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Abstract

With the advent of the era of artificial intelligence, text detection is widely used in the real

world. In text detection, due to the limitation of the receptive field of the neural network, most

existing scene text detection methods cannot accurately detect small target text instances

in any direction, and the detection rate of mutually adhering text instances is low, which is

prone to false detection. To tackle such difficulties, in this paper, we propose a new feature

pyramid network for scene text detection, Cross-Scale Attention Aggregation Feature Pyra-

mid Network (CSAA-FPN). Specifically, we use a Attention Aggregation Feature Module

(AAFM) to enhance features, which not only solves the problem of weak features and small

receptive fields extracted by lightweight networks but also better handles multi-scale infor-

mation and accurately separate adjacent text instances. An attention module CBAM is intro-

duced to focus on effective information so that the output feature layer has richer and more

accurate information. Furthermore, we design an Adaptive Fusion Module (AFM), which

weights the output features and pays attention to the pixel information to further refine the

features. Experiments conducted on CTW1500, Total-Text, ICDAR2015, and MSRA-

TD500 have demonstrated the superiority of this model.

Introduction

Scene text detection is an important research direction in the field of object detection, with the

goal of detecting text in real-world photographs. Recently, with the upsurge of deep learning,

scene text detection has been widely applied in driverless, unmanned supermarkets, image

retrieval, real-time translation, and other fields.

Compared with general object detection, scene text has various shapes and sizes, variable

text language, different text styles, and is easily affected by lighting, so it faces huge challenges.

Previous scene text detection methods [1–6] mainly rely on manually set features to under-

stand images. The current rise of deep learning mainly divides this task into regression-based

and segmentation-based methods. Although the regression-based approach has a fast detec-

tion speed, it does not perform well in special-shaped text datasets such as vast aspect ratio,

curved text, etc. Segmentation-based methods have been improved on curved text datasets.

However, most of these methods suffer from large models and slow detection speeds.
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Moreover, these methods are difficult to detect small text and separate adjacent text instances.

Generally speaking, the detection of arbitrary-shaped text in complex scenes currently faces

the following problems: First, high-precision models have a large number of parameters and

are time-consuming, making it difficult to apply in practical industries. Second, the scale of

text instances in scene text varies widely. The current scene text algorithm can accurately

detect large-scale text, but it is difficult to detect small-scale text, and it cannot separate adja-

cent text in dense areas. The lightweight detector Pixel Aggregation Network (PAN) algorithm

proposed by Wang et al. [7] uses ResNet-18 as the backbone, uses a Feature Pyramid Enhance-

ment Module (FPEM) and Feature Fusion Module (FFM) to solve the lightweight network

detection problem, and aggregates text pixels by predicting similarity vectors, which largely

solves the speed problem of detecting arbitrarily oriented text. However, the network detects

text objects of different scales in images of specific scales, each feature map in the pyramid

(used to detect a specific size object within range) mainly or only consist of a single level of fea-

tures. In the path of feature enhancement, since the linear interpolation method used in the

up-sampling process only depends on the relative position, and the element addition method

is used to fuse two adjacent features after up-sampling, which ignores the semantic difference

between feature maps due to different depths. Second, the representational power of high-level

semantic features is not fully utilized in larger receptive fields. For the feature fusion module, a

simple up-sampling and connection method is used for feature fusion. However, there are

semantic differences in cross-scale feature maps, so up-sampling may result in the problem

that the ratio of the receptive field of the feature map and the text feature does not match, and

the information cannot be fully fused. From the analysis of the experimental results, this

method produced serious misdetection and omission for small-scale text or separation of adja-

cent text. PAN++ [8] is an end-to-end scene text detection and recognition network. Its detec-

tion network is slightly improved in PAN [7], which adds the feature combination of the

corresponding scale in the FFM module directly to the scale enhancement path. In other

words, the output feature pyramid is the outcome of combining the pieces of the input feature

pyramid with the scale-enhanced feature pyramid.

Inspired by the above analysis, in this paper, we continue to use lightweight ResNet-18 as

the backbone for feature extraction, but we employ a more effective method to enhance fea-

tures, the Cross-Scale Attention Aggregation Feature Pyramid Network (CSAA-FPN). The

Feature Attention Aggregation Module (AAFM) in the network effectively solves the multi-

scale variation problem in scene text by fusing adjacent features and skipping connections.

Specifically, we use the concatenate operator to fuse two neighboring features, aggregating fea-

ture complementary information and making full use of semantic information at different lev-

els. Secondly, we utilize contextual information to improve the feature representation, and by

directly adding convolutional layers to expand the receptive field while preventing increased

computational burden. Finally, we use channel and spatial attention to enhance semantic con-

sistency before outputting features, and further refine features from each feature level in the

pyramid to make full use of channel and spatial information to solve the problem of feature

level imbalance for text instances at different scales. Besides, we design weights to the fused fea-

tures through an Adaptive Fusion Module (AFM), which they will focus on accurate features

while abandoning inaccurate ones, and the classified features are used in the subsequent pixel

aggregation post-processing algorithm.

The experiments on four challenging benchmark datasets including CTW1500, Total-Text,

MSRA-TD500, and ICDAR2015 have demonstrated that the two proposed strategies can effec-

tively enhance the detection performance. Specifically, they bring 4.9%performance improve-

ment on multilingual text dataset MSRA-TD500 and 2.79% performance improvement on the
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curved text dataset CTW1500 dataset. Meanwhile, our model also has promising performance

on multi-oriented and long text datasets.

