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Little is known about whether our knowledge of how the central nervous system con-
trols the upper extremities (UE), can generalize, and to what extent to the lower limbs.
Our continuous efforts to design the ideal adaptive robotic therapy for the lower limbs of
stroke patients and children with cerebral palsy highlighted the importance of analyzing
and modeling the kinematics of the lower limbs, in general, and those of the ankle joints,
in particular. We recruited 15 young healthy adults that performed in total 1,386 visually
evoked, visually guided, and target-directed discrete pointing movements with their ankle
in dorsal–plantar and inversion–eversion directions. Using a non-linear, least-squares error-
minimization procedure, we estimated the parameters for 19 models, which were initially
designed to capture the dynamics of upper limb movements of various complexity. We val-
idated our models based on their ability to reconstruct the experimental data. Our results
suggest a remarkable similarity between the top-performing models that described the
speed profiles of ankle pointing movements and the ones previously found for the UE
both during arm reaching and wrist pointing movements. Among the top performers were
the support-bounded lognormal and the beta models that have a neurophysiological basis
and have been successfully used in upper extremity studies with normal subjects and
patients. Our findings suggest that the same model can be applied to different “human”
hardware, perhaps revealing a key invariant in human motor control. These findings have a
great potential to enhance our rehabilitation efforts in any population with lower extremity
deficits by, for example, assessing the level of motor impairment and improvement as well
as informing the design of control algorithms for therapeutic ankle robots.

Keywords: sensorimotor control, ankle movements, rehabilitation robotics, neurorehabilitation of motor function,
stroke, cerebral palsy

INTRODUCTION
At least for stroke, robot-assisted therapy results in substantial
improvement in the upper extremities (UE), and the improve-
ment is superior to conventional therapy (Kwakkel et al., 2008).
These results led the American Heart Association to endorse in its
2010 guidelines for stroke care the use of robots for UE rehabili-
tation (Miller et al., 2010) followed up by a similar endorsement
issued by the veterans administration (VA) later in the same year
(Management of Stroke Rehabilitation Working Group, 2010). To
date, though, there is no clear evidence that the same is true for
the lower extremities (LE). In fact, recent studies employing the
Lokomat (Hocoma, Zurich, Switzerland), the most widely used
LE robotic rehabilitation device, reported inferior outcomes com-
pared to those produced by usual care as practiced in the US for

both chronic and subacute stroke patients (Hornby et al., 2008;
Hidler et al., 2009). Not surprisingly, guidelines issued by the VA
currently recommend against the use of LE devices post-stroke
by its clinicians (Management of Stroke Rehabilitation Working
Group, 2010).

The lack of superior results in LE robotic therapy could be
attributed to therapeutic approaches that are limited by unverified
neurological sensorimotor inputs. Since the neuroscientific para-
digm shift on activity-dependent plasticity and its experimental
support (Jenkins and Merzenich, 1987; Nudo et al., 1996), the sen-
sorimotor control of UE movements has been studied extensively.
Kinematic analyses and modeling of simple reaching movements
have been followed up by analyses of single peak UE speed profiles
(Bizzi et al., 1976; Kelso et al., 1979; Soechting and Lacquaniti,
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1981; Abend et al., 1982; Flash and Hogan, 1985) and of more
complex movements that were modeled as a combination of ele-
mentary movements (submovements) (Plamondon et al., 1993;
Doeringer and Hogan, 1998). These and subsequent studies built
an insight into how the central nervous system (CNS) controls and
learns UE movements (Shadmehr and Mussa-Ivaldi, 1994; Flana-
gan and Rao, 1995; Bhushan and Shadmehr, 1999). In turn, these
data have provided a basis for the design of manipulanda for UE
therapeutic robots (Krebs et al., 1998; Volpe et al., 2000) as well
as the establishment of quantitative metrics for patients’ motor
recovery and performance (Krebs et al., 1999, 2014; Rohrer et al.,
2002; Bosecker et al., 2010). On the other hand, the design for
robotic devices for LE attempted to automate current gait therapy
practices, in particular body-weight-supported treadmill training.
However, this perceived “gold standard” has not been carefully
tested until recently when significant poor results were observed
(Duncan et al., 2011; Dobkin and Duncan, 2012).

There is a scarcity of studies addressing the question of whether
the sensorimotor control of the LE resembles, and to what extent,
that of the UE. Functionally, the LE are specialized to support
body weight, provide locomotion, and maintain stability, whereas
the UE are better suited for intrinsic mobility and dexterity (Net-
ter, 2014). This difference between working (UE) and walking (LE)
our way through the world comes alongside differences in the size
of the limbs, supporting muscles, articulating joints, tendons, and
ligaments. Specifically, the weight of the structures located superi-
orly to the sacrum is supported by the pelvic girdle, a ring formed
by the hip bones and the sacrum. The extensive fusion within the
pelvic girdle and the greater stability of the LE joints are adap-
tations for weight bearing, which come at a cost of less dexterity
and mobility than the UE (Waugh and Grant, 2014). Our recent
studies on the sensorimotor control of the ankle revealed inter-
esting similarities and important differences between the LE and
the UE. We investigated the trade-off between speed and accuracy
in goal-directed pointing movements with the ankle in dorsal–
plantar (DP) and inversion–eversion (IE) and found that a linear
model, widely used to quantify the UE motor system for more than
half a century (Fitts’ law), also applies to the ankle (Michmizos and
Krebs, 2014b). In addition to the macroscopic assessment of the
average ankle speed, a microscopic study on reaction time (RT)
revealed that ankle RT increases as a linear function of potential
target stimuli, as would be predicted by Hick–Hyman law in UE.
Interesting enough, the intercept in the regression is significantly
smaller in DP than in IE direction; this could be attributed to differ-
ences in the cognitive components, including motor preparation
and execution, that affect RT (Michmizos and Krebs, 2014a,c).

We became interested in the ankle because of its crucial role in
human walking and because a deficit in foot control is the most
common and debilitating condition in upper motor neuron disor-
ders involving the corticospinal tract, such as stroke and cerebral
palsy (CP). The ankle contributes to the maintenance of stable
upright posture in the frontal and sagittal planes during gait and
to shock absorption during locomotion by attenuating the impact
force at floor contact (Bahlsen and Nigg, 1987). The ankle mus-
cles are the primary contributors to overground gait – the soleus
is the propulsion prime-mover, the gastrocnemius is the posture
prime-mover, and the tibialis anterior (TA) is critical for toe-off

(McGowan et al.,2008). In the LE,a common condition that occurs
in stroke and CP is weakness in the dorsiflexor muscles that lift
the foot during walking, commonly referred to as “drop foot.” The
two major complications of drop foot – slapping of the foot after
heel strike (foot slap) and dragging of the toe during swing (toe
drag) – present a major challenge to efficient gait since clearing
the ground during the swing phase and maintaining ankle sta-
bility during the stance phase are essential for efficient gait. With
800,000 Americans experiencing a new or recurrent stroke each
year (Go et al., 2014), graying of the population with consequent
increase in the number of Americans having a stroke each year,
and CP affecting 1 to 4 per 1,000 live births worldwide (Odding
et al., 2006), there is a greater need now than ever before for LE
robotic rehabilitation to realize its promises.

