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Abstract: Next generation sequencing (NGS) in combination with phage surface display (PSD)
are powerful tools in the newly equipped molecular biology toolbox for the identification of
specific target binding biomolecules. Application of PSD led to the discovery of manifold ligands
in clinical and material research. However, limitations of traditional phage display hinder the
identification process. Growth-based library biases and target-unrelated peptides often result in
the dominance of parasitic sequences and the collapse of library diversity. This study describes the
effective enrichment of specific peptide motifs potentially binding to arsenic as proof-of-concept
using the combination of PSD and NGS. Arsenic is an environmental toxin, which is applied
in various semiconductors as gallium arsenide and selective recovery of this element is crucial
for recycling and remediation. The development of biomolecules as specific arsenic-binding
sorbents is a new approach for its recovery. Usage of NGS for all biopanning fractions allowed for
evaluation of motif enrichment, in-depth insight into the selection process and the discrimination of
biopanning artefacts, e.g., the amplification-induced library-wide reduction in hydrophobic amino
acid proportion. Application of bioinformatics tools led to the identification of an SxHS and a
carboxy-terminal QxQ motif, which are potentially involved in the binding of arsenic. To the best of
our knowledge, this is the first report of PSD combined with NGS of all relevant biopanning fractions.

Keywords: phage display; peptide; biopanning; target-unrelated peptide; arsenic; motif; NGS;
Illumina; interaction; oxyanion

1. Introduction

Arsenic is a toxic metalloid often used in semiconductor elements as gallium arsenide (GaAs)
compound. It naturally occurs as a trace element at average concentrations of ~5 ppm, but is
concentrated as part of many minerals. Anthropogenic or natural processes lead to the release and
contamination of naturally occurring water bodies [1]. Human population in many countries are
exposed to high levels of arsenic from water, including Taiwan, Argentina, Chile, Mexico, India,
Bangladesh and Chile [2]. For many years now, the United States Agency for Toxic Substances and
Disease Registry (ATSDR) classifies arsenic as most important, No. 1 ranked priority hazardous
substance (https://www.atsdr.cdc.gov/SPL/index.html, 2020/08/05). Its main toxicity results from
inorganic arsenate (HAsO4

2−) mimicking phosphate (HPO4
2−) and thus competition for and inhibition
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of phosphate transporters and phosphate-metabolizing enzymes, including essential metabolic
processes like the oxidative phosphorylation to regenerate adenosine-5′-triphosphate (ATP) [3].
Exposure to arsenic also results in increased prevalence for lung, bladder and skin cancer [4]. However,
recent industrial usage of arsenic in gallium arsenide and its increasing importance for the electronic
industry in the production of LED’s and photovoltaics led to an increasing demand [5]. Efficient
recovery and detection systems are both needed to meet the growing demand and to monitor and
reduce toxic contaminations. Biological arsenic binding molecules may be used in biosensors and in
future recycling systems.

In recent years, the application of phage display has led to the discovery of many peptide
structures, with targets ranging from inorganics and solids to carcinoma cells [6]. However, although
successfully applied in the identification of many target-binding molecules, phage display is prone to
errors and notoriously known for the identification of false positive hits [7]. The unique power of phage
display lies in the possibility for fast and efficient identification of ligands with affinity to a desired
target material out of large populations of phage clones displaying billions of different randomized
peptides on their surface. However, often target-unrelated peptide (TUP) sequences rather than
specific binding sequences are identified. These sequences occur for many reasons, phage can bind to
components of the laboratory experimental setup, e.g. to blocking or capture reagents [8]. Furthermore,
the amplification of phage libraries between different rounds of library enrichment in bacteria is an
essential step in the selection of ligands. However, it leads to the identification of recurrent phage
clones with a propagation advantage rather than the selection of target-binding phage. Amplification
also decreases the diversity of the library and it can strongly affect the identification of useful ligands.
Thus, the distinction of identified ligands for either target-related or growth advantage-related selection
pressure is a challenging, yet necessary obstacle in the implementation of phage display experiments.
Traditional Sanger sequencing of a limited number of single clones leads to a loss of information and
limits the ability to identify true positive target-binding ligands [7,9–12].

In this study, we used next generation sequencing (NGS) to gain in-depth insight into the various
fractions of three rounds of biopanning against immobilized arsenic and to evaluate the target-specific
and growth-advantage related selection pressure. We were able to identify amino acids and motifs
frequently occurring in fast-propagating ligands, amino acids detrimental for growth and thus leading
to reduced libraries and motifs, which are potentially binding to arsenic. Using bioinformatics tools and
statistics, we could confirm position-specific amino acid patterns and compared the identified motifs to
known structures to prevent identification of known target-unrelated peptides. Comparing traditional
Sanger sequencing to the applied NGS, we could show the increased information content gained
through extensive sequencing, ultimately leading to the discovery of novel potential arsenic-binding
ligands. This study may help in the planning of future phage display experiments and in the
implementation of NGS and bioinformatics tools to identify specific target-binding ligands.

2. Materials and Methods

2.1. Media and Buffer

In this work, the following media and buffer were used. Media: LB medium (10 g L−1

tryptone, 5 g L−1 yeast extract, 5 g L−1 sodium chloride), top agarose (LB medium containing 7 g L−1

agarose), IPTG-(Isopropyl-β-D-thiogalactoside)-Xgal-(5-Bromo-4-chloro-3-indolyl-β-D-galactoside)
agar (LB medium containing 15 g L−1 agar, 0.05 g L−1 IPTG, 0.04 g L Xgal). Buffer: TBS (TRIS
buffered saline solution, 50 mM Tris(hydroxymethyl)aminomethane hydrochloride, 150 mM sodium
chloride, pH 7.5), PEG/NaCl solution (20% w/v Polyethylene glycol 8000, 2.5 M sodium chloride),
NaOH/NaCl solution (1 M NaOH, 1 M NaCl), McIlvaine buffer [13] (230.25 mM disodium phosphate
dihydrate, 7.9 mM citric acid, pH 7.5), BW (Binding&Wash) buffer 2x (10 mM TRIS HCl, 1 mM ETDA,
2 M NaCl pH 7.5).
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2.2. Phage Library

The commercially available Ph.D.TM–12 phage library LOT 0151606 (New England Biolabs
Inc., Ipswich, MA, USA) was used for the biopanning experiments described in this work. It is a
combinatorial library composed of random linear 12-mer peptides fused to the n-terminal part of pIII,
the minor coat protein of M13 bacteriophage. Please see the manufacturer’s product information for
further details.

Escherichia coli K12 ER2738 (Genotyp F’proA+B+ lacIq ∆(lacZ)M15 zzf::Tn10(TetR)/fhuA2 glnV
∆(lac-proAB) thi-1 ∆(hsdS-mcrB)5) was used for phage amplification and determination of numbers
of infectious phage (titration). Titration and amplification of phage were performed as described by
Schönberger et al., 2019. The main steps of chromatopanning and subsequent sequencing are described
below, for detailed descriptions please refer to Schönberger et al., 2019 [14].

2.3. Biopanning

2.3.1. Experimental Setup

The chromatopanning called biopanning procedure described here was modified from
Schönberger et al., 2019 [14] and first published by Nian et al., 2010 [15]. Target material were arsenic
oxyanions, arsenous acid and arsenous anions (H3AsO3

−, H2AsO4
−, HAsO4

2−, AsO4
3−) of trivalent

As(III) and pentavalent As(V) immobilized on a monolithic ion exchange column (CIM® QA Disk
Monolithic Column, BIA Separations, Ajdovščina, Slovenia) in a chromatographic setup using an Äkta
avant 25 FPLC system (GE Healthcare, Amersham, UK).

In this study, phage were incubated with the unloaded column in a pre-screening (negative
biopanning) for removal of unspecific binding phage followed by enrichment of binding phage in
three rounds of positive chromatopanning against the immobilized target material.

2.3.2. Column Handling and Target Immobilization

Column and system preparation included disinfection prior to all rounds of biopanning by
sequential application of 60 column volume (cv) NaOH/NaCl solution, 20 cv ultrapure water (Milli-Q®

Direct, Merck KGaA, Gernsheim, Germany), 20 cv isopropyl alcohol (30% (v/v) 2-propanol) and 20 cv
ultrapure water at a flow rate (Q) of 1.5 cv min−1.

Column equilibration preceding target immobilization achieving optimal target binding conditions
was performed with 40 cv McIlvaine buffer pH 7.5 [13]. Arsenic immobilization took place by cyclic
application of 1000 µL 50 µM sodium arsenite (NaAsO2) for 20 cv. Removal of excess arsenite was
achieved by washing the column with 40 cv McIlvaine buffer pH 7.5.

