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ABSTRACT

Objective: Ensuring an efficient response to COVID-19 requires a degree of inter-system coordination and ca-

pacity management coupled with an accurate assessment of hospital utilization including length of stay (LOS).

We aimed to establish optimal practices in inter-system data sharing and LOS modeling to support patient care

and regional hospital operations.

Materials and Methods: We completed a retrospective observational study of patients admitted with COVID-19

followed by 12-week prospective validation, involving 36 hospitals covering the upper Midwest. We developed

a method for sharing de-identified patient data across systems for analysis. From this, we compared 3

approaches, generalized linear model (GLM) and random forest (RF), and aggregated system level averages to

identify features associated with LOS. We compared model performance by area under the ROC curve

(AUROC).

Results: A total of 2068 patients were included and used for model derivation and 597 patients for validation.

LOS overall had a median of 5.0 days and mean of 8.2 days. Consistent predictors of LOS included age, critical

illness, oxygen requirement, weight loss, and nursing home admission. In the validation cohort, the RF model

(AUROC 0.890) and GLM model (AUROC 0.864) achieved good to excellent prediction of LOS, but only margin-

ally better than system averages in practice.

Conclusion: Regional sharing of patient data allowed for effective prediction of LOS across systems; however,

this only provided marginal improvement over hospital averages at the aggregate level. A federated approach

of sharing aggregated system capacity and average LOS will likely allow for effective capacity management at

the regional level.
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INTRODUCTION

Since community transmission began, exponential spread of

COVID-19 has strained healthcare systems worldwide.1–3 While

United States case numbers and hospitalizations weather multiple

case fluctuations, hospitals and systems have had to undergo rapid

transformation: halting or postponing elective procedures,4 shifting

care from clinics to virtual health,5,6 and flexing staffing patterns to

match caseloads.2 These dramatic changes have taken a toll on

hospital-based care delivery, both financially and on providers and

staff.7,8 Patient access to acute care and the quality of care delivery

during periods of strain have been significant challenges related to

COVID-19 and will continue even as the pandemic wanes.

Ensuring an efficient response to patient surges including

COVID-19 requires a degree of coordination and capacity manage-

ment across healthcare systems that has not existed in the US health-

care. Cohorting patients, whether for COVID-19 care, thereby

keeping COVID-19 infected patients away from the general inpa-

tient population to reduce nosocomial transmission, or other sub-

specialty care has the potential to improve delivery. Unfortunately,

flexible bed availability is not guaranteed to be equal across all hos-

pitals, particularly in small rural hospitals and safety net hospitals.9

Efficient capacity management requires several pieces of infor-

mation: a predicted number of new admissions, an accurate ac-

counting of hospital and intensive care unit (ICU) beds and staffing

levels, and a prediction of the number of discharges. If the number

of new cases exceeds the number of discharges, increasing staffing,

and reducing avoidable admissions such as elective procedures

becomes necessary. If the number of predicted discharges exceeds

the number of predicted cases, these changes can be relaxed. Predict-

ing the number of discharges requires an accurate understanding of

inpatient length of stay (LOS).

Inefficient planning for patient surges has substantial cost. Over-

preparing could result in unnecessary delay for non-emergent, but

time-sensitive procedures and delayed inpatient care, as well as

avoidance of hospitals by patients when emergent care is neces-

sary.10,11 Overstaffing in the short term could result in future staff-

ing shortfalls, and an overall extended financial loss of hospital

systems. Conversely, under-staffing in anticipation of patient surges

can adversely impact the quality of patient care. Strain related to

high patient volume has been associated with higher costs, worse

outcomes, and provider burnout.12–15

Finally, given hot spots in transmission, single hospital systems

may become overwhelmed, exceeding its ability to safely care for

patients. Thus, single health care systems in isolation are will inevi-

tably respond to patient surges inefficiently; regional level capacity

management is a needed component to an efficient pandemic

response.16 A successful program requires a degree of regional data

sharing of current case load, capacity and projected capacity as well

as coordination of beds and staffing including safe inter-hospital

transfers to ensure level loading of work. While electronic health re-

cord interoperability solutions provide access to patient level data

across health systems, evidence to support its use for capacity man-

agement and hospital operations is lacking. Taken together an opti-

mal program to ensure efficient hospital-based care for COVID

requires addressing 2 critical gaps in the literature: predicting LOS

after admission, thereby predicting the number of discharges, and

sharing that data across systems.

