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Abstract: Inflammatory bowel disease (IBD), including Crohn’s disease (CD) and ulcerative colitis
(UC), is characterized by chronic and relapsing inflammation within the gastrointestinal tract. Antibi-
otics have been used to treat IBD, primarily utilizing metronidazole. Although there does seem to be
a treatment effect, the broad-spectrum antibiotics that have been used to date are crude tools and
have many adverse effects. Available evidence suggests that the host microbiome is implicated in the
pathogenesis of IBD, though the key bacteria remain unknown. If the bacterial population can be
modified appropriately, the use of antibiotics will have a better therapeutic effect. In this study, mice
were fed dextran sodium sulfate (DSS) solution for 5 days, followed by 5 days of normal drinking
water, to investigate the gut microbiota response to colitis and the initial alteration of microbiota in
recovery phase. Day 0 was considered the normal control, while day 5 and day 10 were considered
the colitis mouse model progressive phase and recovery phase, respectively. Results showed that
inflammation could induce proportional changes in the gut microbiota. Furthermore, transplanting
the microbiota in progressive phase to antibiotic-induced microbiota-depleted mice could induce
inflammation similar to colitis, which proves the importance of initial alteration of the microbiota
for IBD recovery and the potential of the microbiota as a target for the treatment of IBD. Meanwhile,
we have also identified three possible target microorganisms in the development of colitis, namely
genera Muribaculaceae (negative correlation), Turicibacter (positive correlation) and Lachnospiraceae
(negative correlation) in inflammation status through comprehensive analysis.

Keywords: colitis; microbiota; microbiota transplantation; Muribaculaceae; Turicibacter; Lachnospiraceae

1. Introduction

The prevalence of inflammatory bowel disease (IBD), including ulcerative colitis
(UC) and Crohn’s disease (CD), remains high in Europe and continues to rise across the
world [1,2]. The former is confined to the colon, while the latter may affect any part of
the digestive tract, with unclear mechanisms for the etiology. Based on the evidence from
studies with IBD mouse models, especially the dextran sodium sulfate (DSS)-induced
IBD mouse model, we know that bacteria are necessary for the development of IBD [3–6].
Regardless of the inconsistent observations regarding the microbial compositions of such
patients, the observed dysbiosis is likely to contribute to disease severity [7,8].

Antibiotics have been used to treat IBD; primarily metronidazole [9–11], followed by
ciprofloxacin [12] and amoxicillin [13], or cocktails of antibiotics [13,14]. The application of
antibiotics decreases luminal bacterial concentration and may alter the composition of the
gut microflora, favoring “beneficial” bacteria [15–17]. Antibiotics have also been shown
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to cause changes in microbial metabolism, with an increase in short-chain fatty acids and
aromatic organic compounds and a decrease in glutamate and other compounds [16], which
are directly related to the clinical response in IBD patients [16,18]. Unfortunately, although
there does seem to be a treatment effect, the broad-spectrum antibiotics that have been
used to date are crude tools and only associated with a moderate improvement in clinical
symptoms [19]. Existing data on the role of antibiotics as a treatment strategy for IBD are
inconsistent, leading to a limited role for antibiotics in clinical practice [20]. On the other
hand, limited understanding of the microorganisms critical to the development of IBD
has led to the direct and crude use of broad-spectrum antibiotics. A better understanding
of host–microbial interactions in physiological as well as disease settings may lead to the
development of antibiotic treatments.