In summary, the contribution of this paper is as follows: (1) A new U-shaped feature pyra-

mid network for cross-scale attention aggregation features is proposed, guiding low-level

semantic information to fuse multi-scale information layer by layer through high-level seman-

tic information, performing top-down semantic feature enhancement and low-up detail infor-

mation enhancement, and expanding features using jump connections. Furthermore, we

apply CBAM attention to spatial and channel information to obtain more accurate resolution

features as well as richer information in the output features. Compared with the original net-

work, the network can detect small-scale text and adjacent text more effectively. (2) An adap-

tive fusion lightweight module is proposed to weight the output feature maps and focus on the

location information of the features. This module can suppress useless feature information

and effectively utilize pixel information to achieve feature selection. (3) The network of this

paper is verified on different datasets. Compared to base-line models, the advanced perfor-

mance is achieved without the use of pre-training finetuning.

Related work

Text detection algorithm

The background of the early images is relatively simple, and the form of the text also is rela-

tively simple. The traditional methods [1–6] generally use the features designed by the human

hand to detect the text and have achieved some good results. For example, Kim et al. [1] pro-

posed a texture classifier characterized by the texture of the text, Guo et al. [2] proposed a

detector using a sliding window, Epshtein et al. [3] proposed the stroke width algorithm, and

the MSER algorithm [9], etc. Nowadays, under the condition of complex background, the

algorithms based on deep learning are mainly divided into algorithms based on region sugges-

tion and algorithms based on segmentation.

The region-based suggestion approach mainly uses the target detection frame-works of Fast

R-CNN, SSD, and YOLO as the basic framework and improves it with practical applications.

In the Deep Text algorithm proposed by Zhong et al. [10], Faster R-CNN was applied to the

scene text detection algorithm for the first time, adding fuzzy text category information and a

multi-scale region pooling module to better detect small-scale text. Although Faster R-CNN

can achieve text localization, it is also only adapted to horizontal text. To address this difficulty,

the RRCNN framework proposed by Ma et al. [11] adds rotation factors to the detection net-

work to detect text in any direction. Zhu et al. [12] also uses the Faster R-CNN framework to

improve the detection of curved text. Since the text itself generally exists as long rectangular

text, the text is usually displayed in the image at different scales. In response to this feature, Shi

et al. [13] proposed building a segmented SegLink network with the SSD infrastructure. Text-

Boxes [14] modifies the convolution kernel size of SSD to fit the more elongated text. RRD

[15] further improves the detection rate in the long and multi-directional text by extracting

different feature maps for regression and classification. Inspired by the YOLO network, Gupta

et al. [16] proposed the FCRN model, which implements regression prediction for text-boxes

based on a fully convolutional network. ContourNet [17] incorporates an adaptive RPN into

the network to detect arbitrary shaped text. DDR [18] and EAST [19] use corner localization

methods to predict text boxes. Although regression-based methods have achieved text detec-

tion, they mostly rely on bounding box settings, so it is not easy to achieve accurate results on

extreme aspect ratios and curved text.

The segmentation-based method generally obtains text pixels by segmentation and obtains

the text box position through pixel point regression or aggregating text pixels, which greatly
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increases the detector’s detection rate for arbitrarily shaped text. This type of method mainly

detects text based on segmentation networks such as Mask R-CNN, FCN, and FCIS. SPC Net

[20] improves on Mask R-CNN by using two different branches for text segmentation. PMTD

[21] introduces location information for quadrilateral detection and obtains accurate text

boxes through a planar clustering method. Mask Textspotter V1 [22] is an end-to-end detec-

tion recognizer that simultaneously performs both classification regression and segmentation

of text, generating text instance segmentation maps and character segmentation maps. TextS-

nake [23] represents the text instance as a disc with information, predicts the text centerline

and text area score map through the FPN network, and extracts the shape direction of the text

instance to achieve accurate segmentation of the text instance. Zhu et al. [24] proposed the

TextMountain algorithm for semantic segmentation of images, where the text is determined

by pixel shifting. Pinxlink [25] is to view the text detection problem as an instance segmenta-

tion problem and to separate textual and non-textual regions by means of linking. Yang et al.

[26] proposed IncepText which uses different convolutional kernels composed of different

branches to detect different scales of text, while invoking deformable convolutional layers and

deformable pooling layers for multi-directional text detection. Baek et al. [27] proposed that

the CRAFT algorithm takes character segmentation as the core idea. The algorithm is based on

the idea of weakly supervised learning, and after getting the prediction results, the Gaussian

heatmap is used to generate the character label, and finally, the MSER algorithm is used to seg-

ment the character area. PSENet [28] performs text instance segmentation by using different

scale kernel expansion methods.