Even now, despite over a year of experience with COVID-19,

limited published data exist on predicting hospital LOS for COVID-

19 patients. Many published studies of hospitalized COVID-19

patients occurred outside the United States, or during periods of

strain, limiting generalization.17,18 A meta-analysis of COVID-19

LOS demonstrated wide variability in reported hospital utiliza-

tion.19 While models have been developed to identify patients at

high risk for mortality, studies illustrating variation and factors as-

sociated with LOS are lacking.20–22 Predictors of risk of death may

overlap with LOS, but LOS models may also contain unique predic-

tors that describe the clinical course of patients with this novel ill-

ness. Prediction of LOS serves 2 potential purposes: to inform direct

patient care and to inform the health system of future resource

needs. Implementing models that facilitate coordination of health-

care at the population level is an important consideration in devel-

oping a regionally coordinated surge plan.23

Approaches to coordinating hospital operations could follow a

federated or centralized model. In a federated approach, a predictive

model would be deployed at each site, and aggregated data shared

together. In a centralized approach, patient level data could be

shared and analyzed at one site, allowing more complex modeling

approaches including machine learning and support health systems

with informatics resource constraints.24,25 In this study, we describe

the development of a multi-system regional collaborative to improve

regional hospital capacity management during the COVID-19 pan-

demic. We demonstrate an effective way to share patient informa-

tion to support both hospital operations and research. Finally, we

compare approaches in the prediction hospital LOS to support care

at the patient and system level to identify best practices.

MATERIALS AND METHODS

Setting
Supported by the Minnesota Hospital Association, we developed a

multi-system collaborative covering the states of Minnesota,

LAY SUMMARY

Regional planning for a surge in hospitalizations related to the COVID-19 pandemic requires 3 components: a prediction of

new cases, prediction of how long COVID-19 patients will require hospitalization, and an ability to share that information

across hospital systems that support that region. While prediction of new cases is well studied, hospital length of stay

(LOS), and methods to share this information is less well established. In this study, we developed an approach to share in-

formation across hospital systems and explore approaches to predict LOS. We find that LOS can be accurately predicted us-

ing patient factors including age, low oxygen, and chronic conditions such as weight loss. However, in hospital planning at

the regional level, the simplest solution: sharing raw case counts and average LOS for each hospital is likely best.
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Wisconsin, and the Dakotas, with 36 hospitals caring for approxi-

mately 60% of the state of Minnesota’s hospitalized COVID-19

population. Chief Medical Informatics Officers (CMIOs) and other

stakeholders from each health system meet virtually on a weekly ba-

sis. Issues surrounding bed capacity, informatics needs during the

pandemic, and general information regarding LOS, were shared

within the group. The group also utilized a common model to help

systems predict future cases. As part of this effort, the committee un-

dertook a collaboration to determine LOS statistics, as well as pre-

dictors of LOS for individual patients. This effort was determined to

be exempt by the Institutional Review Board of each participating

organization.

Patients
De-identified patient data using a safe harbor approach according to

institutional protocols was shared between each participating hospi-

tal system using a HIPAA secure file sharing service (Box; Box,

Inc.).25 Patients admitted between March 13 and June 12, 2020

were included if they tested positive by PCR for SARS-CoV-2 either

during their stay or in the 2 weeks prior to their admission. Data

were abstracted from multiple electronic medical records. The vali-

dation cohort was drawn from consecutive COVID-19 admissions

from a 12-hospital subsample from June 12th and discharged by

September 14th.

Measures
Standardized definitions were developed across health systems in-

cluding ICU LOS, ventilator days, and comorbidities (Supplemental

digital content for protocol). We obtained patient demographics in-

cluding age and race, admission body mass index, first set of vitals,

ventilator, and ICU utilization, whether the patient underwent an

inter-hospital transfer, and whether the patient was admitted from a

nursing facility. All ICD codes in the year prior to admission were

extracted and converted into chronic comorbidities following Elix-

hauser.26 We used median imputation to adjust for missing varia-

bles. If patients lacked ICD coding for a given chronic diagnosis this

was considered to be negative.

