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Background: The prognosis of low-grade glioma (LGG) is different from that of other
intracranial tumors. Althoughmanymarkers of LGG have been established, few are used in
clinical practice. M6A methylation significantly affects the biological behavior of LGG
tumors. Therefore, establishment of an LGG prognostic model based on m6A
methylation regulatory genes is of great interest.

Methods: Data from 495 patients from The Cancer Genome Atlas (TCGA) and 172
patients from the Chinese Glioma Genome Atlas (CGGA) were analyzed. Univariate Cox
analysis was used to identify methylation regulatory genes with prognostic significance.
LASSO Cox regression was used to identify prognostic genes. Receiver operating
characteristic (ROC) and Kaplan–Meier curves were used to verify the accuracy of the
model. Gene Set Enrichment Analysis (GSEA) and the Kyoto Encyclopedia of Genes and
Genomes (KEGG) were used to identify cellular pathways that were significantly associated
with the prognosis of LGG.

Results: A glioma prognostic model based on five methylation regulatory genes was
established. Compared with low-risk patients, patients identified as high risk had a poorer
prognosis. There was a high degree of consistency between the internal training and
internal validation CGGA cohorts and the external validation TCGA cohort. Furthermore,
KEGG and GSEA analyses showed that the focal adhesion and cell cycle pathways were
significantly upregulated in high-risk patients. This signature could be used to distinguish
among patients with different immune checkpoint gene expression levels, which may
inform immune checkpoint inhibitor (ICI) immunotherapy.

Conclusion: We comprehensively evaluated m6A methylation regulatory genes in LGG
and constructed a prognostic model based on m6A methylation, which may improve
prognostic prediction for patients with LGG.
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INTRODUCTION

Low-grade gliomas (II and III of the World Health Organization)
are the most common primary malignant tumors in the brain and
are mainly localized to the cerebral hemispheres (Ostrom et al.,
2013). Neurosurgery, radiotherapy, and chemotherapy are
common treatment strategies, but recurrence and drug
resistance rates are high (Brat et al., 2015; Hayes et al., 2018).
Some patients will quickly develop high-grade glioblastoma,
resulting in a very poor prognosis (Zhang et al., 2016).
Therefore, it is urgent to identify a sensitive and accurate
biomarker to predict the prognosis of patients with LGG.

N6-methyladenosine (m6A) is the most studied RNA
modification (Desrosiers et al., 1974), which plays an
important role in the posttranscriptional regulation of RNA in
eukaryotes (Zhao et al., 2017). The m6A modifications can occur
on both mRNA and ncRNA (Alarcón et al., 2015). When m6a
modifications occur in mRNA, they play multiple roles in mRNA
processing and metabolism, including splicing, stability, nuclear
export, and translation (Lee et al., 2020). In addition, m6A
modification is also found in most ncRNAs, including
miRNA, lncRNA, and circRNA, which participated in multiple
roles in chromatin remodeling, transcription, posttranscriptional
modifications, and signal transduction (Yang et al., 2020). M6A is
dynamically and reversibly regulated by an m6A regulator,
including methyltransferases (writers), demethylases (erasers),
and binding proteins (readers) to add, remove, or recognize
m6A-modified sites, respectively, thereby altering important
biological processes accordingly (Guo et al., 2021). The m6A
methyltransferases (writers) mediate the process of methylation
modification of RNA, which mainly includes methyltransferase-
like 3 (METTL3), methyltransferase-like 14 (METTL14), and
Wilms’ tumor 1-associating protein (WTAP) (Meyer and
Jaffrey, 2017). The m6A demethylases (erasers) including
obesity-associated protein (FTO) and alkB homolog 5
(ALKBH5), which mediate the process of decreasing m6A
modifications of RNA, are the key to the reversibility of the
m6A modification process (Meyer and Jaffrey, 2017). The m6A
binding proteins (readers) are able to specifically recognize m6A-
modified RNAs and participated in the regulation of RNA
splicing, turnover, export, and translation and m6A readers
mainly including YTH domain family YTHDF1-3, YTHDC1-
2, insulin-like growth factor 2, mRNA-binding proteins
IGF2BP1-3, heterogeneous nuclear ribonucleoprotein A2B1
(HNRNPA2B1), heterogeneous nuclear ribonucleoprotein C
(HNRNPC), and embryonic lethal abnormal vision Drosophila
like 1 (ELAVL1) (Meyer and Jaffrey, 2017). M6A, as a
modification in RNA, plays an important role in bioprocesses
such as self-renewal and differentiation of embryonic stem cells
and hematopoietic stem cell, tissue development, circadian
rhythm, heat shock or DNA damage response, and sex
determination, although it does not change base pairing and
coding (Huang et al., 2020). To investigate the specific
mechanisms of m6a in cells or tissues, the expression of m6A
regulatory genes, the global m6A abundance in RNA, and m6A
modification site and gene need to be detected (Wang and Jia,
2020). LC-MS/MS, 2D-TLC, and dot blot can be used to detect