Feature pyramid network

FPN [29] constructed an effective framework to solve the multi-scale feature extraction prob-

lem by a top-down path and lateral connections for layer-by-layer feature fusion. This has

been widely applied and is being further investigated. However, FPN suffers from two wide-

spread limitations: (1) the information in the fusion process is constantly attenuated; (2) the

semantic inconsistency between adjacent features may cause aliasing effects. AugFPN [30]

improves FPN by proposing adaptive channel fusion, residual feature enhancement, and soft

ROI selection modules to extract and fuse features, respectively. Networks such as FPN [29]

and AugFPN [30] only use a single top-down path and horizontal connections for feature

enhancement and fusion. It transfers high-level strong semantic features to the bottom layer to

improve the expressiveness of the entire pyramid. However, low-level positional information

from the bottom of the pyramid cannot be transferred to the top. This can lead to inaccurate

localization of text bounding boxes, thus reducing detection performance. PAFPN [31] intro-

duces bottom-up paths to further expand and make full use of the information in each feature

layer. Networks such as PAFPN [31] and BiFPN [32] can alleviate these problems to a certain

extent, but there is still room for further improvement. A2FPN [33] improves multi-scale fea-

tures by adding attention to feature extraction and fusion, respectively.

Inspired by the appeal method, this paper proposes a cascaded U-shaped pyramid network

by combining top-down and low-up paths, focusing on feature enhancement while reducing

information loss due to channel decline and optimizing the final features after complex

integration.

Methodology

Overall architecture

In recent years, the pyramid enhancement network has made significant breakthroughs in the

image field. This paper takes the PAN [7] algorithm as the baseline and improves the original
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algorithm. The proposed algorithm is mainly divided into a cross-scale attention aggregation

module and an adaptive fusion module. (Fig 1) shows the scene text detection structure in this

paper. By improving the feature enhancement module, the information of adjacent layers is

better utilized without adjusting the model infrastructure.

Cross-scale attention aggregation feature pyramid network

There are objects of different sizes in different images, and each object has different feature

information. Shallow information can distinguish simple features, while deep information can

distinguish complex objects. There is often rich semantic information in the deep network but

a lack of geometric information. On the contrary, there is rich geometric information in the

shallow network but a lack of semantic information. Based on the structure of Feature Pyramid

Enhancement Module, in this paper, we propose a Cross-Scale Attention Aggregation Feature

Pyramid Network. As for the small object, the text has less pixel information and is easily lost

in the up-sampling process, so the attention module is added to enhance the pixel information.

The proposed architecture is shown in Fig (2).

CSAA-FPN is a U-shaped network architecture with path aggregation. Specifically, the fea-

ture information is augmented by the aggregation of lower-level information guided by the

higher-level information. It includes two paths, a top-down high-scale enhancement through

the AAFM_V1 module and a low-scale enhancement from low to high through the

AAFM_V2 module, with a bottom-up lateral connection being the final output of the module,

and we are using two cascaded networks to enhance the output features. The input{C1, C2,

C3, C4} are the outputs of ResNet’s Conv2, Conv3, Conv4, and Conv5 respectively, and their

size is 1
4 ;

1
8 ;

1
16 ;

1
32

� �
of the original image. Firstly, reduce the number of channels of C1, C2, C3,

and C4 to 128 to obtain the feature layers f1, f2, f3, and f4 after dimension reduction. Secondly,

a top-down path generates higher-resolution features, while a bottom-up path conveys geo-

metric information to the top layer to enhance semantic and spatial information.

We take f2 and f1 as an example. As shown in Fig (3), in the top-down attention aggrega-

tion feature module AAFM_V1. Firstly, a guided fusion of horizontal connections is per-

formed, and the small-resolution feature f2 is sampled to the same scale as the large-resolution

Fig 1. Overall architecture of AAF-Net. It includes a basic structure with ResNet-18; a cross-scale attention aggregation feature pyramid network

(CSAA-FPN); an adaptive fusion module (AFM); the pixel aggregation algorithm. The features from lightweight backbone network are enhanced by a

segmentation head which is composed of CSAA-FPN and AFM.

https://doi.org/10.1371/journal.pone.0272322.g001
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feature f1 by the bilinear difference method, and then connected.

P1 ¼ Convðcatðf 2 "; f 1ÞÞ ð1Þ

Where " stands for up-sampling, cat[�] represents the concatenation operation, and Conv

stands for 3 × 3 convolutional layers. The purpose of using concatenation is that the higher-

level feature maps are rich in semantic information. The connection between the high-level

and low-level features allows the rich semantic information to be transferred to the low-level

features, so we connect this. In this way, feature information is enhanced by fusing high-level

semantic features. Next, the generated features are computed by element-by-element convolu-

tion, and the intermediate features P1 are output. The 3 × 3 convolution increases the receptive

field of the connected features and increases the local context information. P1 at each fusion

level contains both semantic and detailed information, which can well preserve more discrimi-

native and complementary representations on the progressive fusion path.

Second, we feed the output feature P1 into the attention module CBAM [34]. Since the up-

sampling process causes the location of the deep features to change while causing the loss of

information, the attention module CBAM is introduced to enhance the location and spatial

information after the connection to make full use of the valuable information. Then, f1 is

superimposed with the emphasized information through the correction branch so that infor-

mative features are enhanced, and fewer valuable features are suppressed to obtain the output

feature map 10.

f 10 ¼ f 1þ CBAMðP1Þ ð2Þ

CBAM attention module is a lightweight module that mainly contains two attention mod-

ules: a network combining spatial attention mechanism and channel attention mechanism. It

is a cascade of two modules, which are first passed through the channel attention module and

then input to the spatial attention module to get the final information. The network learns to

focus on the critical information more.

Fig 2. The proposed cross-scale attention aggregation FPN network framework.

https://doi.org/10.1371/journal.pone.0272322.g002
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The structure of CBAM is shown in Fig (4):

Among them, the channel attention module pays attention to the critical information on

the channel. As shown in Fig (5), the input feature P1 first obtains the global channel informa-

tion through the global average pooling layer and the global max-pooling layer based on the

spatial size, respectively. The global average pooling gets the average value of feature maps for

each channel, and the max global pooling gets the maximum value of each channel’s features.