2.3.3. Phage Library Application and Enrichment

Pre-screening: Prior to target-specific phage enrichment, a pre-screening (negative biopanning)
against an unloaded column was conducted. After equilibration of column for 60 cv McIlvaine buffer
pH 7.5 at Q = 3 cv min−1, cyclic application of 10 µL of original Ph.D.–12 library in 490 µL McIlvaine
buffer pH 7.5 for 20 cv at Q = 1.5 cv min−1 was performed. Unbound and/or weakly bound phage were
collected with McIlvaine buffer pH 7.5 (40 cv, Q = 3 cv min−1) and fractioned in 2 mL fractions. Phage
titer of all fractions was determined. Phage-containing fractions were concentrated with Amicon®

Ultra-15 centrifugal filters (Merck KGaA, Darmstadt, Germany), amplified and used in the following
biopanning round against immobilized arsenic. Remaining phage were removed with 1 M phosphoric
acid (100 cv, Q = 3 cv min−1) and discarded prior the column disinfection.

Positive biopanning: Three rounds of biopanning against on-column immobilized arsenic were
performed. The chromatographic run of each round included target immobilization followed by cyclic
application of phage (20 cv, Q = 1.5 cv min−1), column wash for removal of weakly/non-binding
phage (McIlvaine buffer pH 7.5, 40 cv, Q = 3 cv min−1), phage elution (2 M magnesium sulfate, 40 cv,
Q = 3 cv min−1) and phage stripping (1 M phosphoric acid, 40 cv, Q = 3 cv min−1), arsenic removal
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(1 M hydrochloric acid, 20 cv, Q = 3 cv min−1) and column disinfection. Wash, elution and stripping
steps were fractioned in 2 mL fractions. Phage titer of all fractions were determined. After each of the
first two positive biopanning rounds, five phage-containing fractions of both, elution and stripping,
were concentrated with Amicon® Ultra-15 centrifugal filters (Merck KGaA, Darmstadt, Germany).
The concentrate of stripping fractions was neutralized with 1 M Tris(hydroxymethyl)aminomethane
hydrochloride (TRIS-HCl) pH 9.1. Concentrates were incubated with 300µL freshly grown Escherichia coli
K12 ER2738 (OD600~0.5) before phage amplification. Amplification times were 4.5 h after biopanning
round 1 for concentrates of elution and stripping, 4.5 h for concentrate of elution and 18 h for the
concentrate of stripping after biopanning round 2. The lengthened amplification of phage from the
stripping concentrate required storage of the amplified phage from elution concentrate in 50% glycerol
(v/v) after biopanning round 2.

Volumes of phage solution for on-column interaction with the target material were: 700 µL for
biopanning round 1 (350 µL amplified phage in 350 µL McIlvaine buffer pH 7.5), 600 µL for biopanning
round 2 (composed of 150 µL of amplified phage of elution and stripping concentrates, respectively,
in 300 µL McIlvaine buffer pH 7.5) and 2400 µL for biopanning round 3 (composed of 500 µL amplified
phage of elution concentrate, 100 µL of amplified phage of stripping concentrate, 1800 µL McIlvaine
buffer pH 7.5).

The volume of the washing step for the removal of weakly/non-binding phage was increased to
80 cv in biopanning round 2, and 100 cv in biopanning round 3.

2.4. Sanger Sequencing

The identification of the displayed combinatorial peptide sequences of individual phage required
the isolation of single clones. The detailed procedure and the oligonucleotide primers are described
by Schönberger et al., 2019 [14]. Sanger sequencing was performed by GATC Biotech AG, Eurofins
Genomics, Germany.

2.5. Illumina Sequencing

Next generation sequencing on instrument HiSeq 1500 (Illumina, San Diego, CA, USA) was
performed using the manufacturer’s kit HiSeq Rapid SBS Kit v2 (FC-402-4022). Samples were prepared
using the following oligonucleotides. RBS1-Seqfwd1_btnl: (Bio)-5′-AC ACG ACG CTC TTC CGA
TCT NNN NGT TTC GGC CGA ACC TCC AC-3′, RBS2-Seqfwd2_btnl: (Bio) -5′-AC ACG ACG CTC
TTC CGA TCT NNN NNG TTT CGG CCG AAC CTC CAC-3′, RBS3-Seqfwd3_btnl: (Bio)-5′-AC ACG
ACG CTC TTC CGA TCT NNN NNN GTT TCG GCC GAA CCT CCA C-3′, RBS4-Seqfwd4_btnl:
(Bio) -5′-AC ACG ACG CTC TTC CGA TCT NNN NNN NGT TTC GGC CGA ACC TCC AC-3′,
RBS5-Seqrev1: 5′-CAG ACG TGT GCT CTT CCG ATC TNN NNG CTG AGG GTG ACG ATC CC-3′,
RBS6-Seqrev2: 5′-CAG ACG TGT GCT CTT CCG ATC TNN NNN GCT GAG GGT GAC GAT CCC-3′,
RBS7-Seqrev3: 5′-CAG ACG TGT GCT CTT CCG ATC TNN NNN NGC TGA GGG TGA CGA TCC
C-3′, RBS8-Seqrev4: 5′-CAG ACG TGT GCT CTT CCG ATC TNN NNN NNG CTG AGG GTG ACG
ATC CC-3′. Biotinylated primers (Bio) were used for subsequent purification with Streptavidin-labelled
beads. Furthermore, the primers contained 4 to 8 N-positions to shift the fluorescence signal of similar
nucleobases, enabling sequencing of samples with high identity.

Samples were PCR amplified with Q5 high fidelity polymerase (New England Biolabs Inc.,
Ipswich, MA, USA). Reaction mixtures were prepared according to manufacturer’s instructions. PCR
conditions were: initial denaturation 30 s × 98 ◦C, 35 cycles of denaturation 10 s × 98 ◦C, annealing
30 s × 60 ◦C, elongation 30 s × 72 ◦C, followed by final elongation 120 s × 72 ◦C.

PCR products were purified using Dynabeads™M-280 Streptavidin (Invitrogen™, Thermo Fisher
Scientific Inc., Waltham, MA, USA). Dynabeads™were resuspended in 5 µL 2x BW buffer to a final
concentration of 5 µg µL−1. An equal volume of 5 µL biotinylated PCR product in distilled water was
added. Samples were incubated for 15 min at room temperature under gentle rotation. Biotinylated
DNA coated Dynabeads™ were separated with a magnet for min. 3 min and washed 3 times with
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1x BW buffer. Washed DNA-coated Dynabeads™were resuspended in elution buffer. Then, 1 µL of
beads was used as template for KAPA Hifi PCR (F.Hoffmann-La Roche AG, Basel, Switzerland) to
anneal NEBNext® (New England Biolab Inc., San Diego, CA, USA) Illumina indices. PCR composition
was 2x KAPA Hifi HotStart ReadyMix 25 µL, NEBNext® multiplex primer (E6-F8) 5 µL, template
bead coated with DNA 1 µL, nuclease-free water 19 µL). PCR conditions were: initial denaturation
180 s × 95 ◦C, 35 cycles of denaturation 20 s × 95 ◦C, annealing 30 s × 60 ◦C, elongation 60 s × 72 ◦C
followed by final extension 60 s × 72 ◦C. Successful amplification was checked on an agarose gel
(1% w/v) by gel electrophoresis. Correct sized fragments were purified with NEB Monarch® gel
extraction kit (New England Biolabs, Ipswich, MA, USA). Concentration of amplicons was determined
using Qubit dsDNA assay (Thermo Fisher Scientific Inc., Waltham, MA, USA). Amplicons were pooled
in equimolar concentrations and purified again from agarose gel (1% w/v) before sequencing using
Illumina HiSeq2500 (Illumina, San Diego, CA, USA) in 2 × 300 bp multiplex configuration by paired
read deep sequencing.

2.6. Bioinformatic Processing

2.6.1. Analysis of Illumina Data

Geneious Prime® 2020.1.1 (Biomatters, Auckland, New Zealand) was used for data processing
after separation of FASTQ files for the barcode sequences, corresponding to the individual experiments.
Alignment of F and R sequencing files, and merging of paired-ends was performed prior to quality
trimming to Phred scores >30, which was performed with BBDuk. Sequences that included 5′-TCT CAC
TCT–(XXX)x12–GGT GGA GGT were extracted, trimmed to their 12mer insert, translated taking into
consideration the amber stop codon readthrough and counted for their abundance. Phylogenetic trees
were calculated with Geneious Prime® using Jukes-Cantor model with Neighbor-joining algorithm.
The underlying multiple alignments were calculated using Clustal Omega [16].

2.6.2. Sequence Evaluation

Core and singleton sequences were calculated using Microsoft Excel scripts. PuLSE was used
for calculation of amino acid frequencies [17]. Logo calculation based on the statistical significance of
the individual residues in context to a background frequency was performed with pLogo [18]. Motif
calculation comparing two sets of sequences for discovery of motif enrichment was performed using
MEME [19].

3. Results

3.1. Biopanning Experiments

Three biopanning rounds against arsenic oxyanions immobilized on quaternary amines were
conducted in a chromatographic setup. In order to avoid unspecific binding to the chromatographic
equipment and the column material, a preceding pre-screening (negative biopanning) was performed.
Only the flowthrough of phage was applied for the positive biopanning against arsenic.

