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Abstract
When human subjects hear a sequence of two alternating pure tones, they often perceive it

in one of two ways: as one integrated sequence (a single "stream" consisting of the two

tones), or as two segregated sequences, one sequence of low tones perceived separately

from another sequence of high tones (two "streams"). Perception of this stimulus is thus bis-

table. Moreover, subjects report on-going switching between the two percepts: unless the

frequency separation is large, initial perception tends to be of integration, followed by tog-

gling between integration and segregation phases. The process of stream formation is

loosely named “auditory streaming”. Auditory streaming is believed to be a manifestation of

human ability to analyze an auditory scene, i.e. to attribute portions of the incoming sound

sequence to distinct sound generating entities. Previous studies suggested that the dura-

tions of the successive integration and segregation phases are statistically independent.

This independence plays an important role in current models of bistability. Contrary to this,

we show here, by analyzing a large set of data, that subsequent phase durations are posi-

tively correlated. To account together for bistability and positive correlation between subse-

quent durations, we suggest that streaming is a consequence of an evidence accumulation

process. Evidence for segregation is accumulated during the integration phase and vice

versa; a switch to the opposite percept occurs stochastically based on this evidence. During

a long phase, a large amount of evidence for the opposite percept is accumulated, resulting

in a long subsequent phase. In contrast, a short phase is followed by another short phase.

We implement these concepts using a probabilistic model that shows both bistability and

correlations similar to those observed experimentally.

Introduction
When a listener is exposed to an auditory scene, she is able to segregate it into different sound
entities even when the sounds generated by the different sound entities are interleaved in time.
The temporally-continuous perceptual representation of a single auditory entity was termed a
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“stream of sound” [1]. A common paradigm for studying auditory streams consists of present-
ing sequences of two alternating pure tones to subjects and registering their reported percep-
tion [2]. The sequences are presented as “ABAB. . .” or “ABA-ABA-. . .“, where the dash
represents a silent interval. Subjects usually report one of two perceptions: either all tones are
perceived as parts of a single entity (corresponding to one stream percept), or the A tones are
perceived separately from the B tones (corresponding to two streams percept). Listeners report
on-going switching between the two percepts, without settling into a single, stable percept,
where each phase (integration or segregation) persists for several seconds [3]. The phenome-
non is therefore bistable. The frequency separation between the high and the low tones has a
considerable impact on perception: for intermediate frequency separation, the initial percept
tends to be integration, and the proportion segregation reports increases with time. This pro-
cess is often referred to as “the build-up of streaming”. The final, stationary, probability of seg-
regation depends on stimulus parameters: the larger the frequency separation between the
tones, or the faster the sequence, the stronger the tendency for segregation [4]. Extreme values
of frequency separation do not yield build-up, as demonstrated by Deike et al [5]: large fre-
quency separations lead to segregation already at the beginning of the sequence, while small
frequency separations start with an integration percept and do not segregate later on.

A previous study found that phase durations in auditory streaming are statistically indepen-
dent [3]. While correlations in auditory streaming have not been reported, there are some
reports of positive correlations between phase durations in two studies of binocular rivalry
[6,7], a visual bistable phenomenon with spontaneous transitions between two percepts, that is
often compared to auditory streaming. These correlations were reported for successive phase
durations of the same type (separated by one phase of the opposite percept). The major experi-
mental result of the current paper is the demonstration that successive phase durations in audi-
tory streaming do show significant positive correlations.

A computational model of streaming should therefore account for several properties: the
build-up of streaming, the bistability expressed in back and forth switching between percepts,
and the positive correlations between successive phase durations. Most theoretical accounts of
streaming do not provide explanation for this ensemble of properties. A number of models
consider segregation to be related to channeling, i.e. separate neuronal representations of dif-
ferent streams [8–10], possibly explaining segregation of alternating sequences, but not bist-
ability. Taking this hypothesis further, Fishman et al [11] offered the population-segregation
model, where segregation occurs when the two stimuli are represented by mostly separate neu-
ronal populations; build-up occurs in this model because of the ubiquitous adaptation of neu-
ronal responses during the presentation of a long sequence of sounds. This hypothesis was
quantitatively tested by comparing predictions based on the time course of the responses of
neurons in macaque auditory cortex, as well as in guinea pig cochlear nucleus, to the dynamics
of build-up of streaming measured in humans [12,13]. While the Fishman model can in princi-
ple be extended to account for bistability as well, such extension would require neuronal
responses to switch between segregated and integrated representations with the appropriate
long time scales; no evidence has been found for such dynamics in the neuronal responses.
Extensions of the Fishman model such as a temporal coherence model [14], as well as neural
oscillator models [15,16], account for the build-up of streaming but lack mechanisms for on-
going switching between integration and segregation. A model by Mill et al [17], where sound
entities are identified as predictable patterns, accounts for bistability in response to periodic
patterns, and may have correlation between successive phase durations, induced by neural
adaptation with long time constants. However, it is tailored for periodic patterns; natural sti-
muli are usually non periodic (although the model of Mill et al. [17] may be extended to deal
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with non periodic patterns). The approach we will suggest here does not require the input to be
periodic.

The dynamics of bistable phenomena in the visual modality, in particular binocular rivalry,
is frequently modeled by neuronal competition models, using adaptation or noise [18] to drive
switching. We argue that this family of models is not appropriate for auditory streaming.
Whereas in binocular rivalry, switching occurs between two qualitatively similar states (the
two images presented to the left and right eyes), in auditory streaming the two alternatives con-
sist of qualitatively different interpretations of the entire scene, which contain a different num-
ber of streams. When modeling binocular rivalry, the association of each percept type with the
activity of a distinct neuronal population [19–21] is a reasonable assumption since a percept
corresponds to a single image. In contrast, it is less natural to model segregation phases of audi-
tory streaming as the activity of a single neuronal population, since this percept corresponds to
the co-existence of two streams. It would be much more reasonable to represent each stream,
rather than each percept, by a distinct neuronal population; in such a representation, percep-
tual switching will correspond to toggling between activity in a single population and activity
in both.

In this study, we propose a new framework for interpreting auditory scenes, and use a con-
crete implementation of this framework to account jointly and naturally for bistability and pos-
itive correlations between successive phase durations, as well as for the build-up of streaming
at intermediate frequency differences.