Then it is fed into a two-layer neural network MLP with shared features, and the two output

features are summed pixel by pixel. Finally, the channel attention feature maps are obtained by

activating the features with an activation function Sigmoid.

P10 ¼ sðMLPðAvgPoolðP1ÞÞ þMLPðMaxpoolðP1ÞÞÞ ð3Þ

¼ sðW1ð W0ðP
c
avgÞ þW1ð W0ðP

c
maxÞÞÞ ð4Þ

Where σ(�) is the activation function and W0 is the weight of the first-layer MLP, and W1 is the

weight of the second-layer MLP.

In Fig (6), the channel attention feature map P10 is multiplied pixel-by-pixel with the input

features as the input to the spatial attention module, which focuses on spatial information.

Fig 3. Attention aggregation feature module AAFM_V1, AAFM_V2.

https://doi.org/10.1371/journal.pone.0272322.g003

Fig 4. The structural framework of CBAM.

https://doi.org/10.1371/journal.pone.0272322.g004
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Similarly, the spatial attention module obtains global spatial information through the channel-

based global average pooling layer and the global maximum pooling layer, respectively. The

difference is that the two feature maps’ output afterward is channel-connected, downscaled by

a 7 × 7 convolution, and the perceptual field increases. Then, the activation function activates

the features to obtain the features P100 after spatial attention and channel attention.

P00 ¼ sðConv7� 7ðcatðAvgPoolðP10Þ;MaxpoolðP10ÞÞÞÞ ð5Þ

¼ sðConv7� 7ðcatðPs
avg; P

s
maxÞÞÞ ð6Þ

Finally, the obtained feature map is subjected to a 3 × 3 depthwise convolution and a 1 × 1

point-by-point convolution with a stride of 1 in the top-down path, and then activated. BN is

normalization and ReLu is the activation function.

f 100 ¼ ReLuðBNðConv1ðConv3ðf 10ÞÞÞ ð7Þ

In the top-down process, f3, f2, f1 are enhanced in turn to obtain f300, f200, f100, and similarly,

f4, f300, f200, f100 are augmented in the low-up path to obtain f1_1, f2_1, f3_1, f4_1. In the case of

the low-up path, the 3 × 3 depthwise convolution with a step size of 1 becomes a 3 × 3

Fig 5. Channel attention module structure.

https://doi.org/10.1371/journal.pone.0272322.g005

Fig 6. Spatial attention module structure.

https://doi.org/10.1371/journal.pone.0272322.g006
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depthwise convolution with a step size of 2 for the purpose of scale alignment. The purpose of

3 × 3 depthwise convolution is to expand the receptive field, while the 1 × 1 point-by-point

convolution is used to deepen the depth and improve the network’s learning ability, thereby

greatly improving the fusion effect and achieving better performance.

fi00 ¼
f4; i ¼ 4

ReluðBNðf 1�1ðf 3�3ð1Þðfi0ÞÞÞ; i ¼ 1; 2; 3

(

ð8Þ

fi� 1 ¼
f 00
1
; i ¼ 1

ReluðBNðf 1�1ðf 3�3ð2Þðfi00ÞÞÞÞ; i ¼ 2; 3; 4

(

ð9Þ

Adaptive fusion module

In this paper, we propose a cross-scale attention aggregation FPN network to enhance the fea-

ture information, and subsequently in the output feature stage we need to fuse the enhanced

information and output the overall features. Thus, we propose an adaptive fusion module as

shown in Fig (7).

Fig 7. Adaptive fusion module structure.

https://doi.org/10.1371/journal.pone.0272322.g007
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We firstly combine the corresponding scale feature maps by element addition, the integra-

tion of the corresponding scale features can be expressed as:

f 1 ¼ f1� 1 þ f1� 2 ð10Þ

f 2 ¼ f2� 1 þ f2� 2 ð11Þ

f 2 ¼ f3� 1 þ f3� 2 ð12Þ

f 4 ¼ f4� 1 þ f4� 2 ð13Þ

And in the process of fusion, since the output feature maps f1, f2, f3, f4 have different scales

of features, so f2, f3, f4 are up-sampled to the scale of f1 for connection. However, after up-

sampling, the feature is prone to the problem that the ratio of the receptive field of the feature

map and the text feature does not match, so we propose an adaptive fusion module to generate

the feature attention map, and assign weights to each channel adaptively. The feature map of

the channel is adaptively enhanced according to the size of the text instance. As shown in Fig

(7), our module is augmented by attention to pixels rather than the correlation of global or

local information, and we use residual connections. The AFM module is a differentiable mod-

ule and secondly can be trained in an end-to-end manner.

First, the overall structure of the AFM module can be expressed as:

F ¼ f 1 cat f 2 " f 3 " f 4 " ð14Þ

F0 ¼ Fþ F � Fo ð15Þ

Fo ¼ softmaxðBNðConv1ðFÞÞÞ ð16Þ

We designed Fω is the attention feature probability map output by the attention module.