After the third round of biopanning, sequences of 34 single clones of both, elution and the stripping
fraction were identified. Forty-six unique sequences were found, of which 43 sequences occurred
once. In the following Table 1 sequences, isoelectric point (pI, calculated using ProtParam [20]) and
occurrence of all sequences, identified with Sanger sequencing are presented. Only three sequences
were identified more than one time, the peptides FHMPLTDPGQVQ (pI 5.08) and SIHSVTKGRYPV
(pI 9.99) were both identified with a frequency of 11/68. The peptide MKAHHSQLYPRH (pI 9.99) was
identified with a frequency of 2/68.
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Table 1. Peptide sequences, pI and occurrence of the combinatorial Ph.D.TM–12 phage library LOT
0151606 (New England Biolabs Inc., Ipswich, MA, USA) identified with Sanger sequencing after three
rounds of biopanning against arsenic oxyanions immobilized on quaternary amines.

Peptide Sequence pI Occurrence Peptide Sequence pI Occurrence

FHMPLTDPGQVQ 5.08 11/68
SIHSVTKGRYPV 9.99 11/68
MKAHHSQLYPRH 9.99 2/68
ANGSEYNLLQQS 4.00 1/68 DFPRTKSETRAP 8.75 1/68
DGMTKPAQHTNR 8.75 1/68 DPMQKSHLVSQS 6.74 1/68
DVLQPEGLTIPL 3.67 1/68 EDSGLASEKIAR 4.68 1/68
ERNVTSDDPGSI 4.03 1/68 FSDRVGSILNSP 5.84 1/68
GAISDYTPSQFY 3.80 1/68 GSAARTISPSLL 9.75 1/68
GVAAAVSVSNAS 5.52 1/68 GYLGSYRAHEDS 5.32 1/68
HSPALDRLHGIP 6.92 1/68 LPITEKEPYDKF 4.68 1/68
LQTYDNPAKSIN 5.83 1/68 NEVNNSSGAPKQ 6.00 1/68
NLTYKQINPAAF 8.59 1/68 NNHNGPDVTYWV 5.08 1/68
NYLPHQSSSPSR 8.75 1/68 QARTAMSLEQHL 6.75 1/68
QCLASCLGPQRV 8.07 1/68 RISYKPDSWQAS 8.59 1/68
RLPSYTTGLIAN 8.75 1/68 SMSSGLTSNKSY 8.31 1/68
SDNLHYTLLPMH 5.92 1/68 SNKNLDTRILTK 9.99 1/68
SHMLSSEWESAS 4.51 1/68 STNLYNTVAYQD 3.80 1/68
SITELLNAAHST 5.22 1/68 SYMWATGSPLAY 5.24 1/68
SLSPAGYTRLSL 8.46 1/68 TGKLIESSPDSI 4.37 1/68
THSEPYYPHSHK 6.74 1/68 TIKEPFPNRDLY 5.73 1/68
TISAFTSFMPTN 5.19 1/68 VRPTTEYMETSM 4.53 1/68
WGVTKPIRTSTL 11.00 1/68 QINQDSLHTPAA 5.08 1/68
YDAIQRPTGQLS 5.84 1/68 YQRPANLSMEDR 6.07 1/68

3.2. Illumina (NGS) Sequencing

Within three rounds of positive biopanning, phages of 12 different fractions were collected and
occurring peptide sequences were identified using Illumina sequencing. Additionally, to quantify
amplification-induced selection biases, the naïve phage library Ph.D.TM–12 LOT 0151606 (New England
Biolabs Inc., Ipswich, MA, USA) and amplicons of itself were sequenced.

In this study, within the 14 sequenced fractions, 521,981 evaluable reads were obtained. Reads
and sequences for all fractions are shown in Table 2. Read numbers vary between 133,163 reads for the
naïve library and 2373 reads for the elution fraction of the third biopanning round. Variations can be
explained by library reduction due to selection pressure over the biopanning rounds and by sample
preparation for Illumina sequencing. Phage isolation includes precipitation steps in 20% PEG-8000
and 2.5 M NaCl. Concentrations of these substances were reduced by repeated washing, but may
still hinder the following DNA amplification by PCR. Samples showing low read numbers had to be
diluted before PCR amplification.
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Table 2. Read and unique sequence occurrence acquired by Illumina sequencing in the different
fractions of the three biopanning (BP) rounds, in the naïve library Ph.D.TM–12 LOT 0151606 and
its amplification.

Biopanning Fraction Reads Unique Sequences

naïve library Ph.D.TM–12
LOT 0151606

133,163 97,563

amplification of naïve library 85,533 59,375

biopanning 1
BP1

input 87,883 67,705
wash 5271 2915
elution 3975 2563
stripping 124,565 16,235

biopanning 2
BP2

input 109,784 82,399
wash 3274 1185
elution 72,950 3536
stripping 20,167 1999

biopanning 3
BP3

input 74,389 20,331
wash 2001 999
elution 2373 1268
stripping 2828 1487

3.3. NGS Fraction Composition

Due to the selection pressure, the composition of the fractions within the three rounds of
biopanning changed. In Figure A1 in Appendix A, read and sequence distributions are shown for all
fractions, that have been sequenced by Illumina sequencing. While the sequences are relatively equal
distributed over the reads in the naïve library, the distribution is shifted towards a smaller number
of more-abundant sequences dominating the reads of the fraction. Amplification of the fractions is
subject to a different selection pressure, mainly from propagation rates and translation-based biases.
Therefore, the shift is to some extent reversed after amplification (comparison of elution and stripping
fractions to the input of the next biopanning round). The magnitude of distribution shift is larger in
the first biopanning rounds, suggesting that the main target-binding selection takes place in these
rounds. The distribution of reads within the one hundred most abundant sequences shifts towards the
most-abundant sequences over the three rounds of biopanning.

3.4. Amino Acid Composition

In order to quantify different selection pressures, which contribute to the library evolution over
three cycles of biopanning, the determination of amino acid occurrence is necessary. In Figure 1
below, selected fractions are displayed in a heatmap showing the 20 amino acids and their respective
occurrence in the relevant fraction (B). For comparison, the original amino acid percentage on each
position of the randomized 12-mer sequence in the naïve library is shown (A). The occurrence of the
individual amino acids in the naïve library corresponds to the manufacturer’s specifications with minor
deviations (see www.neb.com for the amino acid frequency of Ph.D.TM libraries). Most abundant amino
acids are serine (10.80%), proline (10.06%), threonine (9.49%), leucine (9.13%) and alanine (6.87%).
Least abundant amino acids are cysteine (0.99%), tryptophan (1.97%) and lysine (2.39%) (see complete
table in Appendix A Table A1). It is noteworthy that the frequency of the individual amino acids is,
in some cases, position-dependent. While, e.g., serine and alanine are found ~1.25-fold over its average
frequency on position 1 (amino-terminal position of randomized 12-mer), arginine and lysine show a
reduced frequency at position 1, which is steadily increasing to position 12. Lysine and proline show a
highly reduced frequency at the n-terminal position (L 0.74-fold-, P 0.004-fold of average frequency).

www.neb.com


Viruses 2020, 12, 1360 8 of 32

Figure 1. Comparison of the amino acid composition of selected fractions of three rounds of biopanning
against on-column immobilized arsenic. Shown in heatmaps is the relative occurrence of each amino
acid on each position of the randomized 12-mer peptide sequence, displayed on M13KE phage of the
combinatorial Ph.D.TM–12 phage library (New England Biolabs, Ipswich, MA, USA) relative to the
percentage of occurrence of the amino acids in the naïve library. The original amino acid percentage
on each position of the naïve library is shown in (A). In (B) the relative occurrences of the following
fractions are shown: amplification of the naïve library, input biopanning round 1 (BP1), elution and
stripping biopanning round 3 (BP3). Figure A2, which shows heatmaps of all fractions can be found
in Appendix A.

The properties of amino acids mentioned in the following paragraph were adapted from
Livingstone and Barton, 1993 [21]. The amplifications of the naïve library and after pre-panning (Input
BP1) show, that polar amino acids threonine (T), serine (S), histidine (H), asparagine (N), glutamine
(Q), glutamic acid (E), aspartic acid (D), lysine (K) and arginine (R) occur at most positions in high
percentage compared to the naïve library. Occurrence of glutamic acid is reduced compared to the
naïve library at the amino-terminal positions (1–4) of the linear 12-mer sequence, while arginine (R)
shows the same frequency in the amplification after pre-panning.

Occurrence of cysteine is greatly reduced in all four fractions shown in Figure 1. Furthermore,
the occurrence of many hydrophobic amino acids is reduced compared to the naïve library after
amplification. Aliphatic, hydrophobic amino acids valine (V), leucine (L) and isoleucine (I) show a
reduced occurrence after amplification compared to the amino acid frequencies in the naïve library.
Hydrophobic aromatic amino acids phenylalanine (F), tryptophan (W) and tyrosine (Y) also show a
reduced occurrence. Whereas the polar, hydrophobic amino acids threonine (T) and histidine (H) and
the small, hydrophobic amino acids alanine (A) and glycine (G) show the same or higher frequencies
as the naïve library after amplification, occurrence of hydrophobic methionine is reduced.