Numerous studies have identified the compositional changes of microbiota that result
from DSS administration. However, inconsistent observations regarding the microbial
composition of such disease models have hindered assessment of the role of specific
bacterial species in the pathophysiology of IBD. This may be due to the model being at
different stages of the disease. In the present study, we used oral DSS solution for 5 days to
establish a colitis mouse model and selected mice from random cages during sampling to
reduce any cage effect. Colonic content samples were collected on day 0 (d 0) and day 5
(d 5), and the response of the gut microbiota to colitis was investigated in combination with
the latest research. After a 5-day recovery period, colonic content samples were collected
on day 10 (d 10) to investigate initial changes in microbiota during the recovery period.
To clarify the uncertainty about the specific function of inflammation-induced microbiota
alterations, we transplanted colonic bacteria from the d 5 model to Abx mice. FMT mice
showed symptoms similar to those of the colitis mouse model, indicating a shift in the
intestinal flora from a normal symbiont to a harmful pathogenic state, and may elucidate
the cause of relapse in IBD patients. Additionally, based on the correlation between the
bacterial community and three important inflammatory parameters, combined with the
key microbiota leading to colitis-related symptoms in mice after FMT, Muribaculaceae,
Turicibacter and Lachnospiraceae have been identified as key targets for microbiota changes
in colitis. This may be the key to understanding the different roles of microbiota at different
stages of IBD and reveal new therapeutic intervention strategies. Our aim is to highlight
the importance of selecting appropriate antibiotics when investigating the treatment of
colitis based on gut microbiota regulation, and the value of the knowledge generated by
such in vivo tests to translation in humans in the future.

2. Materials and Methods
2.1. Animals

Six- to eight-week-old female C57BL/6J mice used in the present study were pur-
chased from SPF (Beijing, China) Biotechnology Co., Ltd. Mice were housed under the
same conditions (specific pathogen-free conditions: temperature, 24 ± 1 ◦C; lighting cycle,
12 h:12 h light/dark) and had free access to food and drinking water. Animal experi-
ments were performed in accordance with the Animal Care and Use Committee of China
Agricultural University (Beijing, China).

2.2. Mouse Models

A total of 27 eight-week-old female C57BL/6J mice were provided ad libitum access
to drinking water with 5% DSS (36–50 kDa; MP Biomedicals, Irvine, CA, USA) for 5 days
to establish a colitis mouse model. They then received normal drinking water for an
additional 5 days. A total of 9 eight-week-old female C57BL/6J mice had no treatment
throughout the whole experiment to set a normal control. The mice were euthanized
by CO2 asphyxiation and blood, colon tissue and colonic contents of the colitis mouse
model were collected on day 5 (d 5 model, n = 9; donor mice for microbiota transplantation
experiment, n = 9) and day 10 (d 10 model, n = 9); colon tissue and colonic contents of
the normal control were collected on day 10. (Figure 1A). Body weight, stool consistency
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and degree of intestinal bleeding were measured daily. The scoring system displayed in
Table S1 was described by Wirtz et al. [6].
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Figure 1. Clinical signs of IBD mouse model. (A1) Experimental design of time-dependent microbial changes in colitis.
(A2) Experimental design of microbiota transplantation. (B) Body weight changes (relative to original weight, set as 100%)
and (C) DAI over the whole experimental period. NC, n = 9; DSS, D 0 to d 5, n = 18; d 6 to d 10, n = 9. Differences were
determined via a two-way ANOVA followed by a Sidak’s multiple comparisons test. (D) Length of the colon between the
ileocecal junction and the proximal rectum, n = 9. Data were analyzed by one-way ANOVA, followed by Tukey’s multiple
comparisons test, n = 9. (E) The representative pictures of colon. All of the data are expressed as the mean ± SD. * p < 0.05
compared with the normal control group; # p < 0.05 compared with the d 5 model group and the same below.

For the antibiotic-induced microbiota depletion mouse model (Abx mice), we used
the methods as described previously with slight modification [21–25]. Six-week-old female
C57BL/6J mice were provided a cocktail containing ampicillin, neomycin, metronidazole
and vancomycin (1 g/L, 1 g/L, 1 g/L and 500 mg/L, respectively and all were obtained
from Sigma, St. Louis, MI, USA) in drinking water ad libitum for 2 weeks, and given “rest”
for 2 days to prepare for microbiota transplantation (Figure 1A).