The essence of this module is to channel attention. Each channel’s pixel feature map is multi-

plied by different attention weights, where�means dot product,�means residual connec-

tion, and the weighted attention feature map is summed with the original feature map. The

purpose of using pixel-by-pixel multiplication is to add attention to the channel of the feature,

pay attention to the channel information, and multiply it with the original pixel map to better

fuse the features and reduce the loss of information. In the gradient descent process, in order

to prevent the gradient from disappearing, a corrected residual network is used.

For channel attention, we are different. Channel attention is realized by multiplying chan-

nels, modeling the importance of each feature channel, and then enhancing or suppressing it.

Moreover, our fusion module is pixel attention, which achieves channel attention and focuses

on pixel diversity in the same space. Our work can be expressed as follows:

f 0ði; j; kÞ ¼ f ði; j; kÞ þ oði; j; kÞ � f ði; j; kÞ ð17Þ

Where i, j, k represents the i row and j column in the kth channel, ω which represents the

weight, and the weight value is adaptively assigned to the pixels of each channel to obtain the

final weight probability distribution feature.
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Experiment

Datasets

This paper conducts experiments on four open challenge datasets, namely CTW1500 [35],

Total-Text [36], MARA-TD500 [5] and ICDAR2015 [37].

CTW1500 [35] is mainly used to detect text of arbitrary shape, including 1000 training pic-

tures and 500 test pictures. It is a curved text dataset, mainly including English and Chinese. A

single text line uses 32 numbers to annotate the position of the text box. The first four numbers

are the coordinates of the rectangular text box, and the remaining 28 values represent 14 points

that form a closed curved polygon text box.

Total-Text [36] is a scene text dataset in English. The dataset contains text instances of hori-

zontal, multi-directional, and curved texts. The dataset is word-level annotated and contains

1255 training images and 300 testing images.

MSRA-TD500 [5] is an arbitrary directional scene text dataset consisting of out-door street

scenes and indoor scenes such as offices and shopping malls, with indoor scenes mainly con-

sisting of signs and door signs and outdoor scenes mainly consisting of billboards and warning

signs. The dataset contains 300 training sets and 200 test sets, including Chinese and English

languages. It is the annotation of line-level text, and the annotation is an external rotating rect-

angle of text lines.

ICDAR2015 [37] is one of the most commonly used scene text datasets. It has 1000 training

pictures and 500 test pictures, which are mainly used for multi-directional text detection. It

uses bounding box annotation, each line represents a text object, and a single object uses four

points to represent the position information of the rectangular text box.

Performance evaluation criteria

Three important metrics for general detection are recall (R), precision (P), and comprehensive

metrics F-measure (F). The recall rate is the proportion of the entire sample predicted to be

positive samples to all actual positive samples. The accuracy rate is the proportion of values

that are correctly predicted as positive samples out of the predicted positive samples. The F-

measure is the harmonic mean of the precision rate and the recall rate, and the F value is gen-

erally used to measure the quality of the overall algorithm.

Implementation details

All experiments in this paper did not use external datasets pre-trained to finetune the network.

Python 3.6 was used as the programming language in the framework of torch 1.6. All our

experiments are performed on a 2080Ti under one GPU, each with a batch size of 4, trained

from scratch on a public dataset for 600 epochs, similar to the PAN [7] algorithm, with an ini-

tial learning rate set to 1 × 10 − 3, use “poly” learning rate and “Adam” as optimizer. The data-

set is augmented with data before being fed into the model, randomly scaling the images by a

ratio of 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, rotating, flipping horizontally, and cropping the images.

The image input size of ICDAR2015 and MSRA-TD500 is set to 736 × 736, and the input size

of CTW1500 and Total-Text is 640 × 640.

Ablation study

To better demonstrate the effectiveness of our module, an ablation study is performed on the

arbitrary-shape text dataset CTW1500, which demonstrates the effectiveness of our cross-scale

attention aggregation FPN network and adaptive fusion module.
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In the ablation experiments, we test the effectiveness of the cross-scale attention module

and the adaptive module on the dataset, respectively, and the detailed results are shown in

Table [1]. In addition, we test the performance of our model on images of different scales, and

the specific results are shown in Table [2]. We also tested the effectiveness of each component

in CSAA-FPN, and the results are shown in Table [3].

The effectiveness of our model can be seen in Table [1]. The precision, recall, and F-mea-

sure of the baseline model PAN on the public dataset CTW1500 are 84.6%, 77.7%, and 81.0%,

respectively. Our method is also 86.17%, 80.25%, and 83.11% for precision, recall, and F-mea-

sure on this dataset. It can be seen that the accuracy of the method in this paper is 2.17% higher

than the baseline model, the recall rate is 2.55% higher, and the F-measure is 2.11% higher.

The detection results of this paper are significantly better than the PAN baseline network. We

verify the performance of cross-scale attention aggregation FPN and adaptive fusion modules

through ablation experiments. In the case of the CSAA-FPN+PAN, the entire model is 2.79%

more accurate than our base-line PAN on CTW1500, the recall rate is improved by 1.11%, and

the F-measure is improved by 1.88%. In the case of AFM+PAN, we achieve 1.13% higher pre-

cision, 1.41% higher recall, and 1.29% higher F-measure.