Within the three rounds of biopanning the relative frequencies of the amino acids become more
fragmented; overarching trends for amino acid occurrences are reduced. Relative frequency of cysteine
and tryptophan is highly reduced. Phenylalanine occurrence is reduced after the third biopanning
round, though the relative frequency of the amino acid is strongly increased at the amino-terminal
position 1. Aliphatic, hydrophobic amino acids valine, leucine and isoleucine generally show a reduced
occurrence, with exceptions for valine (position 11), leucine (position 5) and isoleucine (position 2)
after three rounds of biopanning. Further increased relative amino acid frequencies are threonine
(position 6), serine (position 1, 4, 9), histidine (position 2, 3, 12), glutamine (position 10, 12), aspartic
acid (position 7) and lysine (position 7).
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3.5. Sequence Logo Calculation

Calculation of amino acid occurrences based on the significance of the individual residues in
context to the naïve phage library Ph.D.TM–12 as background frequency was performed with pLogo [18].
Special consideration was given to the elution and stripping fractions of each biopanning round to
determine the efficiency of the biopanning rounds and to identify highly abundant amino acids and
sequences. In the following Figure 2, logos generated with pLogo are shown for the amplification of
the naïve library (A) and for elution and stripping fractions of biopanning round 1 and 3 (B). Logos
generated for the fractions of all three biopanning round are shown in the Appendix A Figure A3.

Figure 2. Sequence logos of selected fractions of three rounds of biopanning against on-column
immobilized arsenic. Shown are logos, calculated using pLogo [18] based on the significance of
the individual residues in context to the naïve phage library Ph.D.TM–12 as background frequency.
(A) Amplification of the naïve phage library (B) Elution and stripping fractions of three rounds of
biopanning showing the enrichment of the consensus sequence FHMPLTDPGQVQ.

The amplification of the naïve phage library shows that the amino acid frequency changes
described in Section 3.4 occur at each position in the randomized 12-mer sequence. Whereas the
relative frequency of cysteine (C) and the hydrophobic aromatic amino acids phenylalanine, tyrosine
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and tryptophan is reduced at all positions in the 12-mer, positive charged lysine and arginine are only
reduced in the first n-terminal position (Position 1, 3). While occurrence of methionine is reduced in the
first seven n-terminal positions, it shows an increased occurrence at position 11. Proline at position 1 is
completely depleted after three rounds of biopanning, whereas its overall percentage over all positions
within the fraction remains relatively unchanged (1.06× fold enrichment over naïve phage library).
Cysteine is depleted at each position (0.36× fold of naïve phage library occurrence).

Elution and stripping fractions of BP1 and BP3 clearly indicate the emergence of the consensus
sequence FxMPLTDGQVQ (with x being a hydrophobic amino acid) in the stripping fraction of the
first biopanning round. This sequence is further enriched in the following biopanning rounds. Within
the stripping of the first biopanning round, over representation of histidine in the amino-terminal part
of the sequence is found.

3.6. Core Fraction Calculation

The evaluation of limited sets of sequences to quantify phage display experiments is always
impeded by the large number of sequences covered in phage display libraries. A phage library
displaying a random dodecapeptide allows for 4.1 × 1015 theoretically possible unique sequences.
According to New England Biolabs, Ph.D.TM–12 libraries are delivered consisting of approximately 109

unique sequences (covering ~2.5 × 10−5% of theoretically possible sequences) [22]. Even assuming that
the library is equally distributed and that all sequences occur evenly, sequencing of 200,000 reads can
only cover ~5 × 10−9% of all possible sequences. Phage display experiments sequencing 100 single
clones therefore only cover ~2.5 × 10−12% of all possible sequences. Thus, a high level of selection
pressure and enrichment must be assumed to allow for evaluation and identification of target-binding
sequences. Enrichment follows amplification-induced selection and targeted selection of binding
sequences. Provided a high level of selection pressure, sequences that are subject to the respective
pressure, dominate the library. Each amplification step therefore advantages fast-propagating sequences,
each elution and stripping step target-binding sequences (which may be fast-propagating). To harvest
frequently occurring sequences, core sequences (intersections) including sequences found in all
respective fractions were calculated.

Intersection of sequences from all three biopanning rounds were calculated to be:

∩ E = E(BP1) ∩ E(BP2) ∩ E(BP3) (1)

∩ I = I(BP1) ∩ I(BP2) ∩ I(BP3) (2)

∩ W = W(BP1) ∩ W(BP2) ∩ W(BP3) (3)

∩ S = S(BP1) ∩ S(BP2) ∩ S(BP3) (4)

The core sequences of the elution fraction (∩E) should include target-binding sequences, enriched
through target-binding selection pressure. Contrary, core sequences of the input fractions (∩I) are
subject to amplification-based selection pressure. The core sequences of wash fractions (∩W) include
recurrent, low-binding and/or fast-propagating sequences. High frequent target-binding sequences
may be found in this fraction, too. Stripping with phosphoric acid was carried out in order to elute
strong target-binding sequences, which have not been eluted before. Thus, the core sequences of these
fractions (∩S) include sequences with potential high-affinity binders.

For further reduction of eligible sequences, the following sets were calculated:

ES = ∩ E ∪ ∩S (5)

ES\W = ( ∩E ∪ ∩S )\ ∩W (6)

ES\I = ( ∩E ∪ ∩S )\ ∩ I (7)
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ES − I − W = (( ∩E ∪ ∩S )\ ∩ I )\ ∩W (8)

ES − I − W\naï.lib.TOP10% = ((( ∩E ∪ ∩S )\ ∩ I )\ ∩ W )\naï.lib.TOP10% (9)

ES − I − W\naï.lib.TOP25% = ((( ∩E ∪ ∩S )\ ∩ I ) \ ∩ W )\naï.lib.TOP25% (10)

The union ES of sets ∩E and ∩S was calculated to include all potentially target-binding sequences.
Differences of ES and the sets ∩I, ∩W were calculated to remove fast-propagation, potentially non- or
weak target-binding sequences. Removal of sequences with a natural selection advantage (because
of high-frequent occurrence in the naïve phage library) was achieved by calculating the difference of
the set ES–I–W and the most (10%, 25% of sequences) occurring sequences in the naïve phage library.
In the following Table 3, read and unique sequence quantities of the calculated sets are given. Read
numbers refer to the fraction, in which the sequence was first identified within the biopanning process
(elution and stripping fraction of biopanning round 1 for set ES).

Table 3. Summary of read and unique sequence quantities of core fractions (sets) calculated in this work
for a phage display experiment with three rounds of biopanning against on-column immobilized arsenic.

Core fFaction (Set) Read Number Unique Sequences

∩I 15,027 2912
∩W 4931 381
∩E 209 56
∩S 5304 74
ES 1753 113
ES\W 613 48
ES\I 51 14
ES–I–W 51 14
ES–I–W\naï.lib.TOP10% 51 14
ES–I–W\naï.lib.TOP25% 41 13

The core fractions differ strongly in their size. The input core fraction (∩I) contains 2912 sequences,
compared to the elution core fraction (∩E) with 56 unique sequences. This difference in size can be
partially explained with the size of the included original fractions of the phage display experiment.
The size of the intersection of sets is limited by the smallest set (input BP1: 67,705 sequences, input
BP2: 82,399 seq., input BP3: 20,331 sequences compared to elution BP1: 2563 sequences, elution BP2:
3536 sequences, elution BP3: 1268 sequences). Different read numbers of the intersection ES of ∩E
and ∩S compared to the original core fractions are the result of unique sequences, included in both
core fractions, which possess different read numbers in the respective fractions. The read numbers
of core fraction ES presented in Table 3 refer to the read number of the elution fraction of the first
biopanning round. By subtracting the input and wash core fractions, the number of unique sequences
is further reduced. Indeed, by subtracting the input core fraction, no further reduction of the dataset
occurs when subtracting the wash core fraction and/or the 10% of most occurring sequences in the
naïve phage library, as these sequences are included in the input core fraction. Further reduction by
subtraction of the top 25% most occurring sequences results in the loss of only one sequence.