Results

Subsequent Phases of Segregation and Integration are Positively
Correlated
We analyzed a large data set of long sequences of perceptual decisions in response to “ABA-”
sequences, collected by Hupé, Joffo and Pressnitzer [22] and provided to us courtesy of D.
Pressnitzer (Data Set I). There were 16 subjects, each underwent 6 trials of 4 minutes of the
ABA- stimulus, with frequency difference of 5 semitones between A and B, and onset to onset
intervals of 120 ms or 240 ms (see Methodsfor details). Across all trials and subjects, the aver-
age phase duration was 7.8±4.1 s (mean±std) for integration and 8.4±6.0 s for segregation, and
the fraction of time spent in segregation was 0.51±0.13. The first and last phases were excluded
from each trial.

Fig 1a and 1b plots the normalized duration of each phase against the duration of the next,
for the two possible transitions. Importantly, durations were normalized to the average value of
each percept type separately within each trial and subject, in order to avoid spurious correla-
tions due to inter-subject and inter-trial differences in switching behavior (see Methods). For
subsequent phase durations (lag 1), the correlation was significantly larger than 0. The correla-
tions between phase durations that were one or two phases apart (lag 2, lag 3), were not signifi-
cantly different from 0 (lag 2: I!I ρ = 0.049, p = 0.058, n = 1515, S!S ρ = 0.051, p = 0.045,
n = 1563; lag 3: I!S ρ = 0.015, p = 0.557, n = 1469, S!I ρ = -0.053, p = 0.038, n = 1515;
throughout the paper, we consider p<0.01 as statistically significant). These results do not
depend on the details of the analysis. Similar correlations were found when excluding trials
that had less than 10 perceptual switches (see Part A in S1 Appendix). The distribution of
phase durations is shown in Fig 1c and 1d.

We replicated these results using a similar experimental design (details in Methods) to col-
lect additional data (Data Set II, see S1 Dataset). There were 21 subjects, each undergoing 6 tri-
als of 4 minutes of the ABA- stimulus, with an interval of 5 semitones between A and B, and
onset to onset interval of 110 ms. Across all trials and subjects, the average phase duration was
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6.0±7.1 sec for integration and 8.1±8.6 sec for segregation, and the fraction of time spent in seg-
regation was 0.59±0.12. Correlations between subsequent durations were smaller compared to
Data Set I, but still highly significant, as shown in Fig 1e and 1f. As in Data Set I, lag 2 and lag 3
correlations were not significantly different from 0 (lag 2: I!I ρ = 0.013, p = 0.635, n = 1410,
S!S ρ = 0.049, p = 0.064, n = 1460; lag 3: I!S ρ = 0.008, p = 0.777, n = 1348, S!I ρ = -0.025,
p = 0.357, n = 1401). As in Data Set I, similar correlation values were found when excluding tri-
als that had less than 10 perceptual switches (see Part A in S1 Appendix).

When combining data from different subjects and conditions, spurious positive correlation
may be produced, for example when the average phase duration differs between subjects/condi-
tions. Although the data in Fig 1 was normalized, the normalization may not be reliable enough,
giving rise to the observed correlations. To show that the correlation in successive phase dura-
tions was not due to such effects, we also calculated correlation coefficients separately for each
switch type in each individual trial. Fig 2 shows a histogram of the single trial correlations
between subsequent phases (lag 1, integration followed by segregation and vice versa) and
between phase durations that are one phase apart (lag 2, two subsequent integration or segrega-
tion phases) for both data sets. Using linear mixed effects analysis [23] with subject as a random
factor, we found a significant deviation of the histogram towards positive correlation values for
lag 1 in Data Set I (Fig 2a and 2b; see Methodsfor details), and for the I!S transition in Data Set
II (Fig 2e). For both Data sets, lag 2 correlations were not significantly different from 0 (Fig 2c,
2d, 2g and 2h), and lag 3 correlations as well (Data Set I: lag 3 I!S t(14.4) = 0.341, p = 0.738,
S!I t(91) = -1.603, p = 0.112. Data Set II: lag 3 I!S t(102) = 1.033, p = 0.304, S!I t(16.7) =
-1.579, p = 0.133). The random subject effect did not reach significance for any switch type in

Fig 1. Phase duration analysis. (a-d) Data Set I (9). (a-b) Scatter plots of normalized durations. The correlation coefficient between phase durations for
each scatter is indicated in red with the corresponding p value and number of pairs (ρ, p and n respectively). (a) Segregation following integration. (b)
Integration following segregation. (c-d) Histograms of normalized phase durations. The number of phases is indicated in the title. (c) Integration. (d)
Segregation. (e-h) The same analysis for Data Set II.

doi:10.1371/journal.pone.0144788.g001
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any data set, except lag 1 S!I in Data Set II (Data Set I: lag 1: I!S p = 0.6, S!I p = 0.4; lag 2:
I!I p = 0.09, S!S p = 1; lag3: I!S p = 0.08, S!I p = 1. Data Set II: lag 1: I!S p = 0.3, S!I
p = 0.01; lag 2: I!I p = 1, S!S p = 0.9; lag3: I!S p = 1, S!I p = 1). To summarize, for Data Set
I, lag 1 correlation was significantly larger than 0, and for Data Set II, one of the two types of lag
1 correlation was significantly larger than 0, while the second type was borderline significant,
and seemed to be affected by the subject random factor. In both data sets, lag 2,3 correlations
were not significantly different from 0.

In a previous study, Pressnitzer et al. [3] reported that subsequent phase durations are
uncorrelated. They analyzed 23 trials of 4 minutes, a data set which is much smaller than those
we analyzed here (96 trials in Data Set I; 126 trials in Data Set II). We recalculated the correla-
tions of this data set [3], which was also provided to us courtesy of D. Pressnitzer, with the
same approach used for Data Sets I and II. While the lag 1 I!S correlation was null (ρ =
-0.065, p = 0.339, n = 219), the lag 2 S!I correlation was similar in size to that found in the
other data sets, but didn't reach our strict criterion for significance (p<0.01) because of the rel-
atively small amount of data (ρ = 0.151, p = 0.026, n = 217). Lag 2 and lag 3 correlations were
also non-significant (p>0.2). Thus, the null correlations reported by Pressnitzer et al. [3] may
be attributed, at least partially, to the smaller size of the data set, which reduced the power of
the statistical tests.

To summarize, two independently collected large data sets exhibit significant positive corre-
lation between subsequent phase durations. Correlations between phases that are one or two
phases apart were small or null. In the rest of the paper, we will use this correlation structure as
an important constraint on models of streaming.