the global m6A abundance in RNA. MeRIP-qRT-PCR, MeRIP-
seq, SCARLET, SELECT, the m6A-sensitive deoxyribozyme
method, the m6A-sensitive base-pairing method, and m6A-
sensitive HRM analysis can be used to detect the m6A
modification site and gene (Wang and Jia, 2020). Meanwhile,
several databases, including RMBase (Xuan et al., 2018), MeT-DB
(Liu H et al., 2018), CVm6A (Han et al., 2019), RNAmod (Liu and
Gregory, 2019), SRAMP (Zhou et al., 2016), REPIC (Liu et al.,
2020), and M6ADD (Zhou et al., 2021) were constructed to
organize and integrate existing resources in order to better
explore the mechanism of m6A.

Numerous studies have shown that the global abundance of
m6A and the expression levels of m6A regulatory genes, which
are frequently dysregulated in various types of cancer, are critical
for cancer development, progression, and metastasis, as well as
drug resistance and cancer recurrence (Huang et al., 2020).
Decreases or increases in global m6A abundance have recently
been reported in several cancer types that may be associated with
cancer progression and clinical outcomes (Huang et al., 2020).

FIGURE 1 | Flow chart of the analysis methods utilized in the current
study.
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The global m6A abundance was aberrantly upregulated in gastric
cancer (Wang J et al., 2020), while aberrantly downregulated in
bladder cancer (Gu et al., 2019). In addition, abnormalities in

m6A regulatory genes can lead to a range of diseases, including
cancer, neurological disorders, embryonic developmental delays,
and obesity (Jiang et al., 2021). Studies have shown that M6A

TABLE 1 | Two low-grade glioma datasets used in this study.

Datasets Platform Component of samples Use

TCGA LGG mRNA-seq IlluminaHiseq_RNAseq 534 lower-grade glioma Internal training and validation set for prognositc gene signature
CGGA mRNA-seq_325 Illumina Hiseq 2000 182 lower-grade glioma External validation set for prognositc gene signature

FIGURE 2 | m6A-related gene profile in the CGGA cohort. (A) Unsupervised clustering of patients with LGG from the CGGA cohort using 26 m6A methylation
regulatory genes. The red cube represents highly expressed genes, and the blue cube represents genes with lower expression levels. (B) Correlation of the 26 m6A
methylation regulatory genes. (C) Forest plots showing associations between different m6A methylation regulatory genes and OS in the internal training CGGA cohort.
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modifications plays important roles in various tumors and are
involved in tumor proliferation, carcinogenesis, and migration
(Meyer et al., 2012; Ke et al., 2015). For example, in glioblastoma
multiforme (GBM), METTL3 suppresses the proliferation and
self-renewal of glioblastoma stem cells by enhancing m6A
modification of ADAM19 and decreasing its expression, which
suppressed the progression of GMB (Visvanathan et al., 2018).