Given the importance of active participation during therapy
and the need for specificity in therapeutic tasks that resemble
(if not exploit) motor learning, we are translating the concept
of adaptive assist-as-needed robotic therapy, introduced for the
UE (Krebs et al., 2003), to the needs and special characteristics
of the LE (Michmizos and Krebs, 2012a). Briefly, our algorithm
identifies the ability of the patient to move and point with the
ankle in visually guided, visually evoked games (Michmizos and
Krebs, 2012b), and then independently adjusts the speed of the
gameplay and the size of the target not only to track patients abil-
ities but also to challenge them (Michmizos and Krebs, 2012a).
Our performance-based adaptive games have embedded into their
design the assumption that ankle movements typically follow a
minimum jerk profile (Flash and Hogan, 1985; Michmizos and
Krebs, 2012a). Nevertheless, to our knowledge, no study has ever
modeled the kinematics of ankle pointing movements. The lack of
descriptive models for ankle pointing movement limits the validity
of our efforts on designing an ideal therapeutic intervention. To
overcome this pitfall, we experimented on whether the CNS has
developed individual control strategies and kinematic features for
the ankle control. Establishing a model-based analysis for human
ankle movements could inform the use of metrics that quantify
the level of motor-related impairment, at least in the ankle, and
provide targeted therapy tailored to the patient’s inability to move
the LE.

The goal of this study was to test a multitude of existing
kinematic models, initially developed to describe simple UE move-
ments, and find the ones, if any, that were the most competent in
describing ankle pointing movements or else build a model best
suited to the ankle. In addition to being a different modality, the
ankle presents a second fundamental constraint for our modeling
purposes: ankle and wrist movements are defined as finite spatial
rotations (Pretterklieber, 1999; Charles and Hogan, 2011; Vaisman
et al., 2013), which do not form a vector space as reaching arm
movements do. To allow for a straight comparison, we selected
the same 19 models from the comparative studies by Plamondon
et al. (1993) and Stein et al. (1988) that we used in reaching move-
ments and also in our wrist modeling study (Vaisman et al., 2013).
Employing our adult anklebot (Roy et al., 2009), we recorded
and analyzed the speed profiles of 1,386 fast, target-directed ankle
movements. For each movement and model, we used a non-linear,
least-squares optimization procedure to extract a set of parameters
that minimized the error between the experimental data and the
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reconstructed speed profiles. Our goal was to determine whether
any of the previously proposed models for UE movements sim-
ulated the ankle speed profiles well or, alternatively, whether new
models should be investigated. We found that the top- and the
worst-performing models, as well as their relative order, proposed
by our ankle speed profile analysis were remarkably identical to
the ones proposed by our wrist study.

MATERIALS AND METHODS
SUBJECTS
Fifteen unimpaired healthy human subjects (three females) were
recruited for this study. Subjects were predominantly Caucasians
and were postdoctoral, graduate, or undergraduate students at
the Massachusetts Institute of Technology. Average biometric data
were 26± 4 years of age, 1.77± 0.08 m in height, and 73± 11 kg
in mass (mean± SD). All subjects had normal or corrected-to-
normal vision and were right-foot dominant according to their
preferential use of the foot during daily activities, such as kicking a
ball. Subjects had no reported history of traumas or neuropathies
to the lower limbs. All subjects were naive to the task upon
enrollment and gave written informed consent according to the
procedure approved by the Massachusetts Institute of Technology
Committee on the Use of Humans as Experimental Subjects.

APPARATUS
The speed profiles were measured for DP and IE ankle pointing
movements using a highly back-drivable wearable robot, Ankle-
bot (Interactive Motion Technologies, Watertown, MA, USA). The
robot’s design and measurement capabilities have been described
previously (Roy et al., 2009). Briefly, it is a low-friction, back-
drivable exoskeleton robot with intrinsically low mechanical
impedance that allows normal range of motion (ROM) in all
three degrees-of-freedom of the foot relative to the shank dur-
ing walking overground or on a treadmill. The robot allows the
maximum ROM required for the typical gait of healthy or patho-
logical subjects (Perry, 1992) while providing independent, active
assistance in DP and IE degrees-of-freedom, and a passive degree-
of-freedom for internal–external rotation. The kinematic design
consists of two linear actuators mounted in parallel such that if
both push or pull in the same direction, a DP flexion torque is
produced at the ankle. Similarly, if the two links push or pull in
opposite directions, IE torque results. For this study, the anklebot
acted as a passive device and recorded simultaneously the DP and
IE positions. We recorded ankle position kinematics with respect
to the neutral position, defined as the sole being at a right angle to
the tibia. Recordings were made at 200 Hz sampling frequency and
were converted to screen pixels for visualization purposes. Subjects
wore a modified shoe and a knee brace to which the robot was
connected. Subjects were seated, and the knee brace was securely
fastened to the chair to fully support the weight of the robot and
to ensure that measurements were made in a repeatable posture
(Figure 1A). The chair was placed 1.5 m away from a 60-inch
1080p (Full HD) 120 Hz 1,024× 768 Liquid Crystal TV (Sharp
LC60L, Sharp Electronics Corporation) that was positioned at eye
level (Figure 1B). Visual feedback was given online to the subjects
as a moving circular cursor (d = 23 pixels). A DP (IE) movement
of the ankle moved the cursor vertically (horizontally); hence, the

FIGURE 1 | Experimental setup. (A) Subject wearing the anklebot in a
seated condition. Right leg is in the anatomically neutral position. The
weight of the anklebot is supported by the chair through the bolt. The DP
(IE) movement direction is noted with the blue (green) arrows. Although
internal-external rotation was biomechanically possible, it could not
constrain the data analysis in IE direction. (B) Experimental setup with the
subject wearing the anklebot in a seated position, facing a 60-inch monitor.
From both sub-figures, irrelevant background has been removed.

cursor moved in a 2D coordinate system with the origin corre-
sponding to the ankle’s neutral position. Visualization software
was written in TCL/TK and run on a PC equipped with Linux
Ubuntu operating system.