Model derivation
We compared 2 approaches to predict LOS based on ease of imple-

mentation. First, we used a multivariate generalized linear model

(GLM) with discharge by 5, 10, and 15 days as the dependent vari-

able, including random effects for each hospital system. We included

comorbidities, initial vitals, age, race, need for ICU or ventilator

support, maximum O2 requirement, nursing home admission, and

inter-hospital transfer as initial potential predictors. Final model fea-

tures were selected using PC-Simple with maximum condition set

size of 3.27

The LOS prediction from the regression model was compared

against a predictive model generated by a random forest (RF), which

reduces potential bias from errors in assumption regarding the rela-

tionship and interaction of factors.28,29 For each RF model, we gen-

erated variable importance plots by Gini impurity index. For

simplicity, we report only the top 20 variables by importance. We

used area under the ROC curve (AUROC) to compare accuracy of

both models. For each, we used test sets of 5-fold cross-validation

with 95% confidence intervals (CIs) calculated by 200 bootstrap

samples. AUROC for both models were compared for 5, 10, and 15-

day thresholds as well as mortality. Calibration curves for each

model are provided in the Supplementary text.

Validation
To simulate effectiveness of LOS modeling to predict capacity at a

healthcare system level we performed 2 separate analysis to simulate

weekly meetings of the CMIO workgroup. Using a 12-week valida-

tion cohort of consecutive admissions to a 12-hospital subsample,

we split patients into weekly cohorts flagged by whether they were

discharged or still admitted on Friday of that week. We allowed the

model to be recalibrated weekly with additional discharges to adjust

for time-sensitive confounders. For patients still admitted we tested

the ability of each model to predict the likelihood that each individ-

ual still admitted would be discharged at 5, 10, and 15 days. We

compared performance against what would be predicted by the

unadjusted population average for that health system to simulate a

federated model with only summary data.

Statistics
We first illustrate the population and association with LOS via

Mann–Whitney tests. A Bonferroni correction was added to adjust

for multiple hypothesis/comparison testing. Paired t-test was used to

compare AUROCs across 12 weeks of validation. Stata (v14) and R

were used for all statistical analyses.

RESULTS

A total of 2068 patients were admitted to one of 36 hospitals during

the study period. Within the cohort, a majority of patients were

non-White, and nearly a quarter (24%) were older than 75. A ma-

jority (77.4%) of patients had at least one chronic illness. Nearly

one quarter of admitted patients required care in an ICU, with

16.6% requiring mechanical ventilation (Table 1).

Overall LOS followed a long-tailed distribution with a mean of

8.2 days and median of 5.0 days and an interquartile range (IQR) of

3 days. Pediatric cases (<18 years old) made up only 3% of the co-

hort and had an overall shorter LOS than the general population

(P< .0001). Patients who required mechanical ventilation required

markedly longer LOS with a median of 14.0 inpatient days (IQR

6.7–23.9) when compared with patients who were admitted to an

ICU but did not require intubation (8 days, IQR 7.9 [4.7 to 11.4])

or those who remained on a general floor (median 4.1, IQR 2 to 7.5,

P< .001). Similarly, chronic comorbidities including hypertension,

diabetes mellitus, chronic kidney disease, and congestive heart fail-

ure were associated with longer LOS (P< .001).

Overall multivariate prediction via GLM achieved fair to good

prediction of mortality and LOS at 5 (AUROC 0.772 95% CI

0.732–0.784), 10 (AUROC 0.778 [0.751–0.807]) and 15 days

(AUROC 0.800 [95% CI 0.766–0.828]), Supplementary Appendix

Table S1). The RF models slightly outperformed the GLM models

and achieved fair to good discrimination (LOS > 5 days: AUROC,

LOS > 10 days: AUROC 0.801, LOS > 15 days: AUROC 0.836,

Supplementary Appendix Table S1 and Figure S1). Predictors of

LOS which were consistent across LOS thresholds and approaches

included age, admission from a nursing home, Critical illness and

mechanical ventilation, maximum O2 requirement, and weight loss

(Figure 1, Table 2). Features associated with in-hospital mortality

significantly overlapped with those predicting LOS (Supplementary

Appendix Table S2 and Figure S2).