METTL3 and FTO3 play an oncogenic role in acute myeloid
leukemia (Vu et al., 2017). Some studies have indicated that genes
that express methylation enzymes, including YTHDC2, RBM15B,
METTL16, YTHDF3, IGF2BP3, RBM15, METTL14, ZC3H13,
YTHDF1, YTHDF2, ALKBH5, HNRNPA2B1, ALKBH3,
IGF2BP1, HNRNPC, YTHDC2, METTL3, WTAP, YTHDC1,
IGF2BP2, and FTO (Ma et al., 2021), may be important in

FIGURE 3 | Establishment of a 5-gene prognostic model. (A) LASSO coefficient profiles of the fractions of immune cells. The minimum lambda value was reached
when the number of genes was 5. (B)Parameter selection for tuning by 10-fold cross validation in the LASSOmodel. (C–E) Kaplan–Meier curve for patients with high and
low risk in the internal training CGGA cohort, internal validation CGGA cohort, and external validation TCGA cohort, respectively. (F–H) Risk score measured using time-
dependent receiver operating characteristic (ROC) curves in the internal training cohort, internal validation CGGA cohort, and external validation TCGA cohort at 1,
3, and 5 years, respectively.
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LGG (Tu et al., 2020; Fang et al., 2021; Kowalski-Chauvel et al.,
2020; Yarmishyn et al., 2020). However, the expression status of a
single m6A regulatory gene is not sufficient to describe a patient’s
status and outcome.

In this study, we systematically characterized the expression
levels of a group of m6A methylation regulator genes in patients
with LGG and constructed a prognostic model for LGG. As a
result, we established a framework to quantify prognosis using an

FIGURE 4 | Association between the 5-gene signature and clinicopathological parameters. (A–C) 5-gene signature-based risk score in the CGGA cohort. (A) Risk
score plot based on the 5-gene signature. (B) Live/dead state corresponding to the risk score in the upper panel. (C) Z-score-transformed expression value of each gene
in the 5-gene signature. (D)Correlation analysis of the 5methylation regulatory genes in the signature. (E–L)Kaplan–Meier curve showed significant statistical differences
in overall survival between the high- and the low-risk groups regardless of gender (E,F), WHO grade (G,H), IDH mutation status (I,J), and co-mutation state of
chromosomes 1p and 19q (K,L).
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integrated analysis of the expression status of 5 m6A methylation
regulatory genes, which resulted in a robust approach to
prediction of overall survival (OS). The main flow of the
article can be found in Figure 1. This approach, using a novel
gene expression signature, is promising as a predictor OS of LGG.

MATERIALS AND METHODS

Data Preprocessing
Gene expression profiles and survival data for patients with LGG
were downloaded from the CGGA (http://www.cgga.org.cn/)
database. Overall, 495 samples from TCGA and 172 samples
from the CGGAwere analyzed (Table 1). Perl and R in R software
were utilized to evaluate the samples.

Identifying the m6A RNA Methylation
Regulatory Gene in LGG
The expression level of a total of 26 m6A RNA methylation
regulatory genes in LGG samples and normal samples in TCGA
and CGTA datasets were detected by the R package “limma” and
visualized by the R package “pheatmap.” The correlations between 26
m6A RNA methylation regulatory genes were detected by the R
package “corrplot.”

Establishment of the LASSO Cox Signature
A total of 172 patients from the CGGA database were randomly
assigned in a 1:1 ratio to a training set and a validation set. The hazard
ratio of OS of 26m6A regulatory genes in the internal training set was
calculated using the univariate Cox proportional hazard regression

FIGURE 5 | Pathway enrichment analysis. (A) Spearman correlation for PRI top 1,000 genes was used for KEGG analysis. These genes were enriched in KEGG
pathways “cell cycle” and “focal adhesion.” (B) GSEA terms significantly enriched in the CGGA cohort. “KEGG_CELL_CYCLE,” “KEGG_APOPTOSIS,”
“KEGG_JAK_STAT_SIGNALING_PATHWAY,” and “KEGG_T_CELL_RECEPTOR_SINGALING_PATHWAY” were significantly enriched. (C) Hierarchical clustering of
gene expression profiles for each KEGG pathway. (D) Chord plots show the relationship between genes and the KEGG pathway.
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model, and genes with p < 0.05 were considered statistically
significant and included in subsequent analyses. Then, m6A-
related genes that were identified as significant in the univariate
analysis in the internal training set were included in the penalizedCox
regression model with the least absolute shrinkage and selection
operator (LASSO) Cox regression model for 10-fold cross validations
to select the most significant genes. Finally, an m6A-related
prognostic gene signature was constructed based on a linear
combination of the regression coefficient derived from the LASSO
Cox regression model coefficients multiplied by the mRNA
expression level (Tibshirani,1997).