EXPERIMENTAL PROCEDURE
Subjects were instructed to control with their ankle the cursor
moving vertically (for DP motion) or horizontally (for IE motion).
Participants moved the cursor between two rectangular targets
“as fast and accurately as possible” by dorsi-/plantar flexing or
inverting/everting their ankle. They were getting an online visual
feedback of their performance by a cursor moving toward the
onscreen target. Due to the visual feedback being equal for all
directions, we ensured the same feedback resolution across both
movements. The maximum ankle angle with respect to the neutral
position was 0.2 rads (12°); it was constrained by the ankle’s biome-
chanics and specifically by the ROM for dorsiflexion (20°), which
is the minimum across the four tested directions (Perry, 1992).
When the target was in vertical (horizontal) direction, the mov-
ing cursor was constrained to vertical (horizontal) movements.
The subjects first placed the cursor at the center of the screen by
positioning their ankle in the neutral position. Next, a rectangu-
lar target was shown up (right) or down (left), for the DP (IE)
direction, and subjects made an outbound movement, i.e., they
moved their ankle away from the neutral position. Outbound tar-
gets were presented in a random order, so that the subject could
not anticipate movements. For the movement to be considered as
discrete, the cursor had to land inside the rectangular target (i.e.,
not touching any of its borders) and its instantaneous speed had
to be lower than 0.001 rad/s. The first criterion ensured that all
discrete movements had amplitudes with the least possible varia-
tion. The second criterion was empirically set to detect accurately
discrete movements, given the sampling frequency of recording
the position of the Anklebot’s linear actuators (200 Hz). When
both criteria were met, the outbound target disappeared, and an
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inbound target, i.e., a target around the central position, appeared
instructing the subject to move his/her ankle to its neutral posi-
tion. Subsequently, after a dwell time randomly ranging between
800 and 1,200 ms, a new outbound target appeared. Each subject
participated in one DP and one IE session each of which consisted
of 180 movements. The diameter of the cursor was 0.015 rads (23
pixels) and the target width, in the direction of the movement, was
randomly selected between 0.03 rads (45 pixels) and 0.08 rads (120
pixels), with a step increment of 0.01 rad (15 pixels). Note that as
we were not interested in this study for the effect, if any, of the size
of the target on the speed profiles, we concatenated our data across
target widths for each ankle direction. Random presentation of dif-
ferently sized targets and short overall duration of the experiment
(<3.5 min, per direction) ensured that no fatigue would happen
during a session. Although internal–external rotation during IE
movements was biomechanically possible, we made certain that
it did not constrain our analysis. The subjects were instructed to
move their ankle in IE before data acquisition and the visual feed-
back ensured a consistent displacement in the IE direction (i.e.,
the two parallel linear actuators should be displaced in opposite
directions by 0.2 rads for the cursor to land inside the target).

KINEMATIC ANALYSIS AND MODELING
Ankle speed profiles for DP and IE movement were estimated using
a simple linearized mathematical model of the shank-ankle-foot
system; see Supplementary Material. After estimating the ankle
angle measured from the neutral position in the sagittal (frontal)
plane, θdp, (θie), we processed the ankle kinematics as in our pre-
vious studies (Vaisman et al., 2013; Michmizos and Krebs, 2014b).
Briefly, we first found the time point at which the maximum
speed occurred, t max. We then found the starting and stop times,
t start and t stop, respectively, for each movement, by measuring the
duration of the movement until its velocity fell below 5% of the
maximum of speed in forward and backward directions. Next, we
visually inspected the speed profiles to assure the presence of a
single peak. We excluded all movements with corrections, easily
identified as the ones having more than one peak with maximum
amplitude at least equal to 20% of the maximum peak. On aver-
age, we selected 16 (24) out of 45 speed profiles for IE outbound
(inbound) movements and 25 (29) out of 45 speed profiles for DP
outbound (inbound) movements (for a total of 1,386 profiles).

To allow the speed profile segments to be of different lengths, we
normalized movement duration to a range of [0, 1], as described
in Bizzi et al. (1976). We subtracted t start from all time points and
then divided the resultant time point by t stop− t start. Therefore,
we did not re-sample the data and each speed profile retained its
original number of time points. For each speed profile, we esti-
mated the peak and average speed as well as its skewness and
kurtosis. To evaluate the skewness and kurtosis, we treated the
speed profiles as probability distribution functions (normalized so
that the area under the curve was equal to 1); we then calculated
Skewness = E[(x − x̄)3

]/σ3 and Kurtosis = E[E((x − x̄)4)/σ4
],

where x was the normalized speed profile, and x̄ , σ were its mean
and standard deviation, respectively.

The equations of the models used in this study and their
initialization values are listed in Supplementary Material. The
optimal estimation of the model parameters was done by the

interior-reflective Newton algorithm, implemented in the MAT-
LAB function lsqcurvefit (Mathworks Inc., Natick, MA, USA),
which solves a non-linear, least-squares problem (Coleman and
Li, 1996). Initialization values were selected by trial and error in
order to achieve convergence for each model to our data and were
similar to our initialization values in our wrist study. The opti-
mization algorithm ran for at least 100,000 iterations or until the
change in squared sum of the residuals became smaller than 10−9.
The goodness of fit for each model is reported as the percent error
for the area under the fitted speed profile and the measured speed
profile. The percentage is calculated as the ratio of the area under
the absolute value of the residuals to the area under the speed
profile curve.

To compare models with a different set of parameters, we
used the Akaike information criterion (AIC). AIC values (lower
is better) were estimated as AIC=N × ln(SSE/N )+ 2×K + 2×
K (K + 1)/(N −K − 1), where SSE is the sum of the squared resid-
uals returned by the optimization algorithm, N is the number of
points in the fit, and K is the number of model parameters plus
one (Motulsky and Christopoulos, 2004). For each subject and
movement direction, we estimated (a) the “Top-5” plot, where for
each speed profile we awarded a model with one point when its
AIC was among the 5 best performers for that profile and (b) the
“Score-18”plot, where for each speed profile we ranked the models
and awarded 18 points to the best performing model, 17 for the
model with the second to best AIC, etc. (Vaisman et al., 2013). For
each model, the resulting sum of the speed profiles was normal-
ized by the number of profiles that contributed to the sum. While
the “Top-5” plot is more specific in detecting any differences in
performance among movement directions, the “Score-18” system
favors consistent high level of performance and, therefore, allowed
a somewhat more balanced comparison between the models.