Streaming as a process of evidence accumulation
We suggest that streaming is a consequence of an evidence accumulation process over time.
The notion of evidence we use here is akin to probability—the evidence for integration is the

Fig 2. Histograms of correlation coefficients between phase durations in single trials. The transition types are marked above each histogram (for
example, I!S denotes transitions from integration to segregation). The mean and standard deviation are indicated in red in each panel, followed by the t-
statistic of the fixed effect, its significance and the number of trials for which it was possible to calculate the correlation. The black vertical lines mark zero
correlation, and the red vertical lines mark the mean of each distribution. (a-d) Data Set I. (e-h) Data Set II.

doi:10.1371/journal.pone.0144788.g002
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complement of the evidence for segregation. Intuitively, the more evidence for the opposite
percept, the higher the probability that a perceptual switch would occur. During an integration
phase, evidence for segregation accumulates; during a segregation phase, evidence for integra-
tion accumulates (or equivalently, evidence for segregation decreases). The amount of evidence
is continuous across switches, so that in order for the opposite switch to occur next, the amount
of evidence for the other precept has to increase sufficiently.

Regardless of implementation details, this framework yields positive correlation between
durations of successive phases: during a long phase, a large amount of evidence for the opposite
percept accumulates, resulting in a typically long subsequent phase, while a short phase would
be followed by another short phase. In order to demonstrate that this framework is reasonable
for streaming, we propose next a specific implementation that also satisfies the other experi-
mental constraints: the effect of frequency separation and presentation rate on the probability
of segregation.

An Implementation of the Evidence Accumulation Process as an Online
Classification Process
In the model described here, classes correspond to streams, and when an input is classified to a
certain class, it is declared to be part of the corresponding stream. Classification and update of
class parameters are performed using a straightforward set of probabilistic rules, which pro-
duce competition between integration (all inputs are classified to the same stream) and segre-
gation (inputs are classified to several classes depending on their identities).

The Classification Algorithm. We assume that the auditory input undergoes a prepro-
cessing stage, where it is segmented into time discrete elements (corresponding to syllables in
speech, notes in music, or tones in an ABA- sequence). These are then represented as a vector
in some d-dimensional feature space.

The sequence of incoming elements is fed into the classification process, where each element
is attributed (classified) to one of the classes. A class corresponds to a stream, and all the ele-
ments that are assigned to that class belong to the same stream. When all inputs are classified
to one class, only one stream is perceived. When some of the inputs are classified to one class
and other inputs to another, the sequence is perceived as segregated, and the two classes repre-
sent the two streams. The assignment of elements to streams is determined by the classification
results. In the special case of the alternating tone sequences used to study auditory streaming,
classification of both A’s and B’s to the same class is interpreted as integration, while classifica-
tion of A’s to one class and B’s to another is interpreted as segregation. It is important to note
here that classifying two elements to the same class does not imply that they are perceptually
indistinguishable, but rather that they belong to the same stream.

The classification process assumes that each element x of the sequence is drawn from a mix-
ture distribution with n components, representing n different classes:

pðxÞ ¼
Xn

k¼1
pkpðxjc ¼ kÞ

Where c 2 {1,2,. . .,n} is the class that generated x,πk is the a-priori probability of class k to
occur (referred to as the mixing probability), and p(x|c = k) is the conditional likelihood of x
given that it was generated by class k. For simplicity we assume that the inputs are represented
by a single feature, for example tone frequency for streaming experiments. The feature space
is therefore 1-dimensional, and so is the conditional likelihood. More generally, the same
scheme is applicable in any dimensionality, by representing inputs as vectors and distributions
as multi-dimensional.
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For simplicity, we assume in all the calculations below that the conditional likelihoods are
characterized by a small number of parameters. To allow freedom in the shape of the condi-
tional likelihoods, we continue here with generalized Gaussian mixtures, which are described

by the set of parameters fpk; mk; skgnk¼1 whereS
n

k¼1pk ¼ 1, along with a shape parameter β,
which is determined a-priori (see Methods). Further simplifying, the parameters fskgnk¼1 are
assumed to be known and equal for all classes, σk = σ. However, the general approach is valid
for other parameterizations of the conditional likelihoods.

Upon arrival of an input element x, it is classified to a class k�. We use here two flavors of
the classification process. In one implementation, classification is deterministic: k� = argmaxk
{p(c = k|x)}, i.e.k� is the class that has the maximal a-posteriori distribution for input x, among
all existing classes. Deterministic classification simplifies the analysis of model behavior. In the
second, more general type of classification, k� is drawn stochastically from the a-posteriori dis-
tribution fpðc ¼ kjxÞgnk¼1. Such stochastic classification may better reflect actual behavior.

Next, the parameters of the mixture are updated with the goal of faithfully representing the
statistics of the input sequence, given the arrival of the current input element. Updating the
mixture parameters is done as follows:

1. The centroid of the selected class, μk�, is shifted towards x, by an amount that is proportional
to the a-posteriori probability of the class given the input, and to the distance between the
centroid and the input:

mk�  mk� þ g pðc ¼ k�jxÞðx � mk� Þ ð1Þ

Where γ is an update rate parameter.

2. The mixing probabilities fpkgnk¼1 are updated using a different criterion: the increase in the
mixing probability of class k, after proper normalization (to ensure that the sum of the mix-
ing probabilities remains 1), is proportional to the conditional likelihood of the new input
p(x|c = k), such that the mixing probability of the class with maximum conditional likeli-
hood increases at the expense of the other classes. The change is applied to all mixing proba-
bilities:

pk  pk½1þ Zðpðxjc ¼ kÞ � pðxÞÞ� ð2Þ

The mixing probability increases for classes that are likely to have generated x. The rule
therefore gives preference to classes with high conditional likelihood, rather than to classes
with high a-posteriori probability (like in the μk update).

3. When the likelihood of the incoming element is smaller than some threshold, p(x)< θ, a
new class is generated, centered around the element, and assigned a small initial mixing
probability pinit:

mnþ1  x

pnþ1  pinit

pk  pkð1� pinitÞ k ¼ 1; . . . ; n

n nþ 1

The difference between updates based on the a-posterior probability and updates based on
the conditional likelihood is crucial for the behavior of the model, since it produces competition
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between the integration and segregation interpretations. To illustrate this difference, consider
the example in Fig 3. Two classes are illustrated, with the mixing probability π1 of class 1 sub-
stantially larger than that of class 2. For the indicated input x0, the a-posteriori probability,
used for classification and centroid update, is maximal for class 1 (Fig 3a); in contrast, the
maximum conditional likelihood, used for mixing probability update, is obtained for class 2
(Fig 3b). x0 is therefore more likely to be classified to class 1, in which case μ1 will move
towards x0. Regardless of this classification decision,π2 will increase, whereas π1 will decrease.
Thus, in the probable case where x0 is classified to class 1, p(x|c = 1) increases but π1 decreases.
The product of the two terms, which is proportional to the a-posteriori probability P(c = 1|x0)
/ P(x0|c = 1)π1, may therefore increase or decrease depending on the current mixture param-
eters and the update rate parameters. If the decrease in π1 dominates, then inputs similar to x0
that arrive later in the sequence will become more likely to be classified to class 2. On the
other hand, if the change in μ1 dominates, such inputs will be more likely to be classified to
class 1. We therefore get accumulated evidence for a new interpretation of the scene, compet-
ing with the tendency to adhere to the current scene interpretation: the former is mathemati-
cally expressed in the mixing probabilities update, while the latter is expressed as the centroid
update of the selected class.