Risk Score Evaluation and Survival Analysis
The risk score was calculated as follows: ∑Coefi × Expi, where
Coefi is the coefficient of prognostic biomarker and Expi is the

expression of the corresponding prognostic biomarker.
According to the median value of the risk score, LGG patients
in the CGGA cohort were divided into low-risk and high-risk
groups. The overall Kaplan–Meier survival curves of low-risk and
high-risk patients were analyzed by the R package “survival” and
“survminer.”

ROC Curve
The receiver operating characteristic curve (ROC) analysis
was used to assess the accuracy of the diagnostic gene
signature. The R software package “pROC” was used to
generate an ROC curve (Robin et al., 2011). ROC area
under curve (AUC) was calculated to evaluate the
performance of each signature, and AUC>0.7 was
considered as a diagnostic gene signature.

FIGURE 6 | Association between the 5-gene signature and immune checkpoint genes. (A) Comparison of the expression pattern of immune checkpoint genes
(PD-1, PD-L1, and CTLA-4) between patients with different risk scores in the CGGA analysis. (B) Kaplan–Meier survival curves of overall survival among four patient
groups stratified by the risk score and PD-1 (B), PD-L1 (C), and CTLA-4 (D).
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Pathway Enrichment Analysis
The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis
led to identification of enrichment pathways, which help to
determine the biological pathways to which the identified
genes belonged (Yu et al., 2012). The KEGG analysis is
performed by the R package “clusterProfiler.”

Gene Set Enrichment Analysis
Gene Set Enrichment Analysis v2.2.2 (http://www.broadinstitute.
org/gsea) was used to investigate the biological differences among
patients with different expression patterns of the 5-gene

signature. In addition, C2:CP KEGG gene sets from the
Molecular Signatures database (MSigDB) were used as the
reference gene sets.

Construction and Validation a Predictive
Nomogram
The gene signatures were used to construct a nomogram by
the “rms” R package, and the accuracy of the nomogram was
evaluated by the calibration curve (1,000 bootstrap
resamples).

FIGURE 7 | Construction and validation of a 5-gene signature prognostic nomogram. (A) Prognostic nomogram based on the 5-gene signature, WHO grade,
gender, and X1p19q codeletion status. (B,C) Calibration curve at 3 and 5 years.

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 6551698

Bai et al. Methylation Prognostic Model for LGG

http://www.broadinstitute.org/gsea
http://www.broadinstitute.org/gsea
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Statistical Analysis
Continuous variables were analyzed using Student’s t-tests or
non-parametric tests. Categorical variables were analyzed using
chi-squared tests or Fisher’s exact tests. The R package copy was
used for univariate and multivariate analyses. All data were
analyzed using SPSS or R software (http://www.r-project.org/).
p < 0.05 was considered statistically significant.

RESULTS

m6A Regulatory Gene Profile in the CGGA
Cohort
A total of 26 m6A RNA methylation regulator genes were
included in this study to evaluate the methylation status of
tumor tissues. We constructed a profile containing 26 m6A
regulatory genes in patients with LGG. The m6A regulatory
genes and corresponding clinical parameters are shown in
Figure 2A. As shown by the heatmap, the expression levels of
the m6A regulatory genes differed among the patients. To
better understand the relationships among m6A regulatory
genes in LGG, we performed a regression analysis of the m6A
regulatory genes (Figure 2B). The results showed that
YTHDF2 was highly correlated with RBM15. In addition,
there was a strong correlation between VIRMA and
YTHDF3. These results indicated that these pairs of genes
may be involved in the same biological functions. To
determine which m6A regulatory genes had prognostic
value, we conducted a univariate COX analysis. This
analysis identified 16 of the 26 methylated genes as
prognostic indicators (Figure 2C).