For the statistical analysis of the modeled speed profiles, we
employed the Welch analysis of variance (ANOVA) on the mea-
sures of the speed profiles properties (average and maximum
speeds, skewness, and kurtosis) for different movement directions,
followed by a post hoc multiple comparisons Games–Howell analy-
sis to perform pairwise group comparisons (Games and Howell,
1976). This was done because the number of speed profiles in
each group varied from 83 to 430, and because the variances for
the groups were found to be unequal based on the Bartlett’s test
for equality of variances assumption. We used the Kruskal–Wallis
non-parametric one-way ANOVA test to compare the perfor-
mance of the models for each group of speed profiles (Wackerly
et al., 2007). The Kruskal–Wallis test was used because AIC values
for most models did not satisfy the Lilliefors normality test at a 5%
significance level and, therefore, AIC values could not be assumed
to follow a normal distribution.

RESULTS
ANKLE SPEED PROFILES
Speed profiles were consistent in all directions and across subjects.
Figure 2 shows the average speed profiles and their correspond-
ing 95% precision uncertainty values for the 8 (4 outbound and
4 inbound) ankle movements. For each direction, the outbound
movements of divergent orientations were different in shape when
we compared their speed profiles (Figures 2A,C). Specifically the
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FIGURE 2 | Speed profiles across directions. (A) Outbound DP pointing
movements from neutral position toward north (solid line) and south (dotted
line) targets, averaged across subjects. (B) Inbound DP pointing movements
from north (solid line) and south (dotted line) targets toward the neutral
position, averaged across subjects. (C) Outbound IE pointing movements

from neutral position toward east (solid line) and west (dotted line) targets,
averaged across subjects. (D) Inbound IE pointing movements from east
(solid line) and south (dotted line) targets toward the neutral position,
averaged across subjects. Gray shaped regions correspond to 95% precision
uncertainty values.

peak speeds for movements toward the south and west outbound
targets were significantly bigger than those for the north and
east outbound targets, respectively. On the contrary, the inbound
movements of divergent orientations were similar in shape, espe-
cially when we compared the peak speed as well as the beginning
and the end of the movement (Figures 2B,D); therefore, in the
subsequent analysis, we concatenated all inbound IE movements
and all inbound DP movements, across subjects.

ANALYSIS OF ANKLE KINEMATICS
Our post hoc Games–Howell analysis of the six different ankle
movements revealed not only interesting similarities but also
important differences across directions (Table 1). The compari-
son of the mean ranks between DP and IE inbound movements
revealed statistical differences for all the tested features. For out-
bound movements, all tested features except kurtosis were found

to be significant different between DP toward north and IE toward
east directions. Our analysis of speed revealed that the peak and
the average speeds were similar for the IE outbound, the DP
inbound and the DP outbound toward south movements. Inter-
estingly, for DP outbound to north movements, the average (but
not the peak) speed was significantly lower than the other DP
movements. With respect to the shape characteristics of the speed
profiles, the DP outbound to north movements were more pos-
itively skewed; in addition, all movement directions had similar
kurtoses with the exception of the IE inbound movements that
were more platykurtic.

MODELING ANKLE KINEMATICS
Figure 3 shows the “Top-5” plots across movement direc-
tions. Although the ankle speed profiles had features, such as
skewness and kurtosis that were different across directions, the
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Table 1 | Post hoc Games–Howell pairwise comparisons for the mean ranks of the ankle speed profile features across groups (movement

directions).

Movement

direction

Speed profile

feature

Mean

rank

Movement direction

DP inbound IE inbound IE outbound

to east

IE outbound

to west

DP outbound

to north

DP outbound

to south

DP inbound Max 727.5 8.7 (2.6e-4) 4.9 (7.6e-3)

Avg 731.4 7.1 (2.7e-4) 5.4 (3.8e-3)–
Skew 717.5 4.8 (1.1e-2)

Kurt 701.1 4.1 (4.7e-2)

IE inbound Max 493.1 10.2 (2.6e-4) 7.6 (2.6e-4) 9.6 (2.6e-4)

Avg 534.4 7.3 (2.6e-4) 5.9 (6.1e-4) 8.6 (2.6e-4)– –
Skew 614.9 6.8 (7.0e-4)

Kurt 585.0 5.1 (4.1e-3) 4.4 (2.8e-2) 4.7 (1.1e-2)

IE outbound to

east

Max 930.8 4.6 (1.4e-4)

Avg 887.4 6.6 (2.9e-4)– – –
Skew 666.5 4.7 (7.0e-4)

Kurt 793.4

IE outbound to

west

Max 780.0

Avg 766.0 5.3 (3.0e-3)– – – –
Skew 619.7 5.8 (7.4e-4)

Kurt 723.8

DP outbound

to north

Max 645.1

Avg 481.0 6.5 (3.1e-4)– – – – –
Skew 958.9 4.7 (1.6e-2)

Kurt 834.0

Max, maximum speed; Avg, average speed; Skew, skewness; Kurt, kurtosis, for each movement directions.

When a statistical difference was proposed by the test, the q-statistic (p-value) are reported.

top-performing models had consistently the best (lowest) AIC
values, irrespective of the movement direction. Specifically, the
lognormal with support bound (lgnb), the Morasso Mussa-Ivaldi
and Maarse asymmetric (mmmasym), the asymmetric Gaussian
(asymgauss), the beta function (beta), and the sigmoidal dis-
continuous (sigdiscont) models outperformed all other models,
across the tested ankle movement directions. A broader view
of the results also revealed that, overall, the asymmetric mod-
els outperformed the symmetric models. Figure 4 shows the
cumulative “Score-18” plots, across movement directions. The
best performing models were the same as in the “Top-5” plot
and their relative placement in the first five positions was more
consistent than in Figure 3. A visual comparison of the mod-
els’ performance across the six directions revealed three abrupt
performance discontinuities that we used to define three dif-
ferent levels of model performance. Specifically, in addition to
the best performance family, there was another family of models
with a performance that was consistently the worst across direc-
tions. These were the Weibull (weibull), the minimum acceleration
(morasso), the biexponential (biexpo), and the exponential (expo)
models. The third family of models, with an in-between perfor-
mance, was composed of the remaining 10 models. A comparison

between Figures 3 and 4 revealed that models like the mmm-
sym and minimum jerk were ranked higher in “Top-5” plots than
in “Score-18” plots because, although they performed very well
for some profiles ranking on the “Top-5” plot, they did not have
very consistent performance for a large number of profiles and
thus were ranked lower overall. The opposite was true for other
models, such as the Eden and Hollerbach (edhol) and the sig-
moidal continuous (sigcont) models. The models that did not
perform well underperformed in both “Top-5” and “Score-18”
plots.