2.3. Microbiota Transplantation

Fresh colonic content samples were collected from donor mice (colitis mouse model
on day 5, n = 9) and homogenized in sterile phosphate buffer saline (PBS, Beijing Solarbio
Science & Technology Co., Ltd., Beijing, China, 50 mg/mL). Homogenates were passed
through a 40 µm cell strainer and then centrifuged at 8500 rpm for 5 min. Precipitation was
resuspended with the same volume of 10% glycerol/PBS solution and stored at −80 ◦C
until used for microbiota transplantations.

Five Abx mice were intragastrically administered with a 200 µL suspension once a day
for 5 consecutive days (FMT mice), while 5 mice were intragastrically administered with
the same volume of 10% glycerol (Beijing Solarbio Science & Technology Co., Ltd., Beijing,
China)/PBS vehicle as the control (vehicle mice). Mice were then euthanized, and colon
tissue and colonic contents were collected. Body weight, stool consistency and degree of
intestinal bleeding were measured daily.

2.4. ELISA

Blood (collected on day 0, day 5 and day 10 of the IBD mouse model) was centrifuged
to obtain serum. The levels of IFN-γ, IL-1β and TNF-α were determined using ELISA kits
(SLCY Biotech, Beijing, China). The kit assays were carried out according to the protocol
supplied by the manufacturer. The absorbance was read at 450 nm using a multimode
microplate reader (iMark, BIORAD, Hercules, CA, USA).
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2.5. Histology

Colon sections were removed, the contents were gently extruded and then washed
in saline, fixed in 4% paraformaldehyde and embedded in paraffin. After being cut
into 4 µm thick slices, tissue sections were stained with hematoxylin and eosin and then
examined using a light microscope (Nikon Eclipse Ci, Tokyo, Japan). Photomicrographs
were captured using a digital camera attached to the microscope (Nikon Digital Sight
DS-FI2, Tokyo, Japan). Histological damage was quantitatively assessed as described by
Wirtz et al. [6]. The sum of two sub-scores resulted in a combined score ranging from 0
(no changes) to 6 (widespread cellular infiltrates and extensive tissue damage) (Table S2).

2.6. Microbiota Composition by 16S rRNA Sequencing Analysis

Colonic contents were collected from the colitis mouse model on day 0, day 5 and
day 10. Genomic DNA was extracted using the E.Z.N.A.® Soil DNA Kit (Omega Bio-tek,
Norcross, GA, USA). The V3-V4 hypervariable regions of the bacterial 16S rRNA gene
were amplified with primers 338F (5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′-
GGACTACHVGGGTWTCTAAT-3′) by a thermocycler PCR system (GeneAmp 9700, ABI,
Vernon, CA, USA). Purified amplicons were pooled in equimolar concentrations and paired-
end sequenced (2 × 300) on an Illumina MiSeq platform (Illumina, San Diego, CA, USA).
Extract all sample sequences according to the smallest sequence number sample so that
the sequence number of all samples are the same. Raw FASTQ files were demultiplexed
and quality-filtered using QIIME (version 1.17). Operational taxonomic units (OTUs)
were clustered with 97% similarity by UPARSE62 (version 7.1 http://drive5.com/uparse/,
26 December 2019) and chimeric sequences were identified and removed using UCHIME.
The taxonomy of each sequence was analyzed by RDP Classifier (http://rdp.cme.msu.edu/,
26 December 2019) against the Silva (SSU115) 16S rRNA database with a 70% confidence
threshold [26].

2.7. Statistical Analysis

Statistical analysis was performed using Prism9 software (GraphPad Software Inc.,
San Diego, CA, USA). Data were first checked for normal distribution and plotted in the
figures as mean ± SD. For each figure, n = the number of independent biological replicates.
No samples or animals were excluded from the analyses. For experiments containing more
than two relative groups, one-way ANOVA followed by Dunnett’s or Tukey’s multiple
comparisons test was performed. Differences in bacterial data were evaluated by the
Wilcoxon rank sum test or Kruskal–Wallis H test (the choice of specific method will be
explained again under the figures), and correlation study used Spearman analysis. Data
were expressed as mean ± SEM, p values < 0.05 were considered statistically significant.