Establishment of a Prognostic Model
A total of 172 patients in the CGGA cohort were randomly
divided in a 1:1 ratio into an internal training cohort and a
validation cohort. The 16 m6A regulatory genes with
prognostic value were included in the LASSO Cox model in
the internal training CGGA cohort to screen for characteristic
variables (Figures 3A,B). As shown in Figure 2A, the
minimum lambda value was reached with inclusion of 5
genes. Therefore, we selected 5 genes to construct a
prognostic model. Finally, we constructed the following
formula for prognosis of OS in patients with LGG:
(formula= (0.033 ×HNRNPC) + (0.237 × IGF2BP2) +
(0.260 × IGF2BP3) − (0.271 × LRPPRC) + (0.713 ×
YTHDF2)). According to the cutoff value (2.03) obtained
using the survminer package, the patients in the training
cohort were divided into high- and low-PRI groups.
Patients with high risk had more events and a worse
prognosis (Figure 3C). Application of the cutoff value to
the internal validation CCGA cohorts and external
validation TCGA cohorts produced the same result as that
observed in the training group (Figures 3D,E). To evaluate the
accuracy of this 5-gene signature for determination of
prognosis, we generated an ROC curve. In the internal
training cohort, the accuracy of the 5-gene signature was
investigated at 2, 3, and 5 years, which resulted in AUC

values of 0.917, 0.889, and 0.874, respectively (Figure 3F).
In the internal validation cohort, the AUC values were 0.787,
0.768, and 0.834, respectively (Figure 3G). In the external
validation TCGA cohort, the AUC values at 2, 3, and 5 years
were 0.783, 0.721, and 0.701, respectively (Figure 3H). In
summary, the 5-gene profile was an excellent prognostic
indicator for patients with LGG.

Association Between the 5-Gene Signature
and Clinicopathological Parameters
Based on the LASSO Cox model, the prognostic risk score for
each patient in the CGGA cohort was calculated according to
the factor value and expression level. According to the median
risk score, patients were divided into a high-risk group and a
low-risk group (Figures 4A–C). The high-risk group had higher
levels of IGF2BP2, IGF2BP3, HNRNPC, and YTHDC2 and
lower levels of LRPPRC. More patients survived in the low-
risk group than in the high-risk group. Further correlation
analysis found a negative correlation between LRPPRC and
IGF2BP2 and between LRPPRC and IGF2BP2 (Figure 4D). We
further evaluated the stability of 5-gene signature in different
groups. The results showed that the 5-gene signature was an
excellent prognostic indicator regardless of gender (Figures
4E,F), grade (Figures 4G,H), IDH mutation status (Figures
4I,J), and the co-mutation state of chromosome 1p and 19q
(Figures 4K,L).

Pathway Enrichment Analysis
To elucidate the differences in biological characteristics between
the high- and low-risk groups using the 5-gene signature, we
performed Spearman’s correlation analysis and selected the first
1,000 genes. Then, the clusterProfiler package in R software was
used to perform KEGG enrichment analysis. These genes are
significantly enriched in the focal adhesion and cell cycle
pathways (Figure 5A). Specifically enriched genes for each
KEGG term are summarized in Figures 5C,D. Next, we
divided the patients into high- and low-risk groups according
to their risk scores for the GSEA analysis, which showed
enrichment of the 5-gene signature in cell cycle pathways
(Figure 5B), which indicated that the cell cycle pathway may
be a critical factor in poor prognosis in patients with LGG. In
addition, expression levels of genes in the T-cell receptor
signaling pathway were abnormally high in patients with LGG,
which indicated that immune status may have differed with level
of risk. Therefore, we further explored the expression levels of
immune checkpoint (IC) genes in the different patient risk
groups, which may provide additional information regarding
personalization of treatment.

Association Between the 5-Gene Signature
and Immune Checkpoint Genes
Previous studies have shown that the expression levels of
immune checkpoint (IC) genes are associated with
immunotherapy efficacy. We compared the expression
patterns of IC genes (PD-1, PD-L1, and CTLA-4) in different
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risk groups of patients with LGG. As shown in Figure 6A,
patients in the high-risk group had higher expression levels of
IC genes. We further evaluated whether our research model for
IC genes was generalizable to patients with similar expression
levels of IC genes. As shown in Figure 6B, the overall survival of
patients with low risk scores and high PD-1 expression was
significantly better than that of patients with high risk scores
and high PD-1 expression. Furthermore, the survival of patients
with low risk scores and low PD-1 expression was longer than
that of patients with high risk scores and low PD-1 expression.
Similar results were observed for PD-L1 and CTLA-4 (Figures
6C,D). Stratification of patients with low risk scores according
to IC gene expression showed that IC gene expression was
significantly associated with survival of patients with low risk
scores. However, there was no differences in survival of patients
with high risk scores when stratified based on IC gene
expression. In addition, patients with low risk scores and low
IC gene expression tended to have much higher survival rates
than patients in the other three groups. These results suggested
that our 5-gene model may be a predictor of ICI
immunotherapy efficacy.