Table 2 includes the values for the goodness of fit for all grouped
speed profiles across the tested models. We compared the model
fits with the wrist goodness of fit values (Vaisman et al., 2013).
Overall, most models exhibit comparable error fits across modal-
ities; note that a direct comparison is not straightforward, as the
ankle data were subgrouped into six categories (movement direc-
tions), while the error fits reported in our wrist study are not.
However, the better fitting models for the wrist data remain as
such for the foot data, e.g., the mmmasym, the asymgauss, and the
LGNB models are among the best performing of the models, in
terms of goodness of fit, for both the ankle and the wrist speed
profiles.
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FIGURE 3 |Top – 5 plots, across ankle directions. Percentage of speed
profiles for which a model’s fit was among the 5 best fits, according to
the AIC. The 5 models with the best overall performance are colored.
Percentages are estimated out of (A) 83 outbound toward north speed

profiles, (B) 291 outbound toward south speed profiles, (C) 430 DP
inbound speed profiles, (D) 85 outbound toward east speed profiles,
(E) 148 outbound toward west speed profiles, (F) 349 IE inbound speed
profiles.

The statistical analysis, based on the AIC, for each ankle move-
ment separately is shown in Figure 5. The models with lower mean
ranks in the Kruskal–Wallis one-way ANOVA performed better.
The best performers proposed by the AIC analysis were the same
as the ones proposed in Figure 3 (“Top-5” plots) and Figure 4
(“Score-18” plots): the lgnb, mmmasym, asymgauss, beta, and sig-
moidal discontinuous models were consistently among the best
performers and were statistically better than the rest of the models
for the four out of six ankle directions. Note that for the remain-
ing two movements (DP outbound toward north and IE outbound
toward east), a few other models were statistically equivalent to the
best performers, most of them marginally. This might be due to the
much smaller number of overall movements for these directions,
compared to all the other movements.

DISCUSSION
KINEMATIC ANALYSIS OF ANKLE SPEED PROFILES
In this study, we explored the speed profiles of visually evoked,
visually guided, and target-directed ankle pointing movements
in dorsiflexion and inversion/eversion directions. We examined
the DP and IE directions because our robots train ankle move-
ments by providing independent, active assistance in these two

degrees-of-freedom, both in adults with stroke (Forrester et al.,
2011, 2013, 2014; Roy et al., 2011) and children with CP (Mich-
mizos and Krebs, 2012a). Preliminary results suggest that a focus
on ankle sensorimotor control may provide a valuable contribu-
tion to locomotor therapies (Forrester et al., 2011, 2013, 2014).
Our experimental setup was identical to the setup used in our
clinical trials, in which the subjects are in a seated position with
the weight of the anklebot being supported by the chair through
a bolt (see Figure 1A). Although the anklebot is a low-friction,
back-drivable robotic device with intrinsically low mechanical
impedance that virtually gets out of the way during a normal
movement, we still need to address whether the recorded ankle
kinematics could be altered by the added inertia and friction
of the robot. Preliminary studies with the anklebot examined
how the device influences, among other gait parameters, the LE
joint kinematics in both adults and children with LE impairments
(Khanna et al., 2010; Rossi et al., 2013). None of these studies
found significant changes in the spatiotemporal gait parameters
in overground walking or on a treadmill. These studies, alongside
the recruitment of healthy young subjects that tolerate any iner-
tia and friction better than the impaired subjects and the support
of the Anklebot’s weight from the chair, further confirm that the
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Michmizos et al. Comparative analysis of ankle pointing movements

FIGURE 4 | Score – 18 plots, across ankle directions. Higher scores (out of
18) correspond to better fits. The 5 models with the best overall performance
are colored. Scores are based on (A) 83 outbound toward north speed

profiles, (B) 291 outbound toward south speed profiles, (C) 430 DP inbound
speed profiles, (D) 85 outbound toward east speed profiles, (E) 148 outbound
toward west speed profiles, (F) 349 IE inbound speed profiles.

anklebot could not alter the ankle kinematics during the reported
tasks.

Another factor of our kinematic analysis that needs to be con-
sidered is the effect of gravity on the speed profiles in DP direction.
During the experiment, the weight of the Anklebot was supported
by the chair; only the foot was controlled by the subject’s mus-
cles [see Table 1 in Michmizos and Krebs (2014b)] for a complete
list of these muscles). Therefore, the weight of the foot should be
considered negligible, compared to the weight of the body that
these muscles can support when controlling the ankle in upright
position. Indeed, if gravity was a dominant factor in DP move-
ments, it should equally affect all movements that went against
gravity. However, the speed profiles for the outbound to north
movements and the inbound from south movements were sig-
nificantly different (Figure 2; Table 1). The same holds for the
outbound to south and the inbound from north movements; their
speed profiles were also significantly different. Therefore, gravity
does not have a major role in the analyzed movements.

In our setup, the average peak ankle speed was above 1.5 rad/s
for most of the ankle directions. The recorded peak speed was
considerably lower than in the majority of previous studies that

reported a peak ankle speed during the stance period of walking
equal to 3.6± 0.2 rad/s (Winter, 1983, 2009). The relatively low
peak speed of ankle movements in the present study is likely to be
reflective of the differences between our experimental setup and
the setup that was consistently used in all other studies (Carson
et al., 2001; Kitaoka et al., 2006; Jenkyn and Nicol, 2007; Legault-
Moore et al., 2012). Specifically, the other studies report ankle
angles and velocities from subjects walking at different speeds on
a treadmill or overground. Therefore, our setup differs from the
other studies in three fundamental aspects. First, during walking,
other muscles are involved in the ankle movement; for example, the
TA (the largest dorsiflexor muscle) contributes less than half of the
maximum voluntary torque when the ankle joint is in the midposi-
tion phase of the gait cycle, with the remainder torque presumably
being provided by the long extensors of the toes (Marsh et al.,
1981). On the contrary, the DP and IE movements in our experi-
ment were controlled exclusively by the ankle muscles. Second, in
the other studies, the ankle dynamics and the stiffness of the mus-
cles that support the ankle change within each gait cycle and also
with walking speed (Au et al., 2006; Kim and Park, 2011; Lee et al.,
2011, 2014). The ankle stiffness, in its turn, affects significantly the
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Michmizos et al. Comparative analysis of ankle pointing movements

Table 2 | Goodness of fit for each model and each direction, as the percent error for the area under the fitted speed profile and the measured

speed profile.

