R phase arises from shock-
induced rapid migration of partials from ITB seeds in as-
deposited Al. A deformation twinning mechanism has been dis-
covered in a FCC metal with a high SFE. The stability of the giant
9R phase is due to the pinning of partial dislocations by abundant
sessile dislocations within the 9R phase. The methodology of
using a novel micro-projectile impact technique on TEM speci-
mens opens a new avenue for high-throughput examination of
high-strain-rate impact induced damage and plasticity in a broad
range of metallic materials.

Methods
Sample preparation and projectile impact experiments. Al thin films, ~140 nm
in thickness, were sputter-deposited onto carbon film (25 nm thick)-coated copper
TEM grids. The base pressure of the vacuum chamber was ~8 × 10−8 torr. The
Transmission Kikuchi Diffraction (also referred to as t-EBSD) technique was used
to collect crystallographic information on the Al thin films in the transmission
mode of a Tescan FERA-3 scanning electron microscope operated at 28 kV. The
EBSD data analyses were performed using the Channel 5 software suite. The scan
area was 4.6 × 4.6 µm with a step size of 20 nm. To explore the deformation
mechanisms of UFG Al at high strain rates, we used a recently developed LIPIT
technique, where high-velocity monodispersed silica microspheres (~3.7 µm in
diameter) impact and penetrate the UFG Al film. Individual silica microspheres
were launched using a laser pulse, towards Al films at high velocities (~ 600 m/s) to
generate high-strain-rate (~107–108/s) deformation in a local region. Approxi-
mately a dozen impact experiments using silica micro-projectiles were performed
at different grid areas (i.e., each time the projectile impacts a pristine portion of the
UFG Al films). Free-standing films were used to avoid the complexity of back-
stress waves that are typically seen in mechanically clamped bulk shock-loaded
specimens.

Microstructure characterization. After the projectile penetration experiments, the
shape of the perforated holes in UFG Al film was examined by using an FEI Quanta
600 scanning electron microscope operated at 10 kV. TEM analysis was performed
on an FEI Tecnai F20 ST microscope operated at 200 kV to characterize the
evolution of the microstructure near the impacted regions. To further probe the
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Fig. 6Molecular dynamics simulation of the shock-induced activity of partials in∑11 GB and∑3 ITB. a–c Snapshots of shock-induced dissociation of partial
dislocations from compacted ∑3 {112} ITB in Al. a The ∑3 ITB with 15 nm domain size in Al film. Scale bar here and in subsequent panels is 15 nm. b, c
When the shock wave passes through the ITBs, the 9R phase forms due to the dissociation of ITBs by the emission of partial dislocations from the ITBs.
The red area bounded by the green lines is the 9R phase. d–f The snapshots of shock-induced nanotwin and partials (nucleation and emission of partial
dislocations from ∑11 GB). d The ∑11 GB with 15 nm domain size in Al film. The GB contains Shockley partial dislocations every seven {111} atomic planes.
e, f Partial dislocations are emitted from the GBs due to the shock wave
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impact-induced microstructural changes in the UFG Al films, HRTEM experi-
ments were performed.

MD simulations. Al specimens were relaxed by energy minimization using the
quenching MD method, followed by equilibration using isothermal isobaric
ensemble at 300 K and 0 GPa pressure for 50 ps. The time-step in NEMD simu-
lations was chosen to be 0.2 fs to ensure numerical stability. The velocity-Verlet
algorithm was adopted to solve the MD equations. The computational model for
the plate impact experiment comprises two parts using the same material. One part
is fixed (representing the impactor) and the other part is the target, i.e., the UFG Al
sample. Two-dimensional periodic boundary conditions were used in the per-
pendicular directions. The target was shocked by ramming it at a speed of 1 km/s
against the fixed impactor. The atomic interactions in Al were described by an
accurate embedded atom method (EAM) potential developed by Winey et al.52.
The validity of the EAM potential under strong shock conditions was confirmed by
comparing Hugoniot curves (P–V and P–T curves) and the melting curve with
experimental data52.

Data availability. The data that support the findings of this study are available
from the corresponding authors upon reasonable request.
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