The origin and the frequency of the remaining sequences can be visualized using stacked bars,
which describe the composition of the respective fraction and the relative frequency of the unique
sequences included in the fraction. In the following Figure 3, the calculated core fractions are shown.
The fraction ES − I − W\naï.lib.TOP25% consists of 13 unique sequences. Nine of these sequences
possess very similar amino acid motifs, all of them carry the consensus sequence xxMPxTxxGQVQ
(with x being any amino acid). Furthermore, three of the remaining sequences carry the motif SxHS.
The remaining sequence does not show similarities to the other identified sequences. It shows a high
content of histidine, leucine and threonine. All thirteen sequences possess a small relative frequency in
the core fraction ES and are continuously enriched by subtraction of the other core fractions, which
remove the more abundant sequences.
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Figure 3. Visualization of the relative frequency of the unique sequences in the core fraction
ES–I–W\naï.lib.TOP25% compared to the frequency of the respective sequences in the beforehand
calculated core fractions. The horizontal stacked bars represent the total read number of each
fraction, individual sequences are colored black/white and sorted from left to right proportional to
their abundance. The size of the marked area is proportional to the frequency of the individual
sequences. The area of specific sequences is colored. In total, 9/13 sequences of the core fraction
ES–I–W\naï.lib.TOP25% carry the motif xxMPxTxxGQVQ (with x being any amino acid), 3/13 carry the
motif SxHS either amino- or carboxy-terminal, 2/13 carry the motif SIHSxTKGxYPV, the remaining
sequence does not show similarity to the other identified sequences and is rich in threonine, histidine
and leucine. The enrichment process of the sequences shows that they are low abundant and become
visible by subtraction of sequences with higher abundance.

3.7. Sequence Motif Calculation and Comparison

The identification of motifs was performed using MEME [19]. A differential enrichment mode
with a minimum width of 3 residues and 2 sites was chosen. Motifs with more than 5 sites or a width
over 6 residues were ignored in the subsequent processing. The elution and stripping fractions of all
three biopanning rounds were compared to the naïve phage library resulting in the identification of
22 motifs. Motif occurrence in unique sequences and reads was determined for all fractions. For the
core fractions, motif occurrence was determined for the unique sequences. Read numbers were not
determined for the core fractions, as the calculation of core fractions composed of more than one fraction
results in read overlap for shared sequences. The motif occurrence is shown in the following Figure 4.

In the figure, the motif occurrence in reads is shown in green and the motif occurrence in the
unique sequences is shown in red, with low to high abundance from dark to light. Grey areas show
fractions, in which the motifs have not been identified. Most motifs, discovered with MEME, show an
enrichment over the three rounds of biopanning. The motifs QTY and PxTxxS, however, were depleted
in the biopanning process. Discovery over MEME might be due to overrepresentation of the motifs in
individual fractions. The motifs HxH and HH, containing two adjacent histidines are enriched over
the three biopanning rounds in reads and sequences. However, when calculating the core fractions,
sequences containing HxH or HH were discarded in the subtraction of the input core fraction, indicating
these sequences to be fast-propagating. Another motif lost in the subtraction of the input core fraction
is PVPV, which was beforehand enriched in the biopanning procedure. The motifs MPL, LTDP, DxG
and QxQ belong to the sequence family with the consensus sequence xxMPxTxxGQVQ. They are
enriched in both the biopanning and the calculation of core sequences. The motif PxTxxS belongs
to the family, too, but is depleted after subtraction of the input core fraction, indicating sequences
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carrying this motif to have a growth advantage. Motifs NHTTG and HSTLL belong to the sequence
HSTLLNHTTGVR and are thus enriched. It is noteworthy that these sequences were found in all three
stripping fractions but did not appear in any elution fractions. Motifs SIHS and GRY belong to the
family of SxHSxTKGxYPV sequences, and RSLE to the sequence ARSLESAPSRHS.

Figure 4. Sequence motif occurrence in reads (green), fractions of the three biopanning rounds (red,
middle) and in the calculated core fractions (red, right). Motifs were calculated using MEME [19].
Shown are: the naïve Ph.D.TM–12 library, the amplification of the naïve library (naï. lib. amp.) and the
pass of the preceding pre-panning (negative), which was used after amplification as input for the three
rounds of biopanning against on-column immobilized arsenic. For the three biopanning rounds, the
respective input, wash, elution and stripping fraction are shown as well as the core fractions calculated
in Section 3.6.

Sequences carrying the motif discovered with MEME were compared with each other to identify
sequences with intersecting motifs. These sequences might be interesting for further characterization as
they possess multiple structures that were enriched in the biopanning process. In Figure 5, all motifs are
visualized for their appearance in sequences, which bear other motifs in the naïve Ph.D. TM–12 library.
For comparability, sequence and read numbers for the motif-carrying sequences are given. Calculation
of the percentage of sequences in which a motif can be found in a population of low-frequent sequences
show a smaller probability for intersecting motifs compared to high-frequent motif-bearing sequence
populations. In the population of QxQ-bearing sequences, 29 sequences (1.78% of QxQ-bearing
sequences) carrying an additional HxH motif (e.g., SQYDVNSSHQHQ) and 36 sequences (2.22% of
QxQ-bearing sequences) carrying an additional HH motif (e.g., QTQFALHHLPSL) can be found.
In comparison, in the population of ISxSL-carrying sequences, 1 sequence (3.33% of ISxSL-bearing
sequences) shows an additional HxH motif (HHHHISHSLQLV), 2 sequences (6.66% of ISxSL-bearing
sequences) possess an additional HH motif (IDSTKHHISRSL). Sequences, which possess combinations
of motifs that were enriched in the biopanning process, might be considered when searching for
candidate sequences with target-binding affinity. As the motifs SxHS and QxQ were prominent
after three rounds of biopanning and further enriched through the calculation of the core fractions,
sequences carrying both motifs might be of interest, even if they were lost in the biopanning process.
Sequences, which were identified in the naïve library that carry both motifs, are QLQLDMDLSLHS and
YQQQTSLHSPYA. However, both sequences were not found in any other fraction of the biopanning
process. As the sequence QxQ was only found in a carboxy-terminal position of the randomized
12-mer peptide display in the phage library, the position of the motifs might be important to allow for
peptide folding, necessary for binding.
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Figure 5. Visualization of the percentage of motif-bearing sequences, in which a second motif can
be found. The population of sequences to be compared is defined in the X-axis, motifs which are
compared for their appearance in the respective population in the Y-axis. In red bars the number of
sequences, carrying the motif is given, in green bars the number of reads of the sequences carrying
the motif is given. Motif comparisons colored dark red show that these occur multiple times in the
sequences, leading to percentages of >100%. Calculations were performed with the sequence set of the
naïve Ph.D.TM–12 library.

3.8. QxQ Motif

Glutamine is not regularly described as a metal-binding amino acids, however in the sequences
identified in this work, it was found in high frequency and in a defined position at the carboxy-terminal
part of the randomized 12-mer, displayed by the phage library. The enrichment of sequences, carrying
the motif xxxxxxxxxQxQ with two glutamines fixed on the positions 10 and 12 was determined.

In Figure 6, the frequency of the motif-carrying sequences over the three rounds of biopanning (A)
and in the calculated core fractions (B) is shown. Sequences, carrying the motif make up 0.21% of the
reads of the naïve library sequencing and 0.14% of the sequences. After three rounds of biopanning,
in which the motif occurrence is constantly increased, the motif-bearing sequences make up 5.98% of
the reads and 0.95% of the sequences in the elution fraction, and 8.87% of the reads and 1.01% of the
sequences in the stripping fraction. In the core fractions, occurrence in ∩E (12.92% of the reads, 3.57% of
the sequences) and ∩S (26.85% of the reads, 16.22% of the sequences) is further increased, whereas the
motif-carrying sequences show a smaller occurrence in ∩I (0.78% of the reads, 0.37% of the sequences)
and ∩W ((1.70% of the reads, 0.26% of the sequences). In the final core fraction ES–I–W\naï.lib.TOP25%,
the occurrence is 65.85% of the reads and 69.23% of the sequences. As previously explained, read
interpretation is difficult as the read numbers originate from the fraction, where the sequence was
identified first (elution and stripping of first biopanning round for ∩E and ∩S).

Amplification-based selection advantage would result in the increased occurrence of
xxxxxxxxxQxQ motif-carrying sequences after phage propagation. However, the occurrence at
the beginning of each biopanning round after amplification is reduced compared to the elution
and stripping fraction of the preceding biopanning, indicating a target-binding based enrichment.
Furthermore, in each biopanning round, the motif-bearing sequences can be found primarily in the
elution and stripping fraction, whereas the sequences are less frequent in the wash fraction, indicating
that the selection is not based on weak, unspecific binding. It is noteworthy that the occurrence
of motif-carrying sequences is slightly higher in the stripping fractions and especially in ∩S when
compared to the corresponding elution fractions and ∩E. This might be the result of the respective
eluent used in the process. Whereas 2 M magnesium sulfate was used for elution, phages were stripped
from the column with 1 M phosphoric acid in the stripping fractions. The pH change of the stripping
might result in a less efficient binding and promote the recovery of phage from the column.
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Figure 6. Occurrence of sequences carrying the motif xxxxxxxxxQxQ with two carboxy-terminal
glutamines on positions 10 and 12 of the randomized 12-mer display on the Ph.D.TM–12 phage
library. The occurrence in reads (green) and sequences (red) of the respective fraction of three rounds
of biopanning against on-column immobilized arsenic (A) and of the calculated core fractions (B)
is shown.