Construction and Validation of a 5-Gene
Signature Prognostic Nomogram
To provide patients with more accurate prognostic predictions,
we incorporated the 5-gene signature and clinical parameters that
had prognostic value in the univariate analysis and performed a
multivariate analysis in the CGGA cohort. The results showed
that the 5-gene signature, WHO grade, gender, and X1p19q
codeletion status were stable predictors (Supplement Tables
S1,2). These results were used to construct a nomogram to
predict the prognosis of patients (Figure 7A). The calibration
curve shows that the nomogram had stable predictive values at 3
and 5 years (Figures 7B,C).

DISCUSSION

Low-grade glioma (LGG) is a common invasive brain tumor in
adults, and it includes World Health Organization (WHO) grade
II and III diffuse gliomas (Ostrom et al., 2013). Although some
progress has been made in the treatment of LGGwith advances in
neurosurgery, chemotherapy, and radiotherapy, a considerable
number of patients experience recurrent and malignant
glioblastoma multiforme (Chaichana et al., 2010; Okita et al.,
2015; Deng et al., 2019; Fukuya et al., 2019; Chen et al., 2020;
Mathur et al., 2020), resulting in decreased quality of life and
shortened lifespan. The heterogeneity of prognosis for patients
with LGG highlights the need to develop effective biomarkers for
early stratification and preventive treatment of high-risk patients
with poor prognoses.

M6A methylation, as the most widespread internal
modification of mRNA, has been shown to play an
important role in many cell types (Desrosiers et al., 1974;
Dominissini et al., 2012; Fu et al., 2014; Wang et al., 2014;
Ma et al., 2019; Sun et al., 2019). Many studies have shown that

m6A regulatory genes can be used as markers to predict the
prognosis of many kinds of cancers. (Liu J et al., 2018; Chen
et al., 2019; Zhao and Cui 2019; Qu et al., 2020; Wang Q et al.,
2020). Many previous studies have evaluated individual
methylation regulatory genes, which may not be an accurate
reflection of overall regulation of methylation. In this study, we
evaluated multiple methylation regulatory genes in patients
with LGG and selected a group of methylation regulatory genes
that had prognostic value for patients with LGG through
univariate Cox analysis and LASSO Cox modeling. Finally, a
5-gene signature was constructed (HNRNPC, IGF2BP2,
IGF2BP3, LRPPRC, and YTHDF2) with good prognostic
value and consistency between the internal validation and
the external validation TCGA cohorts. To determine the
pathways most closely associated with poor prognosis of
patients with LGG, we performed a correlation analysis and
selected the 1,000 genes most related to risk score.
Furthermore, the KEGG enrichment analysis showed that
differences in survival may have been associated with the
cell cycle and focal adhesion pathways, which provides novel
potential targets for treatment of LGG.

Advances in immune checkpoint inhibitor therapies have
resulted in effective treatment of many cancers (Havel et al.,
2019; Doroshow et al., 2019; Zhao et al., 2019; Gedeon et al.,
2020). These advances have highlighted the importance of
screening patients to determine whether they are good
candidates for ICI treatment. The expression levels of
independent immune checkpoint genes such as PD-L1
cannot be used as an independent predictor of ICI response
(Gridelli et al., 2017; Lupo et al., 2018). By comparing the
survival distribution of patients following stratification based
on our 5-gene signature and immune checkpoint gene
expression levels, we were able to show that our 5-gene
profile correlated well with IC gene expression and risk,
which indicated that our 5-gene signature can be used as a
biomarker for knowing whether a patient is a good candidate for
immunotherapy.

In summary, our study showed that m6A methylation
regulatory genes could be used to classify patients with LGG
into high- or low-risk subgroups exhibiting significantly different
OS. Furthermore, this risk score may also be a marker for
predicting the efficacy of ICI immunotherapy.
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