Week to week validation over a 12-week period is displayed in

Figure 2 (Supplementary Appendix Figures S3–S6). Week to week

variation in LOS is illustrated in Supplementary Appendix Figure

S7. The RF outperformed GLM model in prediction as measured by

JAMIA Open, 2021, Vol. 0, No. 0 3

https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooab055#supplementary-data
https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooab055#supplementary-data
https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooab055#supplementary-data
https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooab055#supplementary-data
https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooab055#supplementary-data
https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooab055#supplementary-data
https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooab055#supplementary-data
https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooab055#supplementary-data
https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooab055#supplementary-data
https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooab055#supplementary-data
https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooab055#supplementary-data
https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooab055#supplementary-data
https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooab055#supplementary-data


AUROC (Figure 2). Paired T-test comparing the 2 models demon-

strated statistical differences for LOS >5 days (P¼ .012), LOS >10

days (P¼ .042) and LOS >15 days (P¼ .038). However, both

achieved good to excellent accuracy on a week to week basis.

Despite week to week recalibration of the LOS model, predictors

remained durable over time. Predictors including oxygen require-

ment, age, nursing home admission, inter-hospital transfer, critical

illness, and weight loss being consistently selected as important by

both RF and GLM models across the duration of the study (Supple-

mentary Appendix Figures S8 and S9, Tables S3 and S4).

Each model including the aggregated model (approximating a

federated model of data sharing), were effective in predicting the

number of patients that were would be discharged by 5, 10, and 15

days (Table 3). Overall, the RF model outperformed the other 2

approaches, accurately predicting the number of discharges at all-

time points for greater than 90% of cases 8 out of the 12 weeks.

However, in aggregate relying on the unadjusted average to predict

the following week performed nearly as well particularly at 5-day

and 15-day thresholds.

DISCUSSION

The COVID-19 pandemic has exposed many weaknesses of the US

healthcare system including inequities in access, gaps in coordinated

testing, partial insurance coverage, shortages in PPE supply and distri-

bution, inefficiencies in data aggregation, challenges with dissemina-

tion of trends to the general public, inconsistent public health policy,

and inconsistent public health communication. A common thread

which ties these flaws together is fragmentation.30–32 Overcoming

these challenges requires a degree of coordination across health systems

which has not existed throughout the history of American hospital-

based care. In this study, we try to overcome fragmentation by central-

izing data sharing using a common governance board for the purposes

of capacity management, population health, and research. Most impor-

tantly, we demonstrate that while many of the barriers to population

management of COVID-19 can be overcome, but a federated approach

will likely be as successful to support future surges.

While electronic health record adoption has reached near ubiq-

uity in hospitals, interoperability between health systems has lagged.

While solutions such as Epic Care Everywhere have progressed, the

Table 1. Demographics, comorbidities, and complications of COVID-19 and univariate association with length of stay

Derivation Validation

n (%) Length of stay, days

(median, IQR)

P-value n (%) Length of stay, days

(median, IQR)

P-value

Total 2068 5 (2.34, 9.84) 597a 5.13 (2.46, 9.94)

Age (years)

0–5 27 (1.3%) 2 (1.0, 4.0) <.001 3 (0.5%) 2.2 (2.1, 8.0) .434

5–18 24 (1.2%) 2 (1.0, 4.0) <.001 5 (0.8%) 4.9 (3.4, 11.1) .766

18–35 213 (10.3%) 2.8 (1.8, 5.8) <.001 99 (16.6%) 2.1 (1.4, 3.7) <.001

35–55 505 (24.4%) 4.13 (2.0, 7.6) <.001 134 (22.4%) 5.9 (2.6, 10.0) .534

55–75 789 (38.2%) 5.87 (2.9, 11.2) <.001 223 (37.3%) 6.1 (3.4, 10.9) <.001

Greater than 75 510 (24.7%) 6 (3.3, 11.0) <.001 133 (22.2%) 6.7 (3.6, 11.7) <.001