Unlike the SxHS motif, which was found both amino- and carboxy-terminal within the randomized
12-mer, 9/13 identified sequences in the final core fraction did possess two exclusively carboxy-terminal
glutamine residues. Therefore, the frequency of the sequences containing the carboxy-terminal QxQ
motif was calculated relative to QxQ-carrying sequences on random positions, shown in Figure 7.
While covering 9.11% of all sequences and 14.26% of all reads of all QxQ-carrying sequences, the relative
frequency of sequences with the carboxy-terminal QxQ increases over the three biopanning rounds.
The highest relative frequency in the three biopanning rounds was found in the stripping fraction of
the third round (92.62% of reads, 33.34% of sequences). Although the read and sequence ratio are
being reduced in ∩I, in ∩W the numbers resemble the stripping fraction of the third biopanning round.
In the core fractions ∩E and ∩S sequences carrying carboxy-terminal motifs cover 100% of reads and
sequences of all QxQ carrying sequences. Amplification leads to a reduction in the relative frequency
as seen in the amplification steps after the first and second biopanning round. Interestingly, the overall
proportion of carboxy-terminal QxQ-motif carrying sequences in all QxQ-motif carrying sequences
increases over all three biopanning rounds, as well as in the calculated core fractions. This might be an
indication for the presence of other residues on fixed positions in the 12-mer which, together with the
carboxy-terminal QxQ, form a structure that is beneficial for binding the immobilized oxyanions of
arsenic. Other fixed positions in the consensus sequence xxPxTxxGQVQ may be necessary to allow the
binding of the target material.

This comparison of motif occurrences and enrichment in different fractions and position-specificity
was performed for SxHS motifs, too and can be found in Figures A4 and A5 in Appendix A.
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Figure 7. Proportion of reads (green) and sequences (red) carrying the motif xxxxxxxxxQxQ with
two fixed carboxy-terminal glutamines relative to all reads and sequences carrying QxQ on random
positions for three rounds of biopanning against on-column immobilized arsenic and of the calculated
core fractions.

3.9. Motif Comparison with 48 h Discovery Database

Prof. Ratmir Derda (University of Alberta, CA, USA) granted us access to his recently published
database www.48hd.cloud, which is still in development [23]. This database is currently the largest
available repository for next generation sequencing results of phage surface display experiments.
It allows setup of experiments, sample structuring and quantification of results with extensive statistical
evaluation. It is also possible to perform motif analysis to determine motif frequencies within datasets.
To evaluate the data obtained in this work, motif occurrence of QVQ and SIHS was compared to two
naïve Ph.D.TM–12 library lots. A visualization of the data can be found in Appendix A, Figure A6.
The ten most common, three residues long motifs in both lots of the library were SLP, SPS, TPS and
TPL. The motif QVQ had a small read count of ~0.03x fold compared to the most common motif SLP in
lot 15 and a ~0.10x fold read count compared to the most common motif TPS in lot 0101002, resulting
in an oval rank within three residues long reads of 4718 in the first lot and rank 3517 in the second
lot. As lot 15 was sequenced multiple times, the mean rank of QVQ in this library was 4557 ± 254.
Motif SIHS ranked 16551 ± 2694 among 4r residues long motifs in lot 15 and rank 7717 in lot 0101002.
These findings show that both motifs are not among the most abundant motifs in the naïve library,
even when compared with other lots. Both motifs are enriched over the biopanning process and in the
core fractions, indicating a directed selection of sequences carrying these motifs.

4. Discussion

4.1. Comparison of Sanger Sequencing with Next Generation Sequencing

Generally, phage display and biopanning results are influenced by different selection pressures
in the phage accumulation. Propagation rates and translation-based biases (amplification-induced
selection) compete with target-binding selection. Furthermore, unspecific and/or low-binding peptide
sequences skew the identification of specific-binding sequences. These biases lead to reduced phage
library diversity, decreasing library size and distorted library distribution [7,22,24].

Sequencing of a limited number of sequences occurring in phage libraries can only identify
very small parts of the complete library. The linear combinatorial 12-mer library Ph.D.TM–12

www.48hd.cloud
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theoretically possesses ~4 · 1015 individual sequences and is provided by the manufacturer comprising
of ~109 sequences. Even extensive Illumina sequencing can therefore cover only parts of the naïve
library composition. A central question of this work was whether or not limited Illumina sequencing
(<106 reads) is able to provide additional information and thus enhance identification of potentially
specific-binding sequences.

Three rounds of biopanning in a chromatographic setup were performed against on-column
immobilized arsenic oxyanions (occurring mostly as As(V) H2AsO4

−/HAsO4
2−) [25]. The three most

abundant sequences FHMPLTDPGQVQ (11/68), SIHSVTKGRYPV (11/68) and MKAHHSQLYPRH
(2/68) after Sanger sequencing of 68 single clones are high abundant sequences in the naïve library and
its amplification, too. In Table 4, the frequencies of these three sequences are given for the Illumina
sequencing results of the fractions: (1) naïve library, (2) amplification of naïve library, (3) input into the
three rounds of biopanning, (4) elution fraction of third biopanning round, (5) stripping fraction of
third biopanning round in comparison to the results of Sanger sequencing (0). All three sequences are
enriched over the three rounds of biopanning; however, FHMPLTDPGQVQ (~89x fold enrichment)
and SIHSVTKGRYPV (~77x fold) show higher abundance in the elution and stripping fractions of
the third biopanning round compared to MKAHHSQLYPRH (~10x fold). Increasing occurrence of
these sequences may be partially explained by smaller read numbers of the third biopanning fractions
(compare Table 2). The lower the read number of a fraction is, the higher the probability to identify high
abundant sequences. However, enrichment of FHMPLTDPGQVQ and SIHSVTKGRYPV is stronger
compared to MKAHHSQLYPRH, indicating a directed selection pressure, occurring because of either
amplification-based selection advantages and/or target-binding selection advantages. Sequences may
very well be fast-propagating and specific target-binding, resulting in a high selection pressure towards
these sequences. Sequences with equally well binding properties to the target material but with
growth advantage will always outcompete slower propagating sequences with the same binding
properties [26]. Biological explanations for growth advantages include binding to the pili, usage
of rare codons and motifs interfering with transport and infection. Libraries displaying peptides
on the PIII protein are normally less affected by growth advantage-based biases compared to PVIII
libraries [9,22,27].

Table 4. Occurrence of the three most abundant sequences FHMPLTDPGQVQ, SIHSVTKGRYPV and
MKAHHSQLYPRH of Sanger sequencing(+) in comparison to the Illumina sequencing results (1–5)
of selected fractions of three rounds of biopanning against on-column immobilized arsenic using the
Ph.D.TM–12 phage library from New England Biolabs. Occurrence of the sequences is given relative to
the overall read number and in percentage. Selected fractions are: (1) naïve library, (2) amplification of
naïve library, (3) input into the three rounds of biopanning, (4) elution fraction of third biopanning
round, (5) stripping fraction of third biopanning round.

Fraction FHMPLTDPGQVQ SIHSVTKGRYPV MKAHHSQLYPRH

0 Sanger seq.+ 11/68 (16.18%) 11/68 (16.18%) 02/68 (2.94%)
1 naïve library 143/143,424 (0.10%) 110/143,424 (0.08%) 232/143,424 (0.16%)

2 ampli. naï. lib. 115/85,533 (0.13%) 99/85,533 (0.12%) 208/85,533 (0.24%)
3 input BP1 84/87,883 (0.10%) 69/87,883 (0.08%) 160/87,883 (0.18%)

4 elution BP3 134/2373 (5.65%) 147/2373 (6.19%) 28/2373 (1.18%)
5 stripping BP3 252/2828 (8.91%) 164/2828 (5.80%) 41/2828 (1.45%)

Although subjected to different selection pressure, most often found sequences after Sanger
sequencing have been high abundant in the original naïve library, too. Three rounds of biopanning
changed the relative occurrence of high abundant sequences. However, no sequences have been
identified more than once, that initially occur in low abundance. Careful consideration is needed in the
selection of sequences for subsequent binding experiments, as high abundant sequences with high
selection advantage may parasite the biopanning, leading to false-positive identifications.
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Motifs, which were identified with Illumina sequencing, bioinformatics processing using tools as
PuLSE [17], pLogo [18], MEME [19] and core fraction calculation for the further reduction of sequence
sets, are identical to the motifs discovered using Sanger sequencing. These findings suggest that
enrichment of binding sequences over three biopanning rounds was sufficient for the discovery of
key motifs. However, comparison also clearly indicates the shortcomings of Sanger sequencing, only.
Identification of sequence variations, key motifs and quantification of sequences, concerning the
underlying selection pressure are not possible.

4.2. NGS: Amino Acid Composition

The application of Illumina sequencing to multiple fractions within the three rounds of biopanning
allowed for a deeper insight into the processes involved in the biopanning rounds. Amplification-based
and target-binding selection pressure could be quantified. Based on the results, we were able to sort
sequences based on the underlying pressure. This helps in the identification of motifs, involved in the
selective binding of arsenic.