CSAA-FPN. CSAA-FPN is able to detect small text areas of arbitrary-shaped in complex

contexts through constant fusion and supplementation when performing top-down and top-

up path augmentation. We design two groups of experiments to verify the effectiveness of

CSAA-FPN. Firstly, we make a comparison between the model with CSAA-FPN and without

CSAA-FPN. It can be seen from Table [1], CSAA-FPN significantly improves the F-measure

by 1.88% over the baseline. Secondly, we subdivided CSAA-FPN and the experimental results

are shown in Table [3]. We can find that CSAA-FPN is the result of a combination of multi-

scale aggregation and attention mechanisms. In CSAA-FPN, on the one hand, concatenation

aggregation can fully fuse the features of multiple levels on the channel and make full use of

each level’s features. Compared with the baseline, the F-measure after adding the concatena-

tion operation is improved by 0.75%. On the other hand, the CBAM attention mechanism can

effectively align semantic features and suppress redundant information of complex

Table 1. The ablation experiment on CTW1500. “P”, “R” and “F” respectively stand for “precision”, “recall” and “F-measure”, “N” means that the module is not used,

and “Y” means that the module is used.

BackBone CSAA-FPN AFM P(%) R(%) F(%)

ResNet-18 N N 84.6 77.7 81.0

ResNet-18 Y N 87.39 78.81 82.88

ResNet-18 N Y 85.73 79.11 82.89

ResNet-18 Y Y 86.17 80.25 83.11

https://doi.org/10.1371/journal.pone.0272322.t001

Table 2. The results of our experiments at different scales on the CTW1500 dataset.

Method P(%) R(%) F(%)

PAN-320 82.2 72.6 77.1

PAN-520 83.8 77.1 80.3

PAN-640 84.6 77.7 81.0

Our-320 84.97 72.78 78.41

Our-520 86.82 78.39 82.39

Our-640 86.17 80.25 83.11

https://doi.org/10.1371/journal.pone.0272322.t002
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backgrounds. Compared with the baseline and model, the F-measure value after adding the

attention mechanism is improved by 1.22%. These performance enhancements indicate that

CSAA-FPN can indeed extract feature information more comprehensively and improve the

accuracy of image classification. Compared to the original Feature Pyramid Enhancement

Module (FPEM), it has stronger feature capture capability, higher detection ability for small

objects, and more accurate separation of adjacent texts.

AFM. AFM weights the output features, which can effectively enhance useful information,

suppress worthless information, and make the prediction box closer to the real box. As shown

in Table [1], it boosts the baseline by 1.29%. By adding AFM to the model equipped with both

CSAA-FPN and PAN, an additional gain of 0.22% can be achieved. Experimental results show

that the detection performance of the network combining the advantages of these two modules

is better than that of a single module applied separately.

Compare with previous method

To further verify the robustness of our model, we compare with previous state-of-the-art

methods on arbitrary-shaped text datasets, curved text datasets, multi-lingual text datasets,

and long-text scene datasets, respectively. The experimental results are shown in Tables [4–7].

Compared with the baseline network PAN, the method in this paper has obvious improvement

Table 3. The results of CSAA-FPN with different settings the CTW1500 dataset. “concat” means adding only multi-

scale concatenation to the CSAA-FPN, and “CBAM” means adding only the attention mechanism to the CSAA-FPN.

Method P(%) R(%) F(%)

FPEM 84.6 77.7 81.0

concat 86.19 77.74 81.75

CBAM 87.01 78.13 82.33

CSAA-FPN 87.39 78.81 82.88

https://doi.org/10.1371/journal.pone.0272322.t003

Table 4. Results at 640 × 640 on CTW1500, pre-train represents whether to use the pre-training dataset for fine-

tuning. “Y” means using pre-training, “N” means not using pre-training. “P”, “R” and “F” stand for “precision”,

“recall” and “F-measure” respectively.� indicates the results from [7]. PAN++ [8] is the detection module.

Method Pre-train P(%) R(%) F(%)

CTPN� [38] N 60.4 53.8 56.9

SegLink� [13] N 42.3 40.0 40.8

EAST� [19] N 78.7 49.1 60.4

Textsnake [23] Y 67.9 85.3 75.6

CTD+TLOC [41] N 77.4 69.8 73.4

PSENet-1s [28] N 80.6 75.6 78.0

PSENet-1s [28] Y 84.8 79.7 82.2

Textfield [42] Y 83.0 79.8 81.4

CRAFT [27] Y 86.0 81.1 83.5

Jiang et al. [39] Y 84.9 80.3 82.5

Qin et al. [40] N 81.8 76.8 79.4

DB-ResNet18. [44] Y 84.8 77.5 81.0

PAN-640 [7] N 84.6 77.7 81.0

PAN++ [8] N 86.52 79.27 82.74

Ours N 86.17 80.25 83.11

https://doi.org/10.1371/journal.pone.0272322.t004
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in each dataset, especially on the multilingual text dataset, which has the best effect and the

best performance. Also relative to other methods, the method in this paper also shows state-of-

the-art performance.

Curved text detection. To evaluate the performance of our model for detecting curved

text instance, we compare our model with other state-of-the-art methods on CTW1500 and

Total-Text. The visualization results of our model on the curved text datasets CTW1500 and

Total-Text are shown in Figs (8) and (9).

The evaluation results on CTW1500 are shown in Table [4], the methods of CTPN and

SegLink are mainly for horizontal text detection, so they cannot detect curved text well. Com-

pared with the previous pre-trained text bending detector TextSnake, the precision of this

Table 5. Results at 640 × 640 on total-text dataset, pre-train represents whether to use the pre-training dataset for

fine-tuning. “Y” means using pre-training, “N” means not using pre-training. “P”, “R” and “F” stand for “precision”,

“recall” and “F-measure” respectively. � indicates the results from [7]. PAN++ [8] is the detection module.