Model Mean (SD)% error

IE inbound

(N = 349)

Mean (SD)% error

IE outbound to east

(N = 85)

Mean (SD)% error

IE outbound to west

(N = 148)

Mean (SD)% error

DP inbound

(N = 430)

Mean (SD)% error

DP outbound to north

(N = 83)

Mean (SD)% error

DP outbound to south

(N = 291)

Sigdiscont 6.31 (2.83) 5.24 (2.61) 5.63 (2.34) 4.93 (2.14) 7.29 (2.95) 4.40 (1.78)

MMMasym 7.58 (3.17) 5.50 (3.29) 6.59 (2.83) 5.79 (2.88) 8.69 (4.21) 4.90 (1.93)

Asymgauss 8.40 (4.22) 6.26 (2.73) 8.21 (8.99) 6.67 (4.30) 9.07 (4.07) 5.92 (1.82)

LGNB 8.83 (8.67) 8.28 (9.50) 8.10 (7.60) 7.10 (6.85) 13.87 (11.86) 6.10 (6.75)

Sigcont 9.22 (3.93) 8.07 (4.72) 8.74 (4.93) 7.90 (3.39) 11.43 (4.90) 6.73 (2.23)

Gamma 10.99 (5.14) 8.65 (4.36) 10.25 (4.80) 9.27 (5.72) 12.34 (5.60) 7.99 (6.12)

GG 12.03 (6.86) 9.84 (5.21) 10.90 (5.74) 10.43 (5.49) 17.67 (11.56) 8.73 (3.44)

Beta 11.33 (16.50) 10.84 (19.10) 13.76 (24.55) 12.23 (20.67) 14.02 (15.35) 6.69 (12.25)

Symgauss 12.02 (4.68) 10.26 (4.77) 11.13 (5.30) 10.86 (5.24) 16.79 (6.98) 9.35 (3.24)

Minsnap 11.95 (5.39) 10.25 (6.26) 11.46 (6.97) 10.89 (6.27) 18.22 (7.47) 9.19 (4.06)

Minjerk 12.15 (5.66) 10.54 (6.82) 11.92 (7.40) 11.25 (6.60) 19.33 (7.57) 9.44 (4.51)

Edhol 12.18 (12.11) 13.24 (18.50) 10.61 (7.64) 12.1 (13.38) 16.05 (8.45) 9.64 (13.22)

Expo 12.49 (4.14) 11.93 (3.81) 12.54 (4.53) 11.91 (4.01) 15.28 (4.30) 10.63 (2.74)

LGN 15.66 (10.66) 11.63 (10.50) 13.45 (9.05) 12.32 (10.13) 13.74 (9.27) 10.96 (9.12)

GGgen 15.94 (21.25) 11.97 (18.05) 13.52 (16.85) 11.8 (16.16) 19.37 (23.38) 11.89 (19.07)

MMMsym 16.19 (13.24) 11.04 (8.73) 14.59 (14.25) 15.44 (15.87) 24.36 (16.40) 12.29 (12.56)

Weibull 16.84 (10.93) 16.64 (11.30) 15.74 (10.74) 15.71 (9.23) 19.78 (7.73) 14.62 (8.78)

Morasso 15.56 (7.02) 16.06 (7.55) 17.04 (9.29) 16.36 (8.19) 25.10 (8.27) 14.84 (6.93)

Biexpo 17.04 (3.26) 16.04 (2.57) 16.22 (2.72) 16.88 (2.82) 18.48 (4.03) 16.35 (2.45)

ankle torque in the absence of fatigue (McNair et al., 2002). Third,
the tested ankle ROM in our study (0.2 rad; 12°) was lower than the
maximum ROM in walking, which can be equal to 35° (for DP) in
high-speed walking (Novacheck, 1998). With the rise time to peak
tension in the ankle muscles being relatively constant regardless
of the speed (Perrine and Edgerton, 1977), the 0.2-rad ankle angle
was not sufficiently distal in the arc of motion to allow for rise
time to peak tension in the muscles. In support of our argument,
Palmer reports a peak speed of 2 rad/s for a dorsiflexion of 0.2 rad
and a peak speed of 5 rad/s for a dorsiflexion of 0.35 rad during
walking; see Figure 2.2 in Palmer (2002).

Skewness and kurtosis analyses showed that the larger propor-
tion of data was asymmetric. Consistently, asymmetric models of
speed profiles performed better than symmetric ones. Overall kur-
tosis values were less than those expected for symmetric Gaussian
curves, i.e., speed profiles mostly appeared to be platykurtic, with
smaller tails and wider peaks. These results were in agreement
with the kinematic analysis of the wrist speed profiles (Vaisman
et al., 2013) and further spurred our comparisons across UE and
LE modalities.

SPEED PROFILE MODELING AND GENERALIZATION OF MODELS
ACROSS MODALITIES
Under the general assumption that models are hardly ever true
but some of them fit the data well enough to allow for useful
inference, we sought to find how our modeling analysis compared
with our and others’ studies on different modalities. The mod-
els that we employed here were pulled from a set of models that
were initially designed to describe UE movements with various
degrees of complexity, including reaching, drawing, handwriting,

and wrist movements. In terms of the neurophysiological assump-
tions implied, our models could be categorized into two main
categories: the kinematics-oriented and the dynamics-based mod-
els. The kinematics-oriented models hypothesize that the CNS
controls the trajectory of the joint in space by possibly minimizing
the error at the end effector without controlling the actual joint
or the muscles. Such models are the Morasso model (Morasso
and Ivaldi, 1982) and its modified versions (Maarse, 1987), the
minimum jerk (Flash and Hogan, 1985), the minimum snap
(Edelman and Flash, 1987), the Gutman and Gottlieb (gg) (Gut-
man and Gottlieb, 1991), the Gaussian, lgn and lgnb (Plamondon
and Alimi, 1997; Plamondon et al., 2003), and the beta, gamma,
and Weibull models (Plamondon et al., 1993, 2003). Diametri-
cally opposed, the dynamics-based models assume that trajectory
formation mechanisms are directly related to the geometry and
mechanical properties of muscles, which can be seen as genera-
tors of force, oscillation, or speed (Plamondon et al., 1993). Such
models are the Eden-Hollerbach (Hollerbach, 1981), and Plam-
ondon and Lamarche (1986) models. To fully comply with our
wrist modeling study, we also included the biexponential model
(Stein et al., 1988). For a thorough presentation of the models, see
Vaisman et al. (2013).