Male 1006 (48.6%) 5 (2.3, 10.1) .773 282 (47.2%) 6 (3.0, 12.9) <.001

Race

White 933 (48.1%) 5.86 (3.0, 11.0) <.001 285 (47.7%) 5.1 (2.7, 9.1) .890

Black 475 (23.0%) 4.32 (2.1, 8.5) .052 119 (5.3%) 3.7 (2.1, 8.7) .039

Hispanic 260 (12.6%) 4 (2.0, 7.8) .001 32 (5.4%) 6.1 (2.4, 11.0) .573

Asian 172 (8.3%) 4.7 (2.2, 9.5) .597 77 (12.9%) 5.8 (2.5 ,12.6) .171

Native American 67 (3.2%) 4 (2.26, 7) .172 11 (1.8%) 5.2 (2.7, 9.3) .341

Other/missing 184 (8.9%) 4 (2.0, 9.0) .015 64 (10.7%) 6.1 (3.1, 11.7) .083

Comorbid conditions

No comorbidities 468 (22.6%) 4 (2.0, 8.0) <.001 63 (10.6%) 2.6 (1.6, 5.1) <.001

Hypertension 899 (43.4%) 5.9 (3.0, 11.6) <.001 363 (60.8%) 6.2 (3.6, 11.8) <.001

Diabetes 213 (10.3%) 7.73 (2.9, 11.1) <.001 227 (38.0%) 6.1 (3.4, 11.6) <.001

Obesity 1355 (65.6%) 5.15 (2.5, 10.2) .001 457 (76.5%) 6.0 (2.9, 11.4) <.001

Chronic kidney disease 360 (17.4%) 7.67 (3.7, 13.0) <.001 166 (27.8%) 7.3 (4.3, 14.3) <.001

Chronic obstructive pulmonary

disease

372 (18.0%) 5.5 (2.8, 10.6) .054 147 (24.6%) 6.1 (3.2, 11.0) .026

Cancer 129 (6.2%) 6.3 (3.37, 12.0) .011 69 (11.6%) 5.1 (3.0, 9.2) .555

Congestive heart failure 255 (12.4%) 6.72 (3.7, 12.2) <.001 128 (21.4%) 7.1 (3.9, 12.2) <.001

Critical illness

General floor 1645 (79.6%) 4.1 (2.0, 7.5) <.001 344 (57.6%) 3.2 (2.0, 6.2) <.001

ICU without mechanical ventilation 84 (4.0%) 7.9 (4.7, 11.4) <.001 184 (30.8%) 6.9 (5.0, 11.1) <.001

ICU with mechanical ventilation 339 (16.4%) 14 (6.7, 23.9) <.001 69 (11.6%) 18.1 (12.5, 30.7) <.001

Patient flow

Admit from a nursing facility 200 (9.7%) 9 (5, 15.9) <.001 72 (12.1%) 7.7 (4.4, 11.8) <.001

Inter-hospital transfer 378 (18.3%) 8.6 (4.3, 15.9) <.001 336 (56.2%) 7.4 (5.0, 13.6) <.001

Note: Threshold for statistical significance <0.002.
aIncludes 40 patients who were admitted during the validation period but were discharged afterwards. These were not included in the week to week validation

analysis.
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primary goal of these efforts is to improve care at the level of an in-

dividual patient. As a result, these solutions are gated by informed

consent requiring patient presence, and thus cannot be used across

systems for population health. Instead, we relied on sharing aggre-

gated data for capacity management and a standardized data collec-

tion and de-identification process. De-identification allowed us to

share patient level information across systems for analysis while

minimizing risk to patient confidentiality.25 Overcoming these bar-

riers was effort intense, requiring many man-hours of validation and

processing to ensure uniformity.