To understand the competition that this algorithm generates, let us consider an example
scenario. Assume all incoming inputs are concentrated in the same region in the feature space,
and are classified to the same class. Assume now that an input from a different region arrives,
such that its likelihood is lower than the threshold. A new class will be created around it, but
the input will probably not be classified to it, due to the low initial mixing probability of this
class. The new class does not take part in classification, but its existence is an indicator of the
possibility that a new stream of sound may be occurring. If no more inputs in the vicinity of
the new input arrive, the mixing probability of the new class will decrease and remain of no
importance for classification. However, if more inputs in the same region arrive, the mixing
probability of the new class may gradually increase, possibly up to the point when inputs simi-
lar to the new input begin to be classified to it.

The mixing probability of the new class measures the amount of evidence accumulated for
the existence of a new stream. As long as none of the elements are classified to the new class,
the corresponding new stream of sound is perceptually irrelevant. The rate of evidence accu-
mulation for the existence of this stream (instantiated in changes in its mixing probability), in
conjunction with the rate of the process that tends to integrate the two classes (namely the rate
of updating μk� towards the new stimulus), determines if and when this new stream will be
unveiled, corresponding to a switch in perceptual organization.

Generating Switching Behavior. We first examine behavior of the algorithm for the case
where classification is deterministic, i.e. k� = argmaxk {p(c = k|x)}, and show that the algorithm
produces periodic switching between integration and segregation.

Fig 4 illustrates the results of the classification algorithm for deterministic classification of
the ABA- sequence. Elements A and B are represented as points on the feature axis. In its initial
state, the mixture has two classes, centered close to A and B. Class 1 has a much larger mixing
probability, such that both A and B are classified to it, and the percept is of integration (Fig 4a,
lower panel).

The structure of the alternating stimulus results in fast fluctuations of the mixture parame-
ters values: at every presentation of A, μ1 moves towards A and π2 decreases, and at every pre-
sentation of B, μ1 moves towards B and π2 increases (see inset in Fig 4e). These fluctuations
‘ride’ on a slower trend, whose behavior depends on the details of the update rules, as well as
on the parameters of the model and the stimulus. In our case, since π1 is almost 1, μ1 effectively
moves towards B (Eq 1, Fig 4b, upper panel; note that class 1, in blue, is no longer centered
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close to A). As a result, the conditional likelihood P(A|c = 1) becomes substantially smaller
than P(B|c = 2), and the increase in π2 upon presentation of B becomes more significant than
the decrease in π2 upon presentation of A (Eq 2), giving rise to a net increase in π2. Eventually
P(c = 2|B) exceeds P(c = 1|B) (Fig 4c, lower panel), and the result is classification of B to class 2,
representing a switch to segregation. From that point, μ1 begins to return towards A, yielding a
net decrease in π2 (Fig 4d). The mixture slowly returns to the integration state of Fig 4a, where
B is classified to class 1.

In this simulation of the ABA- sequence, the process converged to periodic switching
between integration and segregation, following a transient period that depended on initial con-
ditions. The periodicity is evident from Fig 4e and 4f, where the dynamics of π1,2 and μ1,2 are
displayed. Notice that since the center of each class is updated according to the inputs classified
to that class, and since only B’s are ever classified to class 2, μ2 = B throughout the simulation.
In addition,π1 is equal to 1 −π2, and is therefore close to 1 all the time. As mentioned, switches
between phases occur when P(c = 1|B) = P(c = 2|B), namely when they are both equal to 0.5, as
shown in Fig 4g. Our analysis shows that periodic behavior is obtained for a wide range of sim-
ulation parameters, input properties and initial conditions.

Similar results were obtained for the ABAB sequence (not shown). The main difference is
that the two classes are now symmetrical, so two states of integration occur—when both stimuli
are assigned to class 1 and when both are assigned to class 2. We note that for both ABA- and
ABAB there is inherent asymmetry between the model behavior during integration and segre-
gation: during integration inputs are classified to one class, and during segregation to two clas-
ses, so that the update process is essentially different. Therefore, we do not expect the typical
durations of the integration and segregation phases to be similar to each other.

Periodic switching between integration and segregation is obviously not in line with the
highly variable phase durations measured in experiments. Since the model is probabilistic, it is
only natural to introduce stochasticity by considering probabilistic decisions based on the dis-
tributions fpðc ¼ kjxÞgnk¼1 maintained in memory. For the ABA- sequence, A is almost exclu-
sively classified to class 1 since p(c = 1|A)>> p(c = 2|A), as evident in Fig 4a–4d (lower

Fig 3. The criteria used for classification and update. (a) The a-posteriori probabilities p(c = k|c) for k = 1, 2. For the indicated input x0, the maximum is
obtained in class 1, making x0 more likely to be classified to class 1, in which case μ1 moves towards x0. (b) The conditional likelihood p(x|c = k). For the input
x0, the maximum is obtained in class 2, resulting in an increase in the mixing probability π2.

doi:10.1371/journal.pone.0144788.g003
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panels). Therefore, evidence accumulation is well represented by the probability p(c = 2|B):
during integration, the increase in this value represents evidence for segregation, and during
segregation, the decrease in this value represents evidence for integration. Perceptual switches
should therefore take place stochastically, biased by the value of p(c = 2|B). To implement this
in the model, when K inputs of type B have been classified to class 2 during integration, a
switch to segregation occurs, and vice versa—when K B’s have been classified to class 1 during
segregation, a switch to integration occurs. The resulting behavior of the dynamic variables
and switching times is shown in Fig 5. A reasonable scheme would set some allowable time
scale for this counting process; nevertheless, adding such time limitation and fitting its value to
experimental durations will most likely not change our results qualitatively, since the phase
durations in our simulations tend to be short (see Fig 6c and 6d).