3. Results
3.1. Clinical Signs

After 5 days of DSS treatment, the colitis mouse model showed a significant decrease
in body weight, with continued decline for the next 5 days, but did not show a significant
downward trend compared with the previous day from day 8 (Figure 1B). Disease activity
index began to rise significantly on the 3rd day and peaked on day 8 (Figure 1C). Colon
length was decreased compared with the normal control (Figure 1D,E). We also noted clear
signs of edema, severely damaged mucosal structures and abundant inflammatory cell
infiltration via H&E staining of the distal colon tissue (Figure 2A). Serum concentrations of
the inflammatory cytokines IFN-γ, IL-1β and TNF-α significantly increased (Figure 2B).
It is worth noting that, compared with d 5 model, the colon length of the d 10 model
significantly increased whereas the serum inflammatory cytokines significantly decreased.

http://drive5.com/uparse/
http://rdp.cme.msu.edu/
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Figure 2. Inflammatory conditions of IBD mouse model. (A) Representative images of the colon by H&E staining (40× and
200×). (B) Score of inflammation-associated histological changes in colon. (B) The concentration of IFN-γ, IL-1β and TNF-α
in serum, n = 9. Data are means ± SD and analyzed by a one-way ANOVA followed by Tukey’s multiple comparisons test.
* p < 0.05 compared with the normal control group; # p < 0.05 compared with the d 5 model group.

3.2. Gut Microbiota Altered in Colitis Mouse Model

As rodents are coprophagic, the gut microbiota of mice in the same cage will pro-
gressively become homogeneous over time. In order to avoid this, mice were randomly
selected from multiple cages each time for sample collection. Significantly decreased rich-
ness diversity, assessed by Chao, were noted across the d 5 and d 10 models (Figure 3A).
However, no differences in Simpson and Berger–Parker dominance indices were noted
between groups, which indicated that the abundance of dominant species in each group
was basically the same. (Figure 3A).
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Figure 3. The changes in gut microbiota diversity. (A) Alpha diversity changes. (B) Principal coordinate analysis by
unweighted UniFrac (left) and weighted UniFrac method (right), n = 9. Data are compared using Kruskal–Wallis tests with
Benjamini–Hochberg correction.

Additionally, PCoA revealed clear clustering based on both unweighted UniFrac and
weighted UniFrac metrics (Figure 3B; p = 0.001, PERMANOVA), indicating that detected
community differences were not due to the presence and/or absence of rare taxa.
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3.3. Correlation Analysis between Specific Microbiota and Disease Indicator

To further identify the key microorganisms, correlation analysis was used. Among
three important inflammation-associated parameters, disease activity index and colon length
were highly correlated with microbial structure by linear regression analysis (Figure 4A and
Supplementary Figure S1).

Antibiotics 2021, 10, x FOR PEER REVIEW 6 of 11 
 

3.3. Correlation Analysis between Specific Microbiota and Disease Indicator 

To further identify the key microorganisms, correlation analysis was used. Among 

three important inflammation-associated parameters, disease activity index and colon 

length were highly correlated with microbial structure by linear regression analysis (Fig-

ure 4A and Supplementary Figure S1). 

More concretely, Bacteroides, Escherichia-shigella, Helicobacter, Mucispirillum, nor-

ank_f_Clostridiales_vadinBB60_group, Odoribacter, Ruminiclostridium and Turicibacter were 

significantly positively correlated with inflammation-associated parameters, while Lach-

nospiraceae_NK4A136_group and norank_f__Muribaculaceae were significantly negatively 

correlated with inflammation-associated parameters (Figure 4B). 

 

Figure 4. Correlation between specific microbiota and disease indicators. (A) Linear regression relationship between mi-

crobiota and inflammation-associated parameters. (B) Correlation matrix between specific microbiota genera and inflam-

mation-associated parameters (Spearman correlation). * p < 0.05 ** p < 0.01 *** p < 0.001, means the correlation between hori-

zontal and vertical coordinates is significant. 