We then tested various approaches to prediction to optimally

guide patient care and capacity planning. We found the RF model

provided good to excellent prediction of LOS at both the patient

and aggregate level, and provided a slight improvement over the

GLM model. Consistent predictors of LOS separate from mortality

included weight loss likely indicating frailty, nursing home admis-

sion, and illness severity defined by vitals, oxygen requirement, and

critical illness. In the optimal setting, widely distributed machine

learning algorithms could provide near real-time updates and ensure

accurate projection of occupied hospital beds, informing patients of

Figure 1. Multivariate prediction of hospital length of stay. Patient predictors by importance (approximated by the Gini impurity index) for length of stay >5 days

(A), AUC 0788 (95% CI 0.732–0.784). Length of stay >10 days (B), AUC 0.814 (95% CI 0.751–0.807), and length of stay >15 days (C), AUC 0.836 (0.801–0.860).
aMortality risk: independent risk of mortality, generated by a random forest model excluding complications illustrated in Supplementary Figure S2. bElixhauser

comorbidity sum. cFrom individual elixhauser comorbidities. All vitals represent the first vital taken that admission.

Table 2. Multivariate prediction of hospital length of stay by a generalized linear model

LOS >5 days (AUROC 0.772: 95%

CI 0.732–0.784)

LOS >10 days (AUROC 0.778: 95%

CI 0.751–0.807)

LOS >15 days (AUROC 0.800 95%

CI 0.766–0.828)

Coef Standard error P-value Coef Standard error P-value Coef Standard error P-value

Age 0.012 0.054 <.001 0.012 0.054 <.001 – – NS

Admission from nursing home 1.028 0.057 <.001 1.028 0.057 <.001 – – NS

Inter-hospital transfer 0.495 0.055 <.001 0.495 0.055 <.001 – – NS

ICU 0.958 0.053 <.001 0.958 0.053 <.001 0.793 0.104 <.001

No O2 administered �1.361 0.054 <.001 �1.361 0.054 <.001 �0.811 0.102 <.001

Weight loss 0.723 0.060 <.001 0.723 0.060 <.001 0.653 0.061 .001

Mechanical ventilation – – NS – – NS 1.418 0.089 <.001

Coagulopathy – – NS – – NS 0.697 0.058 .002

LOS > 5 days LOS > 10 days LOS > 15 daysA B C
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Figure 2. Comparison of weekly model performance between generalized linear model (GLM) and random forest (RF) models across a 12-week validation period

measured by AUROC (solid line) and 95% CI (dotted lines for upper and lower limits). A. Length of Stay > 5 days, B. Length of Stay > 10 days, C. Length of Stay >

15 days.
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their likely hospital course and leadership of capacity needs. At a

minimum, LOS is likely to vary significantly by regional demo-

graphics: populations with greater proportions of elderly with a

higher burden of chronic illness such as observed in rural areas will

likely have disproportionately greater hospital utilization that war-

rants added preparation. These predictors are likely not unique to

COVID-19.

The included cohort was majority non-White, markedly different

than state demographics. However, while race was included as a po-

tential feature, it was not a statistically significant predictor of LOS

in multivariate analysis. These findings are consistent with published

literature that racial disparities in COVID-19 are caused primarily

by higher transmission rates, and subsequent differences in out-

comes are largely explained by comorbidity rates and testing gaps.33

In aggregate, while the RF model performed better than the unad-

justed population average, barring any substantial shifts in the popula-

tion makeup, knowing what percentage of COVID-19 patients are

discharged by 5, 10, and15 days is likely sufficient to predict future

utilization. Similarly, at the patient level, most of the factors identified

in the predictive models are naturally self-evident and follow estab-

lished clinical course.34 Thus a federated approach sharing aggregated

data is likely sufficient for health system coordination. At the patient

level predictive modeling of LOS is unlikely to substantially improve

over clinical gestalt. The effort required for broad deployment of ma-

chine learning technology to regional hospital systems that lack capa-

bility or establishing consistent data sharing, verification and analysis

is likely not worth the return on investment.

Our findings suggest the informatics barriers to system-to-system

coordination are actually quite low. Patient level data sharing, while

helpful from an exploratory standpoint, is not needed to support

surge planning or hospital operations. Coordination merely requires

sharing aggregated information: current total and ICU census and

LOS distribution for each health system. This allows the focus of co-

ordination to remain on surveillance and prediction of caseloads,

optimal cohorting strategies and level loading across systems to

adapt to capacity strain.