Fig 4. State of the mixture distribution in response to an ABA- sequence, shown at several time points. The top plot in each panel shows the
conditional likelihood of the two classes, P(x|c = k) as a function of x, and the bottom shows the a-posteriori probability P(c = k|x), with the ordinate magnified
so as to observe the relationship between P(c = 2|B) (red dot above B) and P(c = 1|B) (blue dot above B). (a) During integration (where both inputs are
classified to class 1), μ1 approaches a value midway between A and B, causing a decrease in P(A|c = 1). (b) This decrease causesπ2 to undergo a net
increase. (c) The increase in π2 results in a switch to segregation: B is now classified to class 2. (d) μ1 returns towards A; the result is a net decrease in π2. (e-
g) The dynamical variables as a function of time. Black vertical lines indicate switches from integration to segregation (solid) and vice versa (dashed), as
indicated by the labels “int” and “seg” in the first two phases. Green vertical lines indicate the time points sampled at (a-d). (e) π1, π2, plotted in log scale. The
inset illustrates the fast oscillations of π2, where each point indicates one time step; notice there are two down steps after each up step, because A occurs
twice after every occurrence of B in the ABA- sequence. (f) μ1, μ2. The inset illustrates the fast oscillations of μ1. (g) The value of P(c = 1|B) and P(c = 2|B),
which sum up to 1. In this simulation γ = 0.1, η = 0.5, the stimulus elements areΔ = 5 apart, and the shape of the conditional likelihood is generalized normal
with β = 1.5 and a variance of 1.

doi:10.1371/journal.pone.0144788.g004
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As predicted, during a long integration phase, a large amount of evidence for segregation
accumulates and is expressed as a large value of p(c = 2|B), yielding a long subsequent segrega-
tion phase; a short integration phase provides time for only moderate evidence accumulation
for segregation, so that the value of p(c = 2|B) tends to be intermediate at the end of the phase,

Fig 5. The stochastic model. (a) π as a function of time. (b) μ as a function of time. (c) The probability of B being classified to class 2, P(c = 2|B),
determining the probability of segregation, since P(c = 2|A)� 0. For clarity, in all panels, only the values after arrival of input B are shown, namely one value
every three time steps. Black vertical lines indicate switches from integration to segregation (solid) and vice versa (dashed). (d-e) Phase durations are plotted
against the value of P(c = 2|B) at the start of the phase, separately (d) for integration and (e) for segregation. In this simulation γ = 0.03, η = 0.1, K = 6, the
stimulus elements were Δ = 0.6 apart, and the shape of the conditional likelihood was generalized normal with β = 0.5 and a variance of 1. The mixture was
initialized with two classes centered at A and B, and π2 was initially 0.0001. The phases are all drawn from a single long simulation run.

doi:10.1371/journal.pone.0144788.g005

Fig 6. Analysis of phase durations from the same simulation as in Fig 5. (a-b) Scatter plots of normalized durations. The correlation coefficient between
phase durations for each scatter is indicated in red along with its p-value and number of couples (ρ, p and n respectively). (a) Segregation following
integration. (b) Integration following segregation. (c-d) Histograms of normalized phase durations. The number of phases is indicated in the title. (c)
Integration. (d) Segregation. The mean phase durations were 36.1 input elements for integration and 36.2 for segregation.

doi:10.1371/journal.pone.0144788.g006
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and the next phase is typically shorter. A similar evidence accumulation for integration occurs
during segregation phases, leading to the opposite dependence on p(c = 2|B). In Fig 5d and 5e
we show the correlation between the value of p(c = 2|B) at the start of the phase, and the phase
duration: for integration ρ = -0.49, p = 1.12e-96 and for segregation ρ = 0.25, p = 1.27e-23 (the
number of sampled phases was 1572, similar to the number of phases in the data, see Fig 1).
The value of p(c = 2|B) indeed tends to increase during integration and decrease during segre-
gation (Fig 5c), but this tendency does not occur immediately after the perceptual switch; there
is an initial overshoot in the start of the segregation phase as well as an undershoot in the start
of the integration phase. This behavior reflects the competition discussed above, where π2
update opposes the μ1 update, such that the scene interpretations compete. In the simulation,
the change in π2 finally overcomes the change in μ1, resulting in termination of the overshoot/
undershoot. The existence of the overshoot and undershoot depends on the parameters used
in the simulation. For comparison, in the simulation of Fig 4, where the parameters are differ-
ent, there is undershoot in p(c = 2|B) in the beginning of integration (Fig 4f), but the overshoot
in the beginning of segregation is almost non-existent. In addition to the difference in parame-
ters, the simulation of Fig 5 is stochastic, so that phases may terminate at different stages of the
competition, resulting in a variety of overshoot/undershoot sizes.

As a result of this evidence accumulation process, positive correlation exists between dura-
tions of subsequent phases, as shown in Fig 6a and 6b (compare to Fig 1a, 1b, 1e and 1f). Lag 2
and 3 correlations were either non-significant or small compared to lag 1 correlation (correla-
tion values from the same simulation of Figs 5 and 6. lag 2: I!I ρ = -0.075, p = 2.79e-3,
n = 1569, S!S ρ = -0.0031, p = 0.903, n = 1569; lag 3: I!S ρ = 0.062, p = 1.41e-2, n = 1569,
S!I ρ = -0.077, p = 2.19e-3, n = 1568). The histograms of phase durations are similar in shape
to those produced from the data, albeit with notable qualitative differences, mainly in the abun-
dance of short durations and lack of long tail in the simulated durations (Fig 6c and 6d; com-
pare to Fig 1c, 1d, 1g and 1h). We emphasize that the algorithm is implemented in its simplest
form, providing a conceptual framework rather than an accurate replica of experiments. A
fuller model may include additional features to better fit the experimental distribution. The
long tail, for example, is typically found in reaction time distributions, and is sometimes related
to lapses of attention [24]; the effect of attention is however extraneous to the competition
between interpretations that is studied here and therefore was not implemented here.