3.4. Colitis Mouse Model Colonic Commensal Microbiota Contributed to Colitis 

In order to further define the pathogenicity of the intestinal flora in the colitis pro-

gressive phase and to narrow the range of species that play an important role in colitis, 

FMT was performed. Compared with vehicle mice, colon length of FMT mice decreased 

significantly (Figure 5B and Figure S2), and some colon samples of FMT mice showed 

obvious blood and hygromata after microbiota transplantation (Figure S2). However, 

body weight was not significantly different and no obvious sign of blood was observed in 

feces (data not shown). Similarly, mucosal epithelial damage and epithelial loss were ob-

served in almost all FMT mice, and we detected obvious inflammatory infiltration in a 

few FMT mice (Figure 5A).  

  

Figure 4. Correlation between specific microbiota and disease indicators. (A) Linear regression relationship between
microbiota and inflammation-associated parameters. (B) Correlation matrix between specific microbiota genera and
inflammation-associated parameters (Spearman correlation). * p < 0.05, ** p < 0.01, *** p < 0.001, means the correlation
between horizontal and vertical coordinates is significant.

More concretely, Bacteroides, Escherichia-shigella, Helicobacter, Mucispirillum, no-
rank_f_Clostridiales_vadinBB60_group, Odoribacter, Ruminiclostridium and Turicibacter
were significantly positively correlated with inflammation-associated parameters, while
Lachnospiraceae_NK4A136_group and norank_f__Muribaculaceae were significantly neg-
atively correlated with inflammation-associated parameters (Figure 4B).

3.4. Colitis Mouse Model Colonic Commensal Microbiota Contributed to Colitis

In order to further define the pathogenicity of the intestinal flora in the colitis pro-
gressive phase and to narrow the range of species that play an important role in colitis,
FMT was performed. Compared with vehicle mice, colon length of FMT mice decreased
significantly (Figure 5B and Figure S2), and some colon samples of FMT mice showed
obvious blood and hygromata after microbiota transplantation (Figure S2). However, body
weight was not significantly different and no obvious sign of blood was observed in feces
(data not shown). Similarly, mucosal epithelial damage and epithelial loss were observed
in almost all FMT mice, and we detected obvious inflammatory infiltration in a few FMT
mice (Figure 5A).
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Figure 5. Inflammatory conditions of the colon after FMT. (A1) Representative images of the colon
by H&E staining (40× and 200×). The red arrow indicates morphological changes of mucous layer,
and the black arrow indicates edema status in submucosa. (A2) Score of inflammation-associated
histological changes in the colon. (B) Colon length after FMT, n = 5. Data are means ± SD and
analyzed by Student’s t-test. * p < 0.05, *** p < 0.0001.

3.5. Microbial Diversity Changes after FMT

In addition to colitis symptoms in FMT mice, community evenness and richness
diversity significantly decreased compared with the vehicle mice (Figure 6A). However,
no differences in the Berger–Parker dominance index were noted (Figure 6A). Similarly,
PCoA revealed clear clustering based on both unweighted UniFrac and weighted UniFrac
metrics (Figure 6B; p = 0.001, PERMANOVA).
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by unweighted UniFrac (left) and weighted UniFrac method (right), n = 5. Data are compared using Kruskal–Wallis tests
with Benjamini–Hochberg correction, different lowercase letters within each group indicate significantly different values.
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3.6. Key Microorganisms Associated with Colitis

The most differential microorganisms between FMT and vehicle mice are shown in
Figure 7, three of which were also significantly correlated with inflammation-associated
parameters. More concretely, the decreased norank_f_Muribaculaceae and Lachnospiraceae_
NK4A136_group, as well as the increased Turicibacter, contributed to colitis development.
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4. Discussion

The indigenous gut microbiota is believed to play a key role in the pathogenesis of
inflammatory bowel disease. Much of the evidence for the involvement of gut micro-
biota in IBD comes from studies with both murine models of disease and with human
patients [6,27–29]. Although numerous studies have identified the compositional changes
of microbiota, inconsistent observations regarding the microbial compositions of such
disease models have hindered assessment of the role of specific bacterial species in the
pathophysiology of IBD. These inconsistent observations may be caused by the model at
different stages of the disease. On the other hand, although many studies have reported the
alterations in gut microbiota composition during acute colitis, the recovery from dysbiosis
has received little attention. Hence, we screened the responses of colon bacterial flora to
DSS-induced colitis and the initial alterations of microbiota from the progressive phase to
the recovery phase. Transplanting microbiota technology was used to revalidate the role of
altered microbiota in pathogenicity.