Overall amino acid abundance is comparable to published data and the theoretical abundance of
an NKK 12-mer library [28]. Whereas the deviating frequency on specific positions can be explained
for some amino acids, amplification-induced changes (compare Figures 1 and 2) are less described.
Disulfide bridges are formed in the periplasm of E. coli via its dsb system. Presence of cysteine, especially
in odd numbers, leads to covalent dimerization of PIII, preventing incorporation in and assembly of
phage particles [29–31]. The display of cysteines in PVIII libraries is even more complicated, preventing
protein processing and leader peptidase cleavage, resulting in cell death [32]. Therefore, cysteine,
especially in odd numbers, is almost depleted in PIII M13 phage libraries. Proline at position 1 inhibits
the signal peptidase, which cleaves the PIII leader sequence for the major protein, too [22,33,34].
Overabundance of prolines over most of the other positions has been described before by Malik et al.,
who found significantly reduced abundance of peptide inserts which tend to form α-helices [35].

Overabundance of alanine at +1 is also due to signal peptidase cleavage, as alanine is the only
amino acid showing a significantly increased frequency at the first carboxy-terminal position after
gram-negative bacterial signal peptidase cleavage [36,37].

The hydrophobic amino acids valine, phenylalanine, leucine, isoleucine, methionine and
tryptophan are showing a decreased frequency after amplification. Although rarely discussed,
it is assumed that N-terminal inserts hinder signal peptide cleavage of the preprotein, resulting in a
polytopic membrane protein. Transport of the PIII preprotein to the cytosolic cell membrane, signal
peptide cleavage and subsequent translocation of the protein through the membrane are required for
synthesis of functional M13 phage [38,39]. Herman et al. found hydrophobic peptides, which could
not be displayed with M13 phage but with T7 phage, most probably because the hydrophobic nature
of the peptide inhibited correct phage assembly of M13 phage [40].

Amino acid composition after three rounds of biopanning shows no global frequency change
for most amino acids, but position-dependent de-/increased frequencies. Cysteine shows an overall
decreased abundance, as cysteine is sensitive to oxidation and the formation of intra- and inter-peptide
disulfide bonds resulting in cysteine-containing sequences being involved in misfolded phage proteins.
The aromatic amino acids tryptophan, phenylalanine, tyrosine and methionine show an overall
decreased abundance, most probably as result of inhibition of phage assembly and missing signal
peptide cleavage, when these amino acids are present in the insert. Exception are the tyrosine residues
at +2 and +10, phenylalanine at +1 and methionine at +3, where they occur with increased abundance.
Peptides, which still possess these amino acids after three rounds of biopanning are most likely
subject to strong target-binding specific selection pressure, that counteracts the biased abundance
described above.

Sequence logo calculation using pLogo [18] revealed formation of a consensus sequence after
three rounds of biopanning in the elution fraction (FIMSVTKGRQVV) and in the stripping fraction
(FHMPLTDPGQVQ) (only amino acids with highest binominal probability are shown, compare
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Figure 2). Both consensus sequences show phenylalanine at +1 and methionine at +3. Both amino
acids possess an overall decreased abundance in these fractions. Furthermore, in the stripping fraction
two carboxy-terminal glutamines at +10 and +12 are shown, whereas Rodi et al. reported glutamine
to be less abundant at +10 and +12 in the naïve Ph.D.TM–12 library. This clearly indicates a directed
selection pressure, which leads to enrichment of glutamines at these positions. The codons of both
glutamines found in all motif-carrying sequences were TAG, which is the codon for the amber stop
codon. In the suppressor strain, carrying glnV, which was used in this work, glutamine is inserted
instead of the stop codon, preventing premature termination of the recombinant PIII.

4.3. NGS: Core Fraction Calculation

Core fractions were calculated in order to quantify and differentiate different selection pressures.
The number of shared sequences within the fraction of the different biopanning rounds depends on
the original number of unique sequences in the fractions and is limited by the minimum number of
shared sequences (compare Tables 2 and 3). Interestingly, the number of shared sequences relative
to the minimum number of unique sequences in the included fractions is tenfold lower for the core
fractions of elution and stripping compared to wash and input. This indicates an enrichment and thus
loss of sequences on the fractions of the different biopanning rounds, suggesting a directed selection
pressure. This observation clearly demonstrates that the experiments carried out in this work led to
the enrichment of sequences and thus verifies the experimental setup.

When subtracting the different core fractions to calculate the difference sets, it becomes clear,
that after subtracting the input and wash core fraction from the union ES, only few sequences are
obtained. Subtraction of the input core fraction even leads to a reduction in sequences, which is
not decreased anymore when the wash core fraction and the top 10% (and 25%) most occurring
sequences were removed. The input core fraction was assumed to be mainly composed of sequences,
that are subject to amplification-based selection pressure and possess a selection advantage due to fast
propagation. Thus, this clearly indicates that the most abundant 10% (and 25%) percent of the naïve
library possess a fast propagation-related growth advantage and are therefore included in the input
core fraction. Furthermore, the wash core fraction is included in the input fraction, too. This shows
that most sequences, which are removed by washing to get rid of low- and/or unspecific binding
sequences, are also fast-propagating. However, calculating core fractions, unions of these fractions
and subsequently subtracting the core sequence set of wash and input fractions, also leads to a severe
depletion of sequences. Consequently, many probable candidate sequences that might possess good
binding properties are removed, leading to a loss of information. Sequences that possess a good
binding affinity to the target material and growth advantage due to fast propagation are removed from
the library. Schönberger et al. and Rodi et al. identified target-binding sequences with high affinity,
which were high abundant in the naïve library and after successful biopanning. Consequently, besides
good binding affinity, these sequences possessed a growth-based selection advantage, too [14,26,41].
The sequence NYLPHQSSSPSR, which was identified by Schönberger et al. as a gallium binder,
possessed arsenic-binding properties, too [42]. It was enriched in both elution and stripping fractions.
However, due to its growth advantage, it was also found in all wash and stripping fractions and thus
removed when the core fractions were calculated. It also contains the motif PSR, which was enriched
in this study, too. This example illustrates, that the calculation of core sequences is a suitable method
to exclude sequences with growth advantage and/or low or unspecific binding properties, however
at the same time, the subtraction of sequences includes the risk of losing information and potential
binding sequences.

The remaining peptide sequences, which were identified through calculation, are hidden deep in
the fractions, as they only show low abundance. Yet, these sequences are enriched over the biopanning
and would not have been identified with Sanger sequencing of single clones or Illumina sequencing of
limited fractions at the end of three rounds of biopanning (compare Figure 3).
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An alternative method for the removal of sequences, which are shared between two fractions,
is suppression subtractive hybridization (SSH). This approach allows the comparison of DNA repertoires
and the isolation of enriched sequences [43,44]. Vargas-Sanchez et al. could adapt this method to
compare two phage display library populations, and were able to remove >96% of common non-specific
sequences, shared between both fractions. The resulting population did possess an enriched affinity
for the target [45]. However, the resulting population, although possessing enriched target affinity, is
intrinsically disordered, complicating the identification of the best-binding sequences. When applied,
we suggest implementing this physical DNA subtraction in the different biopanning rounds for target
identification to further enrich target-specific sequence populations, but to omit SSH after the final
round of enrichment. Thus, the phage display experiment benefits from the enhanced enrichment and,
after completion, still presents the selection-based sequence abundance distribution.

4.4. NGS: Motif Enrichment

Motif enrichment analysis and motif comparison led on the one hand to the identification of motifs,
which might mainly be part of fast-propagating sequences possessing growth advantage and likewise
to the identification of motifs, which are part of potential target-binding sequences. The motifs PSR and
LTD, e.g., have been described before, but specificity of sequences carrying this motif for the respective
target material could not be shown [11]. With the data obtained from our study we assume that both
motifs occur in sequences with growth advantage; however, for sequences carrying the motif QxQ,
a potential target-specific selection pressure could be shown accompanying the growth advantage.

Hence, motif comparison allows the identification of sequences, possessing more than one motif
involved in growth-related selection advantage. However, as discussed above, sequences can be
both target-binding and fast-propagating. We recommend including further motif analysis into the
existing phage display experiment databases, because knowledge about motif origin and assertiveness
can help to distinguish identified sequences into target-specific and non-target related. Due to the
strict core calculation conditions, many target-binding sequences may have been lost. Sequences that
carry more than one enriched motif might be interesting candidates for further binding experiments,
e.g., sequences QLQLDMDLSLHS and YQQQTSLHSPYA. Both sequences, however, do not possess
the QxQ motif at the carboxy-terminal part of the sequence.

4.5. QxQ Motif: Metal- and Oxyanion Interaction

Metal binding of amino acids is often associated with histidine and cysteine, as most metal
interactions are described for these two amino acids and their imidazole/thiolate group [46–50].
Most often, these interactions are supported by nearby peptide structures, cysteine interaction of
complex molecules with metals has, however, been described even without surrounding structures [51].
Zinc, e.g., is coordinated predominantly by cysteine and histidine. Additionally, glutamic acid and
aspartic acid have been described to interact via H-bonding [52].

