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Abstract

Our capacity to study individual cells has enabled a new level of resolution for understanding complex biological systems
such as multicellular organisms or microbial communities. Not surprisingly, several methods have been developed in
recent years with a formidable potential to investigate the somatic evolution of single cells in both healthy and path-
ological tissues. However, single-cell sequencing data can be quite noisy due to different technical biases, so inferences
resulting from these new methods need to be carefully contrasted. Here, I introduce CellCoal, a software tool for the
coalescent simulation of single-cell sequencing genotypes. CellCoal simulates the history of single-cell samples obtained
from somatic cell populations with different demographic histories and produces single-nucleotide variants under a
variety of mutation models, sequencing read counts, and genotype likelihoods, considering allelic imbalance, allelic
dropout, amplification, and sequencing errors, typical of this type of data. CellCoal is a flexible tool that can be used
to understand the implications of different somatic evolutionary processes at the single-cell level, and to benchmark
dedicated bioinformatic tools for the analysis of single-cell sequencing data. CellCoal is available at https://github.com/
dapogon/cellcoal.
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Introduction

Most research in evolutionary biology has focused on the
changes that occur in the germline across generations, within
and between species. Much less attention has been paid to
the process of change among the cells of a single individual, or
somatic evolution. This has recently started to change,
prompted by the advent of single-cell genomic techniques
that allow the dissection of mixed cell populations in healthy
and diseased tissues, providing the ultimate level of genomic
resolution (Marioni and Arendt 2017; Tanay and Regev 2017).
Indeed, single-cell genomics is expected to result in a major
breakthrough not only in medical research but also in the
study of a plethora of uncultured unicellular organisms that
dominate many environments on earth (Woyke et al. 2017).
So far, single-cell genomics has had an enormous impact in
different biological fields, including neurobiology, develop-
ment, microbiology, immunology, or cancer research (Wang
and Navin 2015; Gawad et al. 2016; Wang and Song 2017; Ren
et al. 2018).

However, the single-cell sequencing pipeline is not straight-
forward. In particular, to obtain the DNA sequence of a single
cell it is necessary to amplify its genome first in order to have
enough material for library construction—although library-
free methods exist (Zahn et al. 2017), they have not been yet
generalized. Unfortunately, single-cell whole-genome amplifi-
cation (scWGA) entails several technical errors, such as

nonuniform amplification of different genomic regions, which
can ultimately lead to allelic imbalance (AI) and allelic drop-
out (ADO), generation of chimeric DNA molecules and am-
plification errors, due to the DNA polymerase strand
displacement activity and infidelity (Lasken and Stockwell
2007; Voet et al. 2013; Navin 2014; Huang et al. 2015).
These errors introduce several biases in the sequencing
data, complicating the detection of structural and nonstruc-
tural variants. Most importantly for the purpose here, AI
distorts the maternal and paternal read proportions, and in
the case of ADO, true single-nucleotide variants (SNVs) can
disappear from the data. In addition, amplification errors can
induce false SNV calls.

Not surprisingly, dedicated SNV callers have been imple-
mented for single-cell sequencing data (Zafar et al. 2016;
Dong et al. 2017; Bohrson et al. 2019; Hård et al. 2019). At
the same time, different tools have been developed for the
reconstruction of phylogenetic trees (Subramanian and
Schwartz 2015; Jahn et al. 2016; Ross and Markowetz 2016;
Zafar et al. 2017) and genotypes (Singer et al. 2018; Zafar et al.
2019) from single-cell SNV data. Although these approaches
have been benchmarked by the same authors using empirical
data and computer simulations, these comparisons have
been somewhat limited regarding the assessed scenarios, for
example, with respect to demography, mutation model, or
scWGA bias. Indeed, the systematic assessment of any soft-
ware tool is both challenging and laborious (Mangul et al.
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2019), but it can be facilitated by comprehensive, third-party
simulation tools.