After 5 days of DSS treatment, the significant weight loss, increased DAI and reduced
colon length that was observed in the present study was in agreement with data reported
previously [6,30], which indicated that the IBD mouse model was successfully established.
Additionally, DSS-treatment significantly reduced Chao index, indicating that the richness
of microflora decreased. Similarly, many previous studies have reported that the diver-
sity of the intestinal microbiota of IBD patients decreased compared to that of healthy
controls [3,31,32]. However, we did not observe significant changes in evenness and abun-
dance of dominant species. On the other hand, PCoA revealed clear clustering based on
both unweighted UniFrac and weighted UniFrac metrics, indicating that dominant species
are different in the healthy controls, the d 5 model and the d 10 model.

Many previous studies have shown that shortened colon length and increased DAI
were important inflammation-associated parameters in DSS-induced colitis mouse mod-
els [3,6,27,30]. In the present study, significant correlation between the structure of the
bacterial community with colon length and DAI provides evidence for the close connection
between bacterial community structure and disease severity.
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However, the specific function of microbiota alterations induced by inflammation
remains unclear. To clarify this uncertainty, we transplanted colonic bacteria from the
IBD d 5 model to Abx mice. As a result, FMT mice showed symptoms similar to those
of the IBD mouse model while vehicle mice remained healthy. This result implies that
gut bacterial flora in the IBD mouse shifts from normal commensal flora to harmful
pathogenicity status and potentially elucidated the relapse of IBD. On this basis, one
taxon positively correlated with disease severity and two taxa negatively correlated with
disease severity were screened out. Muribaculaceae abundance was strongly correlated
with propionate [33], which can inhibit the CD8+ T cell activation to tolerate the immunity
stimulation [34]. This may explain the present negative correlation between Muribaculaceae
with inflammation status. Similar to the present study, members of Lachnospiraceae have
been linked to protection from colon inflammation in humans, mainly due to the association
of many species within the group with the production of butyric acid [35], a substance
that is important for both microbial and host epithelial cell growth [36–38]. Its production
could also prevent the growth of some microbes within the digestive tract [39,40]. Past
studies have suggested that Turicibacter may play a role in the development of IBD [41,42],
which is also demonstrated in our study that Turicibacter has a strong positive association
with inflammation.

Although this is very important, there is not enough clinical evidence to draw clear
conclusions or recommendations for antibiotic preferences based on gut microbiota. The
present experiment provides preliminary evidence of three possible targets in colitis devel-
opment, which may be key to understanding the role of microbiota in colitis and revealing
new strategies for therapeutic intervention, such as achieving a better therapeutic effect
with the use of antibiotics.

This study does have limitations. Firstly, the exact mechanism between inflammation
and the microorganisms that are key to the inflammatory state still needs to be investigated.
Secondly, finding antibiotic targets that impact on the gut microbiome to alter the course
of IBD makes good sense, but mouse models may be limited in their ability to represent
human clinical trials. Consequently, further research is needed in the future and should
be undertaken in the context of rigorously performed controlled trials to ensure that the
interventions are truly effective and well tolerated.

5. Conclusions

This study revealed microbioal characteristics in different stages of colitis, and showed
that Muribaculaceae, Turicibacter and Lachnospiraceae may be the key to the development of
colitis among the complex changes. Meanwhile, transplanted colonic microbiota conferred
colitis symptoms in Abx-mice, indicating that the refractory microbiota may be the cause
of IBD recurrence. These factors must be taken into account in the future clinical use
of antibiotics.
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