The comparison of the model performances between our LE
study that focused on the ankle joints and other UE studies that
focused on the hand, the arm, or the wrist (Plamondon et al., 1993;
Vaisman et al., 2013) could expand our insight on how the brain
controls movement and recovers from injury. The latter should be
enlightened by the fact that the LE movements, being older phy-
logenetically, are not necessarily controlled in the same fashion as
the UE movements. For example, although both wrist and ankle
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Michmizos et al. Comparative analysis of ankle pointing movements

FIGURE 5 | Results of Kruskal–Wallis 1-way ANOVA and multiple
comparisons’ test on AIC for different models for 1386 speed profiles. For
each movement direction, the best model (smaller mean rank AIC value) is
shown in blue. Other models’ mean ranks are in red if statistically significantly
different from it to 5% significance level and in gray if not. The 5 models with

consistent presence in the significantly better group of models are colored.
Speed profiles were taken from (A) 83 outbound toward north speed profiles,
(B) 291 outbound toward south speed profiles, (C) 430 DP inbound speed
profiles, (D) 85 outbound toward east speed profiles, (E) 148 outbound
toward west speed profiles, (F) 349 IE inbound speed profiles.

are pivot joints, they differ in function. The wrist joint, being an
ellipsoid joint, permits movements around two axes, flexion and
extension around the transverse axis, and adduction and abduc-
tion around the antero-posterior, whereas the ankle joint, being
a hinge joint, permits movement in one plane around a trans-
verse axis (Rogers, 2010). Despite the difference in the rotational
degrees-of-freedom between the two joints, alongside other dif-
ferences (in limbs, functional role, etc.), the similarity between the
two modeling results is remarkable: Not only do the two joints
share the top-performing model (lgnb) but also the other models
in the top-5 list (mmmasym, asymgauss, beta, and sigdiscont) and
even the models’ order in the list are the same; compare Figure 3
in this paper with Figure 4 in Vaisman et al. (2013). The two joints’
speed profiles shared, as well, the worst-performing models (expo,
weibul, moraso, and biexpo). Based on these results, it seems rea-
sonable to assume that a single model describes, equally well the
rotational movements in the two distinct pivot joints. Our results
are in further agreement with other UE (drawing) studies that
find that the lgnb model outperforms all other models, while the
asymgauss and the sigdiscont models are validated among the top

performers. In agreement with our study, the models found to
perform poorly in handwriting are the morasso, biexpo, and expo
models (Plamondon et al., 1993). The observation that asymmet-
ric models perform better than the symmetric ones is not only
consistent with our modeling work on the wrist movements but
also in agreement with prior work that showed that single-joint
movements often have asymmetric speed profiles (Nagasaki, 1989;
Wiegner and Wierzbicka, 1992). A plausible neurophysiological
explanation for the asymmetry lies on either muscle viscosity or
patterns of muscle activation (Jaric et al., 1998).

Among the top-5 best performing models, the lgnb and the beta
function are of particular value as they are continuous models. A
model that is discontinuous at the peak of the speed profile has
infinite acceleration at that point, which is helpful in reproducing
accurately the handwriting dynamics but it is not realistic for ankle
or wrist pointing movements. Discontinuous models are, among
others, the sigdiscont, the mmmasym, and the asymgauss that were
found in the top-5 performers. In addition to being a continuous
model, our best-fit model, the lgnb function is neurophysiologi-
cally plausible and has high flexibility in the description of both
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positively and negatively skewed ankle speed profiles (see Figure 2)
(Plamondon and Alimi, 1997; Plamondon et al., 2003). The lgnb
has also been used successfully to model drawing movements of
unimpaired subjects (Plamondon et al., 1993), and reaching and
drawing movements of subjects recovering from stroke (Rohrer
et al., 2002; Dipietro et al., 2009). The top performance of the beta
model, for both ankle and wrist movements, is consistent with
our previous work where the beta function was successfully used
to model speed profiles of submovements in shoulder and elbow
movements of recovering stroke patients (Krebs et al., 1999).

However, any generalization of our results across modalities
should be made with care. Other voluntary movements exist that
cannot be simulated with the models that we used here. For
example, eye movements (e.g., saccades, conjugate, and vergence
pursuit) are arguably the most frequent of all voluntary move-
ments. Although both pursuit and saccades are handled by the
same neural circuitry (Galiana and Outerbridge, 1984; Galiana,
1991), they serve different functions: saccadic eye movements
exploit the foveated structure of the eye, quickly reorienting it to
place a newly selected or fleeing target near the fovea, while pur-
suit movements allow the eyes to closely follow a moving object up
to a certain speed. The speed profile of saccadic eye movements
is more leptokurtic than the bell-shaped speed curves that we
described. Importantly, we cannot control the velocity of a saccade
or its duration, which are solely determined by the saccade ampli-
tude (Wolfgang, 1991). An important difference, though, between
saccades and movements that we analyzed here is that saccades
are blind eye movements; during saccade, vision is not used in
a negative feedback loop as in pursuit (Robinson, 1965, 1968).
Therefore, we speculate that the speed profiles we have seen here
and in our previous studies are the results of a visual-motor inte-
gration that might generalize well across visually guided voluntary
movements.

EVIDENCE THAT LOWER AND UPPER EXTREMITY DISCRETE
MOVEMENTS ARE CONTROLLED BY A SINGLE INVARIANT STRATEGY
The main finding of our study is that the tested speed compo-
nents of the visually guided, goal-directed discrete movements
remain invariant across LE and UE. This similarity across modal-
ities suggests that an effective therapeutic intervention for the LE
should follow the current knowledge of how the CNS controls and
learns UE movement (Michmizos and Krebs, 2012b). Motor con-
trol theories have predominantly focused on UE where research
on practicing target-directed movements has revealed the large
capacity of the motor system to learn (Schmidt and Wrisberg,
2004). Studies frequently assume but rarely examine whether LE
movements obey the same principles that underlie motor learning
in UE or how LE speed profiles could be seen under the scope of
motor control theories.

We examined our results in light of the two most prevalent
motor control theories, namely the motor program theory and the
dynamical systems theory. According to the motor program the-
ory, motor instructions are specified by the CNS where a motor
program organizes, initiates, and carries out intended actions,
based on sensory stimuli or central processes (Schmidt and Lee,
1988). The motor programs are hardwired and stereotyped neural
connections and include central pattern generators (CPGs), which

are networks of interneurons capable of generating bilateral rhyth-
mic movements – such as swimming or walking – in the absence of
descending and sensory inputs (Ijspeert, 2008). Although sensory
inputs are not required to produce a movement, they are impor-
tant in adapting and modulating the movement. According to the
dynamic systems theory, motor instructions are influenced by the
environment and the interaction among the body, the limbs, and
the nervous system (Bernstein, 1967). A movement pattern self-
organizes as a function of the ever-changing constraints placed
upon it (Kamm et al., 1990). Each of these subsystems, that has
the potential to change, is referred to as control parameter and
may be the target of therapeutic intervention to improve motor
learning.

Both motor control theories have integrated concepts from the
ecological theory of motor control (Gibson, 1966) into their con-
structs and, therefore, have influenced a task-oriented therapeutic
approach, i.e., an approach that includes meaningful activities
within the patient’s natural environment. Our “assist-as-needed”
robotic therapists for both the UE and the LE align with this
approach in terms of providing intervention within the context
of the individual’s preferences and needs. As a motor function,
however, gait is unique in human beings who are the only exclu-
sively bipedal mammals. A view that has received wide support is
that the control of locomotion is achieved through an interplay
of CPGs and sensory influences (Van de Crommert et al., 1998).
Whether LE movement problems are caused by abnormal CPGs,
higher level motor programs or the interconnection between them
remain to be proven.