New Approaches
Genetic simulations are playing an increasingly important role
in evolutionary biology (Haller and Messer 2019). However,
we currently lack a generic tool for the simulation of single-
cell sequencing samples, and therefore for the assessment and
comparison of methods for the evolutionary analysis of
single-cell DNA data. In order to fill this gap, here I present
CellCoal, a software tool for the simulation of single-cell se-
quencing genotypes obtained from cell populations. CellCoal
works in three main steps (fig. 1). First, it generates a coales-
cent genealogy for a set of individual cells sampled from a
given cell population growing under different demographic
regimes. Second, it evolves diploid genotypes along this so-
matic genealogy under different mutation models, including
SNVs, point deletions, or loss-of-heterozygosity events. Finally,
it generates sequencing read counts and genotype likelihoods,
considering technical artifacts such as AI, ADO, sequencing
error, amplification error, or doublet cells, and outputs all the
information to a VCF file. Below, I discuss the characteristics
of CellCoal in more detail.

Implementation Details

Coalescent Genealogy
CellCoal starts by simulating a genealogy for the sampled cells
under the neutral coalescent, going backward in time. Note

that the coalescent assumes that the sampled cells come from
a much larger population with constant or variable size.
CellCoal implements a continuous exponential population
growth model (Slatkin and Hudson 1991), with the option
of multiple demographic periods (Hudson 2002), but also a
specific parameterization of the coalescent for cancer cell sam-
ples (Ohtsuki and Innan 2017). The latter considers overlap-
ping generations and the exponential growth results from the
difference between cell birth and death rates. After the cell
genealogy is simulated, two additional branches are added.
First, a “root branch” is added joining the most recent com-
mon ancestor of the sample (sMRCA) with its most recent
common ancestor with the outgroup (oMRCA). Second, an
“outgroup branch” is added joining the oMRCA with the out-
group cell (e.g., a normal somatic cell as outgroup to a tumor
cell phylogeny). The length of these two branches is controlled
by the user. Among-lineage rate variation can be introduced
using multipliers sampled from a gamma distribution.
Biologically, this is interesting if we want to simulate (for ex-
ample) a situation under which some lineages evolve at differ-
ent rates due to changes in the somatic mutation rate, as seen,
for example, in cancer cell populations (Podlaha et al. 2012).

Somatic Genotype Evolution
CellCoal simulates the somatic evolution of cell genotypes
along the coalescent genealogy—but the user can also spec-
ify its own tree—by adding single-nucleotide somatic muta-
tions: SNVs, copy-neutral loss of heterozygosity events
(cnLOH), and point deletions, starting from an ancestral

FIG. 1. Main flow of CellCoal. First, a sample genealogy is simulated. Then, cell genotypes are evolved along this genealogy by introducing somatic
mutations, deletions, and copy-neutral LOH. Finally, sequencing reads are produced considering the specific biases of single-cell sequencing.
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genome (simulated or user-defined) at the oMRCA, in which
germline variants can be added at a certain rate. Note that
CellCoal does not simulate copy number alterations or
structural variants. CellCoal considers two possible alphabets
(binary or DNA) and several infinite and finite-site mutation
models. Infinite-site models (ISM) (Kimura 1969) allow only
one mutation per site. For DNA, 30 distinct trinucleotide
mutational signatures (https://cancer.sanger.ac.uk/cosmic/
signatures_v2) (sensu Alexandrov et al. 2013) can be simu-
lated. These signatures represent the footprint of different
mutational processes acting on human cells, and consist of
the frequency of each mutational type (CfiA, CfiG, CfiT,
TfiA, TfiC, and TfiG; all mutations are referred to by the
pyrimidine of the mutated Watson–Crick base pair) consid-
ering the nucleotide context (bases immediately 50 and 30) in
which they occur. For SNVs, CellCoal also implements sev-
eral finite-site models (FSM), in which multiple mutations at
a given site are possible. For binary data, the FSM imple-
mented is known as Cavender–Farris–Neyman or Mk2
model (see Lewis 2001), and is equivalent to a Jukes–
Cantor model (JC) (Jukes and Cantor 1969) for two alleles.
For DNA data, reversible and nonreversible FSMs are possi-
ble, including popular substitution models such as JC, HKY
(Hasegawa et al. 1985), or general-time-reversible (Tavar�e
1986). In addition, mutation rates can vary among sites
(Yang 1996). Finally, copy-neutral loss of heterozygosity
(cnLOH) events (e.g., A/G fi A/A, or A/G fi G/G) can
be added assuming a haploid ISM, which means that
cnLOHs cannot happen in the same site twice unless they
occur in a different maternal/paternal genome. Single-
nucleotide deletions (e.g., N/N fi –/N, or N/N fi N/–)
can also be added assuming a haploid ISM.