Method Pre-train P(%) R(%) F(%)

SegLink� [13] Y 30.3 23.8 26.7

EAST� [19] N 50.0 36.2 42.0

Deconvnet [36] N 33.0 40.0 36.0

Textsnake [23] N 82.7 74.5 78.4

PSENet-1s [28] N 81.8 75.1 78.3

PSENet-1s [28] Y 84.0 78.0 82.4

SPCNet [20] Y 83.0 82.8 82.9

CRAFT [27] Y 87.6 79.6 83.6

Textfield [42] Y 81.2 79.9 80.6

LOMO [43] Y 87.6 79.3 83.3

DB-ResNet18(800 × 800) [44] Y 88.3 77.9 82.8

PAN-640 [7] N 87.15 79.5 83.15

PAN++ [8] N 87.86 79.12 83.26

Ours N 88.48 78.81 83.92

https://doi.org/10.1371/journal.pone.0272322.t005

Table 6. Experimental results at MSRA-TD500 with a scale of 736 × 736, pre-train represents whether to use the

pre-training dataset for fine-tuning. “Y” means using pre-training, “N” means not using pre-training. “P”, “R” and

“F” stand for “precision”, “recall” and “F-measure” respectively. PAN++ [8] is the detection module.

Method Pre-train P(%) R(%) F(%)

EAST [19] N 87.3 67.3 76.1

DeepReg [46] N 77.0 70.0 74.0

SegLink [13] Y 86.0 70.0 77.0

PixeLink [25] Y 83.0 73.2 77.8

RRD [15] Y 87.0 73.0 79.0

MCN [45] Y 88.0 79.0 83.0

RRPN [11] N 82.0 68.0 74.0

TextSnake [23] Y 83.2 73.9 78.3

CRAFT [27] Y 88.2 78.2 82.9

DB-ResNet18(736 × 736) [44] Y 90.4 76.3 82.8

PAN-640 [7] N 80.7 77.3 78.6

PAN++ [8] N 85.25 79.73 82.39

Ours N 85.44 81.8 83.58

https://doi.org/10.1371/journal.pone.0272322.t006
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method without pre-training has increased by 18.27%, and the F-measure has increased by

7.51%. Textsnake has a complex post-processing process, which shows the superiority of our

algorithm. Compared with CRAFT, the most superior algorithm in recent years, our algorithm

is slightly lower than CRAFT without pretraining. The CRAFT algorithm is a character-level

segmentation algorithm that links characters after passing through a single character, so the

noise introduced is slight, the weakly supervised learning method is used, and the detection

performance is better, but the post-processing algorithm of CRAFT is also more complicated.

Therefore, the feature enhancement algorithm proposed in this paper combined with the post-

processing algorithm of PAN has better performance.

To verify the model’s effectiveness on curved text, we also evaluate our model on the Total-

Text dataset. As shown in Table [5], in the absence of any external dataset pre-training, the F-

measure of the curved text detector Textsnake is improved by 5.52%. Compared with other

advanced methods, the F-measure of our method without pre-training is better than the cur-

rent state-of-the-art method after pre-training CRAFT is 0.3% higher, 1% higher than SPCNet,

2.63% higher than DB-Resnet18, and our F-measure improves by 0.77% compared to the base-

line method. Because the Total-Text dataset consists primarily of large-scale curved text

instances, whereas our model is focuses on detecting small target text and separating adjacent

text target instances, so it does not significantly improve on this dataset. However, the pro-

posed AAF-Net achieve F-measures of 83.92% when the external data is not used, which

proves the effectiveness of our model for curved text.

Fig (8) shows the visualization results of GT, baseline and our method on the curved text

dataset CTW1500, respectively. In Fig (8), it can be seen that the baseline model produces

severe false detections in dense text regions, splitting one text instance into several shorter text

instances, and failing to accurately detect curved text instances. However, our model makes

full use of the contextual semantic information to accurately segment the regions in the graph.

Fig (9) shows the visualization results on GT, baseline and our method on Total-Text, respec-

tively. The baseline model not only misses the text instance in the last line of the image, but

Table 7. Experimental results at dataset ICADR2015 with a scale of 736 × 736, pre-train represents whether to use

the pre-training dataset for fine-tuning. “Y” means using pre-training, “N” means not using pre-training. “P”, “R”

and “F” stand for “precision”, “recall” and “F-measure” respectively. PAN++ [8] is the detection module.

Method Pre-train P(%) R(%) F(%)

CTPN [38] Y 74.2 51.6 60.9

EAST [19] Y 83.6 73.5 78.2

DeepReg [18] Y 82.0 80.0 81.0

SegLink [13] N 73.1 76.8 75.0

WordSup [46] N 79.3 77.0 78.2

RRPN [11] Y 82.0 73.0 77.0

PixelLink [25] N 82.9 81.7 82.3

PSE Net-1s [28] N 79.7 81.5 80.6

Pelee-Text++ [47] Y 76.7 87.5 81.7

Qin et al. [40] N 80.2 82.86 81.56

Jiang et al. [39] N 79.7 85.8 82.6

DB-ResNet18 [44] Y 86.8 78.4 82.3

PAN [7] N 82.9 77.8 80.3

PAN++ [8] N 85.13 79.97 82.47

Ours N 86.22 79.24 82.58

https://doi.org/10.1371/journal.pone.0272322.t007
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also incorrectly divides this proposal into two text proposals, and our model solves this prob-

lem well.