The underlying invariant features in the visually guided discrete
movements across lower and upper limbs suggest that the CNS
may control these movements by eliciting a stereotypical motor
program that consists of a prestructured set of motor commands.
Such commands could be constructed at the highest cortical levels
and then conveyed to the lowest centers in the hierarchy responsi-
ble for executing the movement. Several invariant features in UE
movements, such as smooth trajectories with uni-modal speed
profiles, may also hold for the LE. Another strong indication for
an invariant motor signature among UE and LE comes from our
recent study on the ankle RT: as a task increases in complexity,
the amount of time needed to organize the motor program would
increase. Indeed, the RT in the ankle increases with the number
of potential stimuli, as would be predicted by the Hick-Hyman
law that has long been observed in the UE (Michmizos and Krebs,
2014a).

In our task-based rehabilitation studies, recovery is found to
be best produced by practicing purposeful, goal-oriented tasks
(Hogan et al., 2006). Finding an invariant motor strategy across
modalities enables us to explore the expansion of the task goals
that we have used for the UE to the LE (Michmizos and Krebs,
2012a). This will allow us to structure the physical environment by
allowing choices of movement solutions and manipulating perfor-
mance, environmental, or task variables. Stepping away from the
training of repetitive rhythmic LE movements, this work aims to
inspire approaches that include meaningful LE activities within the
individual’s natural environment. In conclusion, this work shows
alternatives to help patients relearn the correct actions and further
support the goal-directed (activity-based) training of the LE.
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IMPLICATIONS FOR LE ROBOTIC THERAPY
Historically, LE robotics for neurological diseases tried to impose
rhythmic patterns of whole-body movements. However, the eval-
uation of such devices that mimic the kinematics of rhythmic leg
movements during BWS treadmill training yielded poor results
(Duncan et al., 2011; Dobkin and Duncan, 2012). Targeting indi-
vidual joints and going beyond exclusive rhythmic training is a
different strategy for LE robotics that has already shown promis-
ing results. Recent studies using the Anklebot suggest that a focus
on ankle discrete movements provides a valuable contribution to
locomotor therapies (Forrester et al., 2011, 2013, 2014). In addi-
tion, our lab has recently introduced a new LE manipulandum
that enables the training of discrete and rhythmic movements as
well as balance (Susko and Krebs, 2014). The neurophysiologi-
cal basis of our work is the model of dynamic primitives (Hogan
and Sternad, 2012), according to which the sensorimotor control
could be broken down into three elemental primitives: submove-
ments, oscillations, and mechanical impedances. Just like infants
learning to walk, severe stroke survivors use discrete steps. Discrete
movements have also been observed in UE reaching movements,
hypothesized to be composed of a superposition of submove-
ments. Since rhythmic and discrete movements are known to be
controlled by different neural mechanisms (Schaal et al., 2004;
Hogan and Sternad, 2007), LE rehabilitation needs to address both
movements.

Up to now, there is a shortage of studies on the neurophysi-
ological mechanisms underlying the ankle sensorimotor control
and trajectory formation. However, similar to previous studies,
we simulated ankle trajectories with the point of interest fixed
on their performance in reproducing speed profiles of simple,
fast target-directed movements (Plamondon et al., 1993; Vaisman
et al., 2013). This focus was consistent with our goal on verifying
whether the existent UE models are sufficient to describe the ankle
speed profiles or whether we needed to develop new models of LE
movements. Our model validation confirms the adequacy of some
of the UE models. These results support embedding such models
into the design of ankle robotic tools for neurorehabilitation and
using them to inform quantitatively the sensorimotor recovery
in neurological diseases that originate in the brain but affect the
periphery.

Much current robotic research on neurorehabilitation focuses
on adapting the behavioral intervention to each patient’s special
needs and abilities. The most prominent working hypothesis is
that the processes that underlie motor rehabilitation are simi-
lar to the processes that underlie motor learning (Hogan et al.,
2006). In terms of kinematics, to quantify motor learning, one
needs to assess the level of deviation from the ideal trajectory.
Although other, more sophisticated methods exist that quantify
the electrical and biochemical changes in the brain, as it under-
goes plasticity, the brain is an intrinsically complex system and
any data acquired from it, especially during a therapy session, are
hard to interpret and, therefore, to exploit in any treatment. The
most robust measure of quantifying motor learning, up to now, is
through behavioral changes (Schmidt and Lee, 1988), conveniently
assessed from the kinematics from the robot itself.

Motor recovery follows an exponential progression similar to a
motor learning “law of practice” or, especially in complex tasks, a

two-time scale exponential function (Newell et al., 2009). The the-
ory of multiple time scales is further supported by neurophysiolog-
ical studies (Karni et al.,1998; Bernacchia et al., 2011). According to
this theory, the two superimposed exponential functions represent
adaptation and learning processes. One characteristic time scale is
relatively fast and captures the rapid adaptive change (warm-up)
in performance at the beginning of a practice session. The other
time scale is relatively slow and captures the persistent change that
is more typically associated with learning. But scoping the learn-
ing curves associated with the performance metrics is not the only
direct implication of our modeling results. This work has a great
potential to enhance rehabilitation efforts in any population with
LE deficits by, for example, assessing the level of motor impair-
ment and improvement. Knowledge of the best-fit models on
ankle pointing movements enhances the ability to interpret both
individual differences (pre- and post-intervention) and group dif-
ferences (between pathological and non-pathological individuals)
during kinematic investigations.

CONCLUSION
The incorporation of behavior quantification techniques to LE
rehabilitation using a robotic device seems very promising. The
robot becomes a platform that combines neuroscience, model-
ing, and physical therapy among other disciplines. The results
presented here could be interpreted under both an engineering
and a scientific perspective. The modeling of ankle kinematics
will enable us to engineer therapeutic devices that first identify
the ability of the patient to move and point with the ankle, and
then independently adjust the therapeutic parameters and the
number of its repetitions. Scientifically, the comparison of our
modeling results with other UE studies build the support for an
invariant theory of sensorimotor control of discrete movements
across upper and lower limbs. This interpretation of our results, in
light of the contemporary motor control theories, emphasizes the
importance of individual therapeutic tasks that incorporate envi-
ronmental movement constraints. Models such as the ones we used
here could be used to compare distinct neurologic rehabilitation
approaches with respect to assumptions underlying normal and
abnormal movement control and recovery of function. However,
the right training dosage of discrete and rhythmic movements as
well balances to maximize recovery outcomes and how to tailor
the training to a particular patient’s needs remain to be verified.
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