Simulation of Single-Cell Genomics Noise
One of the main novelties of CellCoal is that it can simulate
technical artifacts resulting from cell sorting, such as the pres-
ence of two cells in a sequencing library (i.e., “doublets”), or
induced by scWGA, such as AI, ADO, or amplification errors.
On top of these, it can produce sequencing errors at a given
rate. ADO is introduced by choosing for each cell whether a
given allele is amplified or not according to a specific proba-
bility. This probability can be constant, or vary across cells
and/or sites according to a beta binomial distribution param-
eterized by the user.

Genotype errors due to the scWGA biases can be intro-
duced in two distinct ways. In the simplest approach, geno-
type errors are directly imposed on the evolved genotypes.
For DNA models, errors can be introduced with distinct prob-
abilities according to a 4� 4 matrix. In this case, genotype
errors will be encapsulated into a single class representing
different sources of error that can be introduced along the
single-cell sequencing pipeline, including amplification, se-
quencing, and/or variant calling errors. Alternatively,
CellCoal can generate independent read counts for each
site given according to a Poisson distribution, with a mean
sequencing coverage (depth) specified by the user. For a more
heterogeneous, dispersed coverage, the user can specify a
negative binomial distribution. To control for AI, at each

site reads can be randomly assigned to the maternal or pa-
ternal allele according to a beta binomial distribution, but
always conditioned on the particular ADO status of the
site. Moreover, the user can control the reduction of the
sequencing coverage at haploid sites (resulting from ADO)
in comparison with diploid sites, which by default is 50%. All
these factors, ADO, AI, read distribution across sites, and
ploidy will contribute to the resulting nonuniformity of the
coverage.

During the simulation of the read counts, amplification and
sequencing errors are also introduced. The probability of an
amplification error for a given site follows a beta binomial
distribution with mean and variance specified by the user.
The probability of the different types of errors (e.g., AfiC,
AfiG, and AfiT) can be specified in a 4� 4 error matrix.
CellCoal implements two novel amplification error models,
depending on whether all four bases or just two, are allowed
to be present in the set of amplified templates (fig. 2). Doublets
are generated by mixing the read counts from two of the
sampled single cells according to a beta binomial probability.

Once the read counts are in place, genotype calling is
performed under different maximum likelihood models
explained below.

Single-Cell Genotype Likelihoods
CellCoal can calculate the likelihood of any genotype given
the read counts simulated and the sequencing and amplifi-
cation errors specified (see Korneliussen et al. 2013). This
calculation allows, for example, for the identification of the
maximum likelihood genotypes. The basic model used to
calculate the genotype likelihoods, Pr(DjG), is very similar to
that implemented in GATK (McKenna et al. 2010; DePristo
et al. 2011; Korneliussen et al. 2013):

Pr DjG ¼ fA1;A2gð Þ ¼
YM
i¼1

Pr bijG ¼ fA1;A2gð Þ

¼
YM
i¼1

1

2
p bijA1ð Þ þ 1

2
p bijA2ð Þ

� �
;

where D are the read counts, G is the genotype, A is the allele,
M is the number of reads, and bi is the observed nucleotide
base in read i. Moreover, it is straightforward to include ADO
in this computation, as in Zafar et al. (2016):

PrðDjG¼fA1;A2gÞ¼ð1�dÞ
YM
i¼1

PrðbijG¼fA1;A2gÞ

þd
1

2

YM
i¼1

PrðbijG¼fA1;–gÞþ
1

2

YM
i¼1

PrðbijG¼f–;A2gÞ
" #

¼ð1�dÞ
YM
i¼1

1

2
pðbijA1Þþ

1

2
pðbijA2Þ

� �
þd

2

YM
i¼1

pðbijA1Þ

þd
2

YM
i¼1

pðbijA2Þ;

where d is the probability of ADO at a given site. These like-
lihoods can be calculated under three different error models:
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GATK-like, 4-template, and 2-template models, which only
differ in the calculation of the probability of a particular read
given the true allele, p(bjA).