Multi-language text detection. We conduct experiments on MSRA-TD500 to demon-

strate the robustness of our method for detecting multilingual text instances. In Table [6],

compared with the base-line algorithm, the precision, recall and F-measure are increased by

4.74%, 4.5% and 4.74%, respectively. Compared with the most classic algorithm CRAFT, F-

measure are increased by 0.78%. To summarize, AAF-Net can achieve higher performance

and can be deployed in complex natural scenarios. Fig (10) shows the visualization results

MSRA-TD500.

The text instances in MSRA-TD500 contain many large and long texts, proving that our

model also has superior performance on multilingual and lengthy text data. On the multilin-

gual text dataset, the texts in different languages have different characteristics, and there are

huge differences. For example, Chinese text is larger and has more complex fonts. In contrast,

English text instances have smaller fonts, making our model more capable of quickly detecting

text features at different scales. Hence, the robustness is better on this dataset and the enhance-

ment is better.

Fig (10) shows the visualization results on GT, baseline and our method on the multilingual

text dataset MSRA-TD500, respectively. From the visualization results, it can be seen that the

baseline model did not detect the small target text on the sign, while our model detected all

text instances on the sign. However, because the text in the upper and lower regions is too

Fig 8. The visualization results of GT, baseline and our method on CTW1500.

https://doi.org/10.1371/journal.pone.0272322.g008

Fig 9. The visualization results of GT, baseline and our method on Total-Text.

https://doi.org/10.1371/journal.pone.0272322.g009
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blurred, so our model does not fully detect all text instances. Although some text situations

cannot be successfully detected in some extreme environments, our model shows robustness

to small scale text instances. Compared with baseline models, AAF-Net exhibits its superior

performance.

Multi-oriented text detection. The evaluation of our model on the ICDAR15 dataset is

shown in Table [7], which mainly includes horizontal, vertical and oblique scene texts. Our

method achieves 86.22%, 79.24% and 82.58% in the precision, recall and F-measure without

pre-training, and the F-measure is 2.28% higher than the baseline algorithm. Compared with

other representative methods, it also has superior performance. For example, compared with

RRPN, P, R, and F are improved by 6.22%, 6.24%, and 5.58%, respectively. Compared with

EAST, its F-measure is improved by 4.38%. Our method also achieves significant improvement

over the state-of-the-art model DB-ResNet18, demonstrating the robustness of our model on

this dataset.

Fig (11) shows the visualization results of GT, baseline and our method, respectively.

Because the font is too small in Fig (11), the baseline model fails to detect all text instances.

However, our cross-scale attention aggregation module better integrates multi-scale informa-

tion, and it is able to detect different scale text instances and adjacent text. So, our model is

able to fully detect all text instances.

Fig 10. The visualization results of GT, baseline and our method on MSRA-TD500.

https://doi.org/10.1371/journal.pone.0272322.g010

Fig 11. The visualization results of GT, baseline and our method on ICDAR2015.

https://doi.org/10.1371/journal.pone.0272322.g011
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Discussion

From the visualization results of the experiment, the PAN [7] algorithm has serious false detec-

tion and missed detection in the detection of adjacent text, and our model can effectively solve

this problem. Because the FPEM in the PAN algorithm ignores the semantic difference

between feature maps due to different depths in the process of path enhancement, it is easy to

cause aliasing effects and cannot fully utilize the semantic information. While our CSAA-FPN

network is designed to enhance the ability of feature pyramid representation and aggregate

textual information, the attention mechanism can better align semantic information, enhance

contextual connections, identify background information, and eliminate aliasing effects. So,

our network can separate adjacent text and detect small target text instances more accurately

than the original algorithm. Coupled with our AFM module, which pays attention to the chan-

nel information of the output features, this further refines the features and pays more attention

to the pixel information of the output features. Therefore, our network has efficient detection

ability and certain robustness.

Conclusion

Aiming at the problem that existing lightweight scene text detection methods cannot accu-

rately detect small target text instances in any direction, and the detection rate of mutually

adhering text instances is low, we propose a detection framework that can detect arbitrary text

shapes. The network is divided into three parts: feature extraction, feature enhancement, and

post-processing algorithm. The cross-scale attention aggregation pyramid network enhances

the extracted features and solves the problem of text detection at different scales, and we intro-

duce the CBEM attention module to focus on crucial information, so that the output of each

layer provides rich semantic and geometric information. In this paper, an end-to-end trainable

lightweight network is designed to be applied in the final feature fusion to highlight the repre-

sentation of information and obtain more accurate text features. Then, a post-processing algo-

rithm of pixel aggregation is used to obtain a lightweight and efficient text detector of arbitrary

shapes. Experiments on several public text datasets demonstrate the superior ad-vantages

when compared to previous state-of-the-art text detectors.

Considering that our model cannot fully detect text instances in some severe environments,

in the future, we hope to improve our accuracy further and be able to detect all text instances

in any environment. Moreover, our model can be applied to a variety of detecting tasks. It

should be noted that when we add attention to the network structure, a small number of

parameters are inevitably introduced, resulting in a slight increase in the model parameters.

So, we intend to improve the network post-processing method to make it lighter and more

efficient. We also consider applying our algorithm to the task of Chinese language detection

and recognition in the future.
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