In the simulation of Figs 5 and 6, the parameters γ and η that govern the dynamical behavior
of the model were selected such that lag 1 correlations exist. The parameter K and the stimulus
feature Δ were selected such that the mean phase durations were approximately equal and in
the range of 24–57 input elements, which fits the range of durations in our experimental results
(see below). However, positive correlations at lag 1 were found consistently for a wide range of
the parameters. We calculated the correlation coefficient for 900 simulation runs with 0.001�
γ� 0.3, 0.001� η� 0.3. In 813 of the simulation runs, switching occurred, and correlations
were calculated. The lag 1 correlation was significantly positive with mean±std 0.159±0.136,
range of [-0.34,0.81], and 744/813 positive values for the I!S transition; the same values were
0.495±0.215, [-0.35,0.83], 785/813 for the S!I transition. Lag 2 correlations were substantially
smaller (although significantly larger than 0, 0.043±0.123, [-0.27,0.82], 529/813 (I!I) and
0.095±0.171, [-0.25,0.55], 520/813 (S!S)).

The initialization of the mixture distribution variables determines the initial behavior of the
algorithm. Assuming an initial state with one predominant class close to A, this predominant
class will initially capture both A and B and its centroid will move towards them. Under
the appropriate conditions, a new class will form around B with a small mixing probability
πn + 1 = pinit. In this case, if pinit is small enough (much smaller than the long-term typical value
of πn + 1), then the initial percept will be of integration; the smaller pinit, the longer this initial
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integration phase. In Fig 5 we set π2 to be 0.0001 in the beginning the simulation. Since later in
the simulation π2 fluctuates around ~0.1, there was a long initial integration phase that termi-
nated around the time π2 reached that value.

The time scale of switching may fit perceptual time scales. In the simulation of Fig 6, the
average phase duration was around 36 input units, corresponding to 12 ABA- triplets per
phase. In Data Set I, the mean phase duration was 7.8–8.4 sec and the presentation rate was
1–2 ABA- triplets per second. In Data Set II, the mean phase duration was 6.1–8.3 sec and the
presentation rate was 2.3 ABA- triplets per second. This yields a range of 8–19 ABA- triplets
per phase in the data (or 24–57 input elements per phase).

The model fulfills the experimental constraints. The fraction of time spent in segregation
for the ABA- sequence increases when the frequency separation is larger and when the
sequence is faster [4]. In the model, several parameters affect the fraction of time spent in seg-
regation phases. We focus on two parameters: Δ, the distance between the representations of A
and B on the feature axis, and σ, the common standard deviation of the conditional likelihoods
of all classes. Since σ is assumed fixed in time, the number of parameters can be reduced by

defining the normalized difference between stimulus element to be ~D ¼ D
s and the normalized

update rate for the mixing probability to be ~Z ¼ Z
s. Such normalization eliminates the depen-

dency in σ in all update equations. Larger values of ~D yield more segregation, as well as shorter

build-up time (see part I of S2 Appendix). Importantly, ~D can be increased either by increasing
Δ or by decreasing σ, and both Δ and σ have reasonable interpretations in actual experiments.
Δ is the distance between the elements on the feature axis. When A and B represent pure tones,
Δ is analogous to the frequency separation between them. Indeed, increasing the frequency sep-
aration in experiments results in higher segregation tendency.

The width of the conditional likelihoods, σ, can be related to the input presentation rate. We
may conceive of classes as being represented by activity of neuronal populations, where the effec-
tive width of the classes becomes smaller when the rate is faster. One possible mechanism to
implement this is differential suppression, described by Fishman et al [11], where at high stimulus
presentation rates, responses to non-preferred frequencies are suppressed more than responses to
the preferred frequency, narrowing the width of the responding neuronal population.

In Fig 7 we show the fraction of time spent in segregation (segregation probability) and the
duration of the initial integration percept (build-up duration) as a function of Δ and σ, with ~Z
kept constant. To get a better idea of the nominal segregation probability under each set of
parameters, the simulations of Fig 7a and 7b did not use stochastic classification, i.e. each input
was classified to class k� = argmaxk {p(c = k|x)}, and the resulting behavior was periodic switch-
ing as in Fig 4e. Stochastic simulations with the same parameters yielded a noisier picture with
the same trends. It should be mentioned that since the quantities shown in Fig 7a and 7b only

depend on the ratio between Δ and σ, namely ~D, the same information could have been dis-
played in one dimension; the 2-d display conveys better the similarity of the results to the
experimentally established dependency of these quantities in frequency separation and presen-
tation rate.

In Fig 7b we fixed π2 to a constant value (0.001) at the beginning of each simulation, so that
the initial integration durations could be compared across different values of Δ and σ. Fig 7c
shows the time course of build-up, averaged over 100 stochastic simulations of each Δ, for σ =

4. For simulations with intermediate ~D, where the steady state percept is ambiguous, the algo-
rithm produces a default integration percept, followed by a build-up of segregation tendency,
in accordance with experiments [4]. In agreement with the finding of Deike et al [5], Fig 7b

shows immediate segregation for large ~D (dark blue squares), whereas small values of ~D yield
extremely long initial integration percept, consistent with almost constant integration percept.
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Discussion
This paper presents a conceptual model of streaming that is based on the notion of evidence
accumulation, together with a concrete implementation of this notion by a classification algo-
rithm in which perceptual switching is achieved by the gradual update of the mixture probabili-
ties. The idea underlying this model, that an accumulation process can generate positive
correlation between subsequent phase durations, has been previously identified in the context
of adaptation by Walker [25].

Indeed, our evidence accumulation process has superficial similarities with adaptation-
based competition models. One class of these models, commonly used to describe bistable per-
ception, features reciprocal inhibition: inhibition exerted by the dominant percept on the com-
peting percept gradually becomes weaker due to a slow process that decreases the activity of
the dominant percept (e.g., by spike frequency adaptation) or the connectivity between the two
percepts (e.g., by synaptic depression) [19]. In the classification algorithm presented here,
when an input close to μ1 arrives, π2 decreases, while when an input close to μ2 arrives, π1
decreases. In principle, this can be regarded as a manifestation of reciprocal inhibition between
the classes; over time, the net change in π2, which favors the opposite percept, may seem analo-
gous to the weakening of this reciprocal inhibition.

However, there is a conceptual difference between reciprocal inhibition models and the clas-
sification model: in the former, each population represents a percept, and the system operates
in a regime where only one population is active at each time point, instantiating the bistable
perception. In contrast, in the classification algorithm studied here, each class represents a
stream; during integration all input elements are assigned to a single class, and during segrega-
tion input elements are assigned to two classes. The correlate of inhibition in our algorithm is
thus not meant to generate exclusive activity of one class at a time, but rather to control the
classification process.