GATK-Like Model
In the simplest case, we can assume the same sequencing
error rate e for all bases and sites, and no amplification error,
so this probability becomes:

p bjAð Þ ¼
e=3; b 6¼ A

1� e; b ¼ A
;

(

where e is the probability of sequencing error.

Four-Template Amplification Error Model
This model extends the previous one in order to consider
amplification error, which, together with the sequencing er-
ror, can be different for distinct nucleotides. The amplification
error in CellCoal is sampled for each site from a beta binomial
distribution, as in Orton et al. (2015) and Zafar et al. (2017) for
DNA polymerase and unspecified genotyping errors, respec-
tively. This particular model allows for multiple amplification
errors at a single site, and therefore, all four ACGT templates
are possible (the correct one and the other three; fig. 2A).
Here, p(bjA) takes the form:

p bjAð Þ ¼
X4

j¼1

p tjjA
� �

p bjtj

� �
¼
X4

j¼1

cA!tj
etj!b;

where

ci!j ¼
cei!j; i 6¼ j

1� c; i ¼ j
; ei!j ¼

eei!j; i 6¼ j

1� e; i ¼ j

8<
:

8<
:

and where tj is the amplified template base (which can take
four values corresponding to the four DNA nucleotides), c is
the probability of amplification error for a given site, ci!j is

the probability of amplification of base i into template base j,
ei!j is the probability of sequencing error from template base
i to read base j, and ei!j is the relative probability of ampli-
fication/sequencing error from base i to base j. Note that, if
the amplification and sequencing errors are constant, this
probability simplifies to:

p bjAð Þ ¼
1� cð Þ e=3þ c

1� e=3

3
; b 6¼ A

1� cð Þ 1� eð Þ þ c e=3; b ¼ A

:

8<
:

Two-Template Amplification Error Model
This model is very similar to the previous one, but it assumes
that only a single amplification error can occur at a single site,
and that therefore only two templates (the “correct” and a
"wrong" one) are possible (fig. 2B). In this case, p(bjA) is:

p bjAð Þ ¼
X4

j¼1

j6¼A

p tjjA
� �

p bjtj

� �

¼
X4

j¼1

j6¼A

eA!tj
1� cð ÞeA!b þ c etj!b

� �
:

Basic Usage
CellCoal works on the Linux/Mac command line in a non-
interactive fashion. CellCoal can parse its arguments directly
from the command line, as in the following example:

cellcoal-x.y.z -n100 -s20 -l1000 -

e10000 -g1.0e-04 -k1 -i1 -b1 -j250 -

p0.0 -f0.3 0.2 0.2 0.3 -r0.00 0.03

0.12 0.04 0.11 0.00 0.02 0.68 0.68

FIG. 2. Amplification error models. Four-template (A) and two-template (B) model for amplification (c) and sequencing (e) error.
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0.02 0.00 0.11 0.04 0.12 0.03 0.00 -1

-2 -3 -4 -6 -9 -v -x -#200011

where cellcoal-x.y.z is the executable file, -n is the number of
simulation replicates; -s is the number of sampled cells; -l is
the number of sites; -e is the effective population size; -g is the
population growth rate; -k is the root branch length ratio; -i is
the amount of rate variation among lineages; -b is the alpha-
bet (DNA in this case); -j is a fixed number of mutations; -f are
the nucleotide frequencies; -r are the relative mutation rates
among nucleotides; -1, -2, -3, -4, -6, -9, -v, and -x are different
options controlling which type of information is printed to
the output files; and -# is the random seed.