This approach has the potential to improve care beyond the cur-

rent pandemic. Capacity strain is a common occurrence in US hospi-

tals even prior to the spread of COVID-19. Adjusting patient

distribution during other periods of high capacity could substan-

tially improve care, ensuring patients with specialized needs have

available beds at the locations they need. Regional transfer centers

that support care across health systems could be an effective next

step from this work.

There are several limitations of this study. First, this is an obser-

vational study from a regional cohort of only COVID-19 patients,

relying on de-identified data limits this study’s generalizability to

other contexts. While we identify several important predictors of

LOS, studies which predict risk have shown significant variability

from cohort to cohort. Establishing local trends in LOS is critically

important as the observed LOS in our study deviated substantially

from previously published models predicting caseloads and surge ca-

pacity.16 As such, we do not place substantial weight on individual

predictors. The primary contribution of this work is to establish op-

timal approaches to data sharing and prediction to guide care at the

patient and system level. Additionally, since de-identified data was

used, linkage across systems was not possible, thus readmissions to

other systems and transfers across systems would not be completely

captured.

Second, during data collection several potential novel predictors

of risk including laboratory values such as d-dimer and C-reactive

protein were identified.20,35 While we attempted to collect this data,

limitations in additional analytics and informatics support at partici-

pating healthcare systems, as well as variations in practice resulted

in high rates of missing data that could not be reasonably imputed.

It is likely with additional data we could further improve predic-

tions; however, this also reflects real-world limitations in data col-

lection particularly from community hospital systems with resource

constraints.

While patient level data sharing for establishing hospital LOS is

unlikely to be cost effective, that does not mean that regional data

sharing cannot assist other elements of the COVID-19 pandemic or

other surges in capacity. particularly in surveillance of COVID-19

cases among patients who receive care at multiple hospitals. Our ef-

fort in establishing a mechanism to share patient level data is a first

step in coordination which in the future could identify patients who

fall through the cracks between health systems and responding other

time points where hospital capacity is strained.30 Overcoming

obstacles such as competition across health systems would be critical

for such a program’s success.

Table 3. Aggregate performance of random forest (RF) and generalized linear model (GLM) against the unadjusted population average

(Avg) in predicting future discharge timing for patients admitted during a 12-week validation period.

Discharged in 5 days Discharged in 10 days Discharged in 15 days

Predicted

Actual

Predicted

Actual

Predicted

ActualWeek n RF GLM Avg RF GLM Avg RF GLM Avg

1 42 14 14 17 14 21 21 28 20 26 26 34 27

2 34 11 14 13 10 17 15 22 17 19 22 27 23

3 33 16 15 15 15 22 21 22 22 25 26 26 26

4 40 13 21 16 15 22 20 25 20 33 34 32 30

5 38 17 21 15 12 24 27 24 26 27 27 30 29

6 51 27 21 20 33 38 35 41 39 42 41 40 43

7 38 14 11 15 21 28 26 25 32 32 32 30 36

8 46 24 23 19 21 39 36 30 36 41 42 37 42

9 70 28 29 29 28 51 47 46 47 58 54 56 57

10 59 21 18 24 23 44 43 39 46 51 51 48 49

11 48 22 18 20 19 35 37 32 31 44 40 39 40

12 58 27 28 24 30 45 58 39 44 52 45 47 49

Total: 557 234 233 227 241 386 386 373 380 450 440 446 451
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Finally, while we focus on COVID-19, this represents a minority

of patients admitted to the hospital. Predicting total and future ca-

pacity requires a better understanding of hospital LOS and predict-

ing hospitalization rate in a heterogeneous population. There may

be a role for machine learning in this more heterogeneous and uncer-

tain population supported by more granular longitudinal data that

deserves to be better studied.28,36

CONCLUSIONS

In this study, we examine hospital utilization of patients admitted

with COVID-19 in the context of a regional collaborative to support

capacity management and surge planning. We demonstrate that pa-

tient level data sharing is possible between systems and overcoming

multiple electronic record systems, allowing for effective prediction

of LOS. However, this process was resource intense, and likely pro-

vides limited benefit above clinical reasoning and unadjusted popu-

lation averages. A federated approach to regional coordination

including inter-system sharing of aggregated medicine and ICU ca-

pacity and average LOS for COVID-19 patients are likely sufficient

to coordinate for patient surges.
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