The algorithm we propose accounts for many experimental constraints: positive correlation
between subsequent phase durations is obtained, as well as the known dependency of segrega-
tion tendency and build-up on frequency separation and presentation rate. Still, the algorithm

Fig 7. Results of ABA- simulations of the model under different values of Δ and σ. (a) The proportion of time spent in segregation. Small σ corresponds
to fast sequences and vice versa, as indicated below the abscissa. (b) Duration of the initial integration percept in input elements count, shown in log values.
Dark blue squares indicate conditions in which the initial percept was of segregation. In all simulations, the initial value for π2 was 0.001, γ = 0.1, ~η = 0.05,
and the shape of the conditional likelihood was generalized normal with β = 0.5 and a variance of 1. The mixture was initialized with two classes centered at A
and B, and π2 was initially 0.001. Simulations were deterministic. On-going switching occurred in all simulations. (c) The time course of build-up, quantified as
the probability of segregation among 100 stochastic simulations of each of Δ, for σ = 4. The thin line above and below each trace mark the standard error of
the mean.

doi:10.1371/journal.pone.0144788.g007
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is presented here in a minimal form, providing a proof of concept rather than an accurate repli-
cation of experimental results. While even in this form it captures essential aspects of stream-
ing, the implementation ignores important facets of real-world auditory stimuli. For example,
there is no explicit representation of presentation rates, jittered sequences [26], or silent peri-
ods. Furthermore, we do not provide a general method to derive the representation of multidi-
mensional inputs in the feature space. In contrast to pure tones that can be represented by a
1-dimensional feature space (frequency axis), general sounds have to be represented in a fea-
ture space with more than one dimension. Nevertheless, as previously mentioned, once a repre-
sentation is established, the classification scheme can accommodate multidimensional feature
spaces.

Previous studies had shown that inputs that arrive simultaneously to the scene are perceived
as belonging to the same stream of sound [14]. In the model, synchronous elements are treated
as a single element by default, since they would be considered as parts of a single complex
sound rather than as separate entities. In this respect, the issue of synchronous elements would
be treated in the model the same way a complex sound would.

To the best of our knowledge, the classification framework presented in this paper has not
been suggested previously for streaming, although some previous studies are close in spirit.
Martí and Rinzel [27] suggested a mechanism for formation of categories based on input statis-
tics, maintained as bumps of activity on a line attractor; using this scheme, they demonstrated
an analog for the build-up of segregation. Incoming inputs are not explicitly classified to one of
the bumps, but since their statistics generated the bumps, it is possible to conceive of a simple
mechanism to do that. Their model, however, does not show bistability for alternating stimuli.
Another model that involves classification is the CHAINS model by Mill et al. [17], mentioned
earlier; it is, however, tailored to periodic sound sequences, and therefore requires modifica-
tions to be applicable to general auditory sequences, that are not periodic by nature (e.g.,
speech). In contrast, our classification model assumes that streams are defined based on their
statistical properties, hence it does not require periodicity, while still producing on-going
switching in case of alternating sequences. Elhilali et al [28] also suggested a model for parsing
acoustical scenes into streams based on predictions of future sounds. Their model is extremely
general and provides a biologically plausible framework for segregation of complex signals, but
it requires extensions to account for attributes of streaming such as bistability and gradual
build-up.

Micheyl et al. suggest [12] that the size of the response to B in a neuron tuned to A deter-
mines perception—above a fixed threshold, the percept is integration, and below it, the percept
is segregation. The classification algorithm we suggest seems similar in spirit to this decision
rule, since the decision made by the algorithm for the ABA- sequence depends solely on the
classification of B. Still, a neuronal implementation of our suggested algorithm would require
additional features that are most likely not captured by the data collected by Micheyl et al. to
test their decision rule. For example, updating class center may be modeled as plasticity of
receptive fields; mixing probabilities may be represented in the form of synaptic strength
(allowing a wide range of values for them, as required for probabilities), with synaptic plasticity
representing their update.

While the framework and the model have been presented in the context of streaming, the
classification algorithm has a substantially wider applicability. First, the classification algorithm
yields a general mechanism for scene analysis. Dividing any dynamic scene into classes depends
on the ability to identify the classes, simultaneous with the ability to assign new elements to
them. This naturally calls for a classification algorithm.

Second, the proposed classification algorithm implements the default integration percept,
as found in experiments. In the absence of sufficient information about the scene, for example
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when encountering a new auditory environment, the sensible solution is to classify all inputs
to one default class, and to slowly reorganize perception as information accumulates. In this
sense, the current model can be considered as a formal implementation of Bregman’s proposal
that during an initial integration phase, the auditory system gradually accumulates evidence
in favor of segregation into streams [29]. This occurs since the model initially tends to classify
incoming inputs to “strong” existing classes (having a high mixing probability), while main-
taining a mechanism of evidence accumulation. Indeed, the experimental finding of default
integration and gradual build-up may be valid only when the steady state percept is ambigu-

ous [5], as is the case for simulations with intermediate ~D. The model also reproduces experi-

mental results for extreme values of ~D (Fig 7b), where the gradual build-up of segregation
does not hold; perception of such sequences can be interpreted as the analysis of a scene that

is distinctly organized into one stream (for very small ~D) or two separate streams of sound

(for very large ~D).
Third, the competition between classifying inputs solely to existing classes and classifying to

a newly formed class situates scene analysis as a competition between more or less complex
representations, as measured by the number of different classes (or by the entropy of the distri-
bution over classes). This is a well-accepted trade-off in decision-making, for instance in the
reinforcement learning literature where it is formulated as the “exploration-exploitation trade-
off” [30]. Exploitation, i.e. maximizing performance using existing knowledge only, would cor-
respond to classification to active classes only; exploration of the sensory environment would
correspond to classification to a newly formed class.

Partitioning the environment into streams of sound is arguably one of the most important
tasks of auditory scene analysis. The different types of interpretations reported over time in
response to a repeating stimulus indicate that perception does not necessarily converge to a sin-
gle partitioning of the incoming sounds into streams. The online classification perspective sug-
gested here is a dynamic process that provides a natural framework for dealing with complex
scenes, captures the qualitative difference between interpretations of the same stimulus, and
naturally accounts for the bistability in the perception of alternating sequences.