If no arguments are passed in the command line, CellCoal
will look for a file called “parameters” in the directory of the
binary file. The “parameters” file is a text file that contains the
different arguments for the simulation. A brief usage guide
plus the current default values for the simulation parameters
can be obtained typing “cellcoal -h.” Detailed documentation
and example scripts are available at https://github.com/dapo-
gon/cellcoal.

Example: Effect of the Sequencing Coverage
Heterogeneity on Single-Cell Genotypes
It is well known that sequencing coverage can be very heter-
ogenous for single-cell sequencing data (Navin 2014). To il-
lustrate a potential use of CellCoal, I designed an experiment
to study how sequencing coverage heterogeneity affects the
quality of the genotypes inferred. I explored 12 scenarios
consisting of four levels of coverage heterogeneity, times three
different sequencing coverages or depths. Coverage hetero-
geneity followed a negative binomial distribution, with three
different values for the mean (1�, 5�, 10�) and four for the
dispersion parameter (1, 5, 10, infinite). Smaller dispersion
values result in more coverage heterogeneity, and when the
dispersion is infinite the negative binomial distribution
becomes a Poisson. For each scenario, I simulated 100 sam-
ples, each with 100 cells and 100 genomic sites, obtained from
a population with an effective size of 10,000 and a growth rate
of 0.1, and with a fixed number of 100 mutations taking place
along the sample genealogy according to an infinite-site dip-
loid model. For simplicity, I set the relative lengths of the root
and outgroup branches to 0, respectively, and there was no
ADO, AI, or sequencing error. This simulation takes less than
a minute in a standard personal laptop. I then compared the
maximum likelihood genotypes obtained under the true gen-
erating model with the true genotypes, and computed the
number of wrong genotypes inferred, plus the proportion of
called genotypes and the total number of SNVs observed.

The results suggest that the level of coverage heterogeneity
across sites has a detrimental effect on the accuracy of the
inferred genotypes (fig. 3). Under the standard GATK likeli-
hood model, more heterogeneity results in less accurate gen-
otypes, particularly at low-sequencing depth. Note that the
absolute value of the genotype error is not that relevant here,
as it decreases with the number of cells in the sample because
with more cells the proportion of homozygotes for the refer-
ence allele can only be higher. For example, if we simulate only

ten cells, the genotype error increases five times. The amount
of missing data and the number of SNVs observed—in this
experiment, the true number is 100—depended mostly on
the sequencing depth, but when coverage is most heteroge-
nous (i.e., the dispersion parameter is 1), a noticeable amount
of SNVs are missed. These results suggest that, in general,
WGA kits that provide a more homogeneous coverage
across sites are preferred, even when the sequencing depth
is 10�, which can be considered already high for a single-cell
considering the current costs for whole-genome sequencing.
In addition, they indicate that increasing the coverage above
5� does not result in substantial improvements of the quality
of the inferences, as we have already suggested for empircal
data (Alves and Posada 2018). In the Supplementary Material
online, I describe another two simulation experiments per-
formed with CellCoal that explore the role of amplification
error and ADO on single-cell genotype calls.

Discussion
Somatic evolution has been ignored for decades, mostly be-
cause lack of technical tools for the assessment of genomic
differences among the individual cells of a single organism.
More recently, multiregional genomic studies in human can-
cers—by far, the most studied scenario of somatic evolution,
at least in humans—and in healthy tissues have unveiled a
large amount of somatic differences among the cells of dif-
ferent parts of our body (e.g., Lee-Six et al. 2018; Martincorena,
Fowler, et al. 2018). Clearly, the advent of single-cell genomics
has now opened the door for very detailed studies of somatic
evolution in different tissues, pathological or not, and in mul-
tiple species (Dou et al. 2018; Lodato et al. 2018). It is therefore
important to develop new methods for the analysis of single-
cell data, and to benchmark them (e.g., using computer sim-
ulations). CellCoal is, as far as I know, the first available soft-
ware specifically designed to simulate the evolution of single-
cell samples together with the obtention of single-cell se-
quencing data, and one of its main uses will be to benchmark
different aspects of the single-cell sequencing pipeline, from
variant calling to populational and phylogenetic inference.

CellCoal is a flexible tool that tries to balance a trade-off
between computational efficiency and realism at different
levels: populational, genomic, and technical. In this regard,
CellCoal is a fast tool able to consider the cell population
demography, the genealogy of the sampled cells, different
mutation models at the DNA level, and the effect of the biases
inherent to single-cell genome amplification on the distribu-
tion of the sequencing read counts. Like any other simulator,
CellCoal has limitations. In particular, the cell genealogies are
sampled from the neutral coalescent, whereas in some spe-
cific scenarios, like the tumoral one, selection among somatic
clones is thought to be quite relevant, at least during tumor
establishment (Sottoriva et al. 2015; Martincorena, Raine,
et al. 2018; Williams et al. 2018). However, several studies
indicate that a great deal of sequence variation in tumors
might be neutral (Ling et al. 2015; Williams et al. 2016;
Niida et al. 2018; Tarabichi et al. 2018), suggesting that neutral
evolution may be the most appropriate null model for
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comparison (Cannataro and Townsend 2018). Although se-
lection has been modeled in the coalescent for specific, rela-
tively simple, selective scenarios (Kaplan et al. 1988; Hey 1991;
Neuhauser and Krone 1997), we currently lack a coalescent
model for somatic clonal selection. Clearly, in selection-driven
models, forward simulation rather than reverse-time coales-
cent models is preferable. Accordingly, several somatic for-
ward simulators have been developed in the context of
cancer (Diaz-Uriarte 2017; Iwasaki and Innan 2017;
McDonald and Michor 2017), although without considering
the specific biases of single-cell genomics. In CellCoal, one

may introduce rate variation among branches, according
to a gamma distribution, in an otherwise ultrametric coales-
cent genealogy, for example, to simulate a change in the
mutation rate. Although such an approach might fit some
scenarios resulting from weak selection (data not shown), to
simulate data under selection one should preferably use in-
stead as input a genealogy generated under a selective re-
gime, for example, using one of the forward simulators
mentioned above. In addition, CellCoal currently assumes
that samples are taken from an unstructured population,
whereas in some realistic scenarios obvious cell

FIG. 3. Effect of sequencing coverage heterogeneity on single-cell genotypes. (A) Probability that the maximum likelihood genotype is wrong. (B)
Proportion of genotypes called. (C) Total number of single-nucleotide variants (SNVs) called. GATK and true (GATKþADO) are the likelihood
models used for calling genotypes. Coverage dispersion corresponds to the negative binomial dispersion parameter. The smaller this parameter is,
the more heterogeneity there is. At the top, 1�, 5�, and 25� are different overall sequencing depths. In the boxplots, the central line indicates the
median, whereas the box limits correspond to the Q1 and Q3 quartiles and the asterisk to the mean.
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compartments might exist, like different cell types or cells
from a primary tumor and distant metastases (e.g., Naxerova
and Jain 2015; Arendt et al. 2016).

In CellCoal, the simulated sites are not necessarily spatially
ordered, therefore, read counts are simulated independently
for each site, therefore, without considering the correlation in
coverage among physically close sites. A more realistic ap-
proach to simulate sequencing reads might be to introduce
simulated mutations on real data sets, according to the ge-
nealogy (Ewing et al. 2015), but then one could not have fine
control over the desired coverage homogeneity or the error
level. Finally, CellCoal does not consider structural variants,
focusing on mutational events that are detected at the single-
nucleotide level. The main reason for this is that we lack solid
statistical models for the somatic evolution of structural var-
iants, at least nontrivial ones.

All in all, and despite its limitations, CellCoal should offer
enough functionality for benchmarking single-cell sequencing
strategies and tools, and for studying the implications of dif-
ferent evolutionary processes and technical errors at the
single-cell level. CellCoal is free, and licensed under the
GNU General Public License. It is available on GitHub
(https://github.com/dapogon/cellcoal), together with docu-
mentation and example scripts.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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Hård J, Al Hakim E, Kindblom M, Björklund ÅK, Sennblad B, Demirci I,
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