Methods

Existing Data Set (Data Set I [22])
We report data from two experiments. In the first experiment, 8 subjects were presented with
4-minutes long sequences of repeating ABA- triplets. They reported their perception of each
stimulus by continuously pressing or releasing a mouse button, to indicate segregation or
integration respectively. The original aim of this experiment was to explore the relationship
between auditory and visual bistability, therefore trials of auditory stimulus, visual stimulus or
combined auditory and visual stimulus were presented in random order. We only analyzed the
pure auditory trials (6 per subject). The second experiment replicated the first with a different
visual task, thus adding to our analysis 8 more subjects, of which 6 subjects participated also in
the first experiment (in consequences, there are 10 subjects in total). Still, we treat the data sets
as coming from 16 different subjects (the two experiments were performed at different times;
analyzing the data as coming from 10 subjects did not modify the conclusions). In all 96 trials
from 16 subjects, tone A was 587 Hz, and tone B was 440 Hz. In the first experiment, tone
duration was 120 ms, and tones were presented over headphones. In the second experiment,
tone duration was 240 ms, A tones were presented from loudspeakers to the left of the subject
and B tones from loudspeakers to the right of the subject. Onset to onset time was always equal
to tone duration.
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Data Set II
Ethics statement. All experimental protocols received approval of the Ethics Committee

of the Hebrew University in Jerusalem. Human participants provided a written consent to par-
ticipate in experiments.

Participants. 21 subjects (aged 24–52, median age 30, 9 females) were recruited from a
student population known to the experimenter. All subjects reported normal hearing.

Apparatus. The psychophysical measurements were performed in a quiet room. The sti-
muli were digitally synthesized in Matlab (The Mathworks Inc., Natick, MA, USA), fed into a
Saffire 6 USB hardware interface (Focusrite Audio Engineering Ltd., UK), and presented binau-
rally through HDA 200 Audiometric headphones (Sennheiser) at about 63 dB SPL.

Stimuli and Procedure. Participants were presented with 6 repetitions of 4-minutes long
sequences of repeating ABA- triplets. Integration was defined to the subjects as hearing the
sequence as one alternating melody, whereas segregation was defined as perceiving the high
tones separately from the low tones. In uncertain situations, subjects were instructed to choose
the better fitting option. Subjects reported changes in their perception by pressing a keyboard
button at the beginning of each phase: “1” for integration and “2” for segregation. The timing
of the key press was considered as the beginning of the next phase as well as the end of the pre-
vious phase. The interval preceding the first key press was disregarded. Other studies use a
different reporting scheme where the subjects press the key as long as perception endures
(pressing for segregation and releasing for integration, as done in the study of Data Set I, or
alternatively pressing one key throughout integration, and another throughout segregation).
The approach we employed assumes that integration and segregation are the only possible per-
cepts of the sequence, an assumption that may be in conflict with reports of a “third” response
type [3]. We reasoned that reporting the transition points was easier for the subject than
reporting the entire phase duration, and therefore more accurate, since it requires noticing
changes, rather that making a decision at each and every time point. The effect of “gluing” the
unknown phases to integration and segregation was mitigated by the instructions to choose
the better fitting option, forcing the subjects to categorize the unknown phases to one of the
defined categories. Tone A was roved (frequencies: 440, 494, 554 Hz), to reduce the monoto-
nicity of the experiment. Tone B was always 5 semitones above tone A. Onset to onset time was
110 ms, and tone duration was 50 ms; our experience suggests that it is easier to explain segre-
gation to naïve subjects when the tones are shorter than the onset to onset time.

Correlation Scatter (Fig 1)
When calculating the correlation coefficients between the durations of successive perceptual
phases, artifactual correlations of two types can arise:

1. Within subject: switching rate from integration to segregation and switching rate from seg-
regation to integration may be different for the same subject, resulting in a negative correla-
tion when calculating the correlation for both switching types together. To avoid such
correlation, we displayed the scatter plots and analyzed different switching types separately
(I!S transition separately from S!I).

2. Between subjects: some subjects are fast switchers and some are slow, and this yields positive
correlation when calculating the correlations for all subjects together. To avoid such correla-
tion, we normalize by the average duration for each perceptual phase type in each trial (and
therefore subject) separately. Such normalization concentrates all points of a trial around
(1,1).
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We exclude the first and last phases from the analysis. We did not use any other exclusion
criterion for the results reported in the main text. In Part A in S1 Appendix, we compare these
results with the results of the same analyses when trials with less than 10 perceptual switches
were excluded from the analysis. The motivation for this criterion is that for such trials the esti-
mation of the mean duration is poor, affecting their contribution to the overall correlation (Fig
1), and the inter-trials correlation is poorly estimated, affecting the results reported in Fig 2.

Throughout the paper, we tested correlations for significance at p<0.01. Standard signifi-
cance tests on correlation coefficients are usually stated for normally distributed variables only.
However, the same tests are asymptotically correct for any distribution that would fulfill the
conditions of the central limit theorem, so they are approximately correct in our case, due to
the large number of data points.

Linear mixed models for testing correlations (Fig 2)
The correlation values in the histogram of Fig 2 were calculated separately for each trial and
transition type, so normalization was not required. Still, for testing the average correlation, we
had to allow for within-subject tendency of the correlation coefficients to cluster. In conse-
quence, we modeled the correlations as ρij = μ + βj + εij, where ρij is the correlation in the ith

trial of the jth subject, μ is the overall mean (to be tested against 0), βj are random subject
effects, and εij is the error. The model was fitted in R [31] using the routine lmer (package lme4
[23]) and tested using the package lmerTest [32].

Generalized Normal Distribution. To allow freedom in the shape of the conditional like-
lihoods p(x|c = k), we used the generalized normal distribution, where a shape parameter β
determines the heaviness of the tail:

pðxjc ¼ kÞ ¼ b

2aG 1
b

� � e�jðx�mÞ=aj
b

Γ(�)denotes the Gamma function.
Specifically, β = 2 gives a normal distribution. β was determined once, prior to the simula-

tion, uniformly for all classes. The switching behavior of the model was observed for a variety
of values for β; in the simulations above we chose distributions with a heavier tail than normal,
i.e. β<2.

Supporting Information
S1 Appendix.
(DOCX)

S1 Fig. Relative addition to the mixing probability π1, defined as p1ðtþ1Þ�p1ðtÞ
p1ðtÞ , as a function of

the input element, calculated for the case where two classes exist, for (a) the streaming algo-
rithm, and (b) the speech categorization algorithm. Different colors represent different val-
ues of μ1 –μ2, as indicated by the vertical lines. The abscissa is aligned around the middle
between μ1 and μ2. In both panels, π1 = 0.4.
(EPS)

S1 Dataset. Data collected for Data Set II. The structure “trial” is of size 21 X 6 (subject X
trial). In each entry, the vector “data” contains switch times in seconds, and the corresponding
vector “percept” contains the percept type to which there was a switch (1 = integration, 2 = seg-
regation). The field “freqL” is the frequency of tone A in Hz.
(MAT)
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