The motifs discovered in this work, however, lack cysteine (except CHMPLTDPGQVQ) and
possess histidine at +2 in QxQ containing motifs and in the SxHS motif. Glutamic acid is not present in
the sequences. Aspartic acid is found at +7 in QxQ motif family sequences. Methionine, the second
sulfur-containing amino acid, has been found in the sequences at +3 and has been described as
metal-binding earlier [53,54].

Special emphasis here is put on the question of if the conserved motif QxQ is involved in
the binding of arsenic and a result of the target-specific selection pressure. QxQ motifs have been
described to be involved in interaction with Ni2+ and other alkali metal ions [55–57]. The broader
metal binding ability of glutamine was further described for copper [58], whereas Chiera et al. could
even show a major impact of glutamine residues and its H-bonds on the stability of copper-binding
peptides [59]. Glutamine was also described to be involved in the surface binding and structure
forming of platinum-binding peptides [60] Furthermore, it is described as being abundant in the
coordination spheres of metal ions [61,62]. Mitsui et al. discovered the QxQ motif in zinc fingers [63].
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We propose that the carboxy-terminal QxQ motif is involved in the interaction with the oxyanion
(occurring mostly as As(V) H2AsO4

−/HAsO4
2− [25]). The interaction of proteins and arsenic oxyanions

occurs mainly over the thiolate group of cysteine [64]; however, hydrogen bonds are involved [65],
which can be formed by glutamine, too [66].

Therefore, the interaction is most probably based on the formation of hydrogen bonds, as the main
interactions of glutamine are H-bond based [67]. The functional group of the side chain of glutamine is
a carboxamide, allowing interaction over the carbonyl- or the secondary amine group. Both have been
described to be involved in metal coordination [68–70]. In addition, cysteine, serine and asparagine
have been described as ligands for the interaction with the oxyanions of molybdenum and arsenic [71].
An explanation for the occurrence of the QxQ motif in many of the identified sequences could be that
glutamine replaces asparagine in the formation of H-bonds, which has also been described to form
H-bonds with arsenite [72].

4.6. QxQ Motif: Biological Occurrence

Interaction of oxyanions with proteins is performed by coordinating the oxyanion in an oxyanion
hole. Ménard et al. found glutamine to be involved in the stabilization and structure formation of
the oxyanion hole of papain [73]. The toxicity of arsenic and the oxyanions of, e.g., vanadium and
molybdenum are caused by its ability to mimic phosphate. Ubiquitous phosphate-utilizing enzymes
and pathways are either inhibited by arsenic or used for its metabolization, i.e., arsenic is taken up by
the phosphate transport system [74–76].

Using PROSITE [77–79] we discovered, that the consensus sequence QxQ is part of many
serine/threonine kinases (EC 2.7.11.-), tyrosine kinases (EC 2.7.10.-), polyphosphate kinases (2.7.4.-)
and other enzymes, transferring phosphorus-containing groups (2.7.-.-). We therefore hypothesize,
that the QxQ motif is involved in the interaction with the oxyanion of arsenic and can interact with
phosphate, too. This corresponds to publications, that did identify QxQ motifs in tyrosine kinases [80]
and phosphatases [81]. Shi et al. found QxQ motifs in close proximity to the phosphate binding site
especially in PPM protein phosphatases [81].

Silver et al. mapped several genes and enzymes, which are involved in the bacterial oxidation
and reduction of arsenic. QxQ and QxxQ motifs can be found in various proteins of different
bacteria responsible for oxyanion transport, binding and oxidation/reduction reactions of arsenic [82].
Furthermore, for the bacterial arsenate reductase ArsR from E. coli, binding of AsIII to the cysteines
Cys32, Cys34 and Cys37 is described, whereas a QxQ motif is found on position 42–44. [3]. ArsC binds
the arsenic oxygen through initial non-covalent binding and subsequent interaction with only one
cysteine, which could be provided by CHMPLTDPGQVQ [83]. These findings indicate the involvement
of QxQ motif-carrying sequences in the interaction with arsenic.

5. Conclusions

Three rounds of biopanning against on-column immobilized arsenic on a cationic ion exchange
material were performed. All major, phage-containing fractions and the naïve phage library have
been Illumina sequenced to compare the data with the traditional phage display experimental setup
and Sanger sequencing of the elution and stripping fraction after the third biopanning round. Sanger
sequencing revealed two high abundant sequences (11/68). Comparison with NGS data showed that
sequences obtained through Sanger sequencing only cover sequences, which were highly abundant
in the naïve library, too. However, sequence variations and phage display-typical selection biases
remained unknown after Sanger sequencing. Usage of bioinformatics tools and core fraction calculation
revealed the highly enriched motifs QxQ and SxHS in different sequences. Further motif analysis
led to the identification and classification of derived motifs into growth-related and target-specific
selection pressure enriched sequences. Comparison with published proteins and functions supported
the potential arsenic-binding function of the QxQ motif leading to the discovery of diverse candidate
peptide sequences, which may be able to bind to arsenic.
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The aim of this study was to compare and verify traditional phage display setup using Sanger
sequencing of limited number of singles clones with a larger number of sequences, derived with
Illumina and to identify phage display artefact interfering with the successful identification of
target-binding sequences. We could show that Illumina sequencing greatly increases the insight
into the phage display selection mechanisms. For future phage display experiments, the authors
recommend the extensive usage of bioinformatics tools and databases like PuLSE, pLogo, MEME,
ProSite, Phastpep, PepSimili, PhD7Faster, Sarutop and, e.g., MimoDB (incomplete list of suitable
reviews and literature [84–90]). These tools and databases help to unravel NGS results, discover
enriched motifs, separate fast-propagation biased sequences and other target-unrelated peptides
and to rank identified peptides for their occurrence. Special consideration should be given to the
database www.48hd.cloud [23], a database and company by Derda et al. for the evaluation of NGS
data of phage display experiments, which is still under construction. Our study may also serve
as a guideline for future phage display experiments and evaluations. Next generation sequencing
allowed a detailed description of the sequence variations over the three rounds of biopanning and,
by comparison of different fractions, we could not only show which motifs are enriched and hidden
below high-abundant sequences, but also discriminate growth-bias related sequences. Furthermore,
changes in the proportion of amino acids were assigned to the respective selection pressure, as was
shown, e.g., for the amplification-biased reduction of hydrophobic amino acids. We suggest Illumina
sequencing of various fractions in future phage display experiments and additionally to the usage of
bioinformatics tools, we strongly recommend the internal comparison of the obtained fractions to gain
a better understanding of the occurrence of finally enriched motifs.

However, in this study, a single molecule was chosen as a target for phage display. The expected
repertoire of identified ligands is therefore very specific. More complex targets might result in larger
and more diverse ligand species and therefore complicate the underlying calculations. Furthermore,
the sequencing, calculation and evaluation of sequencing data is always limited to in silico presentation
of results. Only peptide synthesis, alanine scanning, site-directed mutagenesis and peptide binding
experiments can finally verify these data. The in-depth insight into the underlying mechanisms of the
phage display experiments that were carried out allows a better preselection for subsequent in situ
binding studies. Most promising candidate sequences of this study will be subject to further binding
studies, as well.
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Appendix A

Figure A1. Read and sequence distribution of the fractions of three rounds of biopanning against
on-column immobilized arsenic with Illumina sequencing (B). Top right (A), a figurative explanation is
shown. The horizontal black stacked bar shows the distribution of the one hundred most occurring
sequences relative to each other. Below in the white subdivided bar the read distribution is shown.
Shown are 1%, 5%, 10%, 20%, . . . , 90%, 100% of the reads. The shaded area shows the read number
occupied by the one hundred most occurring sequences. Read (r) and unique sequences (s) are given
in numbers.
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Figure A2. Amino acid composition of the fractions of three rounds of biopanning against on-column
immobilized arsenic (A). Shown is the relative occurrence of each amino acid at each position of the
randomized 12-mer sequence displayed on the outmost part of M13KE phage in the Ph.D.TM–12 phage
library (New England Biolabs, Ipswich, MA, USA) relative to the percentage of occurrence of the amino
acids in the naïve library. (B) shows an enlarged view of the stripping fraction of biopanning round 3.

Table A1. Amino acid frequency (%) of the naïve Ph.D.TM–12 phage library LOT 0151606
(New England Biolabs, Ipswich, MA, USA) after Illumina sequencing of 133,163 reads, resulting
in 97,563 unique sequences.

Amino Acid Frequency in Naïve Library (%)

arginine R 5.09
lysine K 2.39

aspartic acid D 4.00
glutamic acid E 2.60

glutamine Q 4.14
asparagine N 4.65
histidine H 5.40

serine S 10.80
threonine T 9.49
tyrosine Y 3.80
cysteine C 1.00

tryptophan W 1.97
methionine M 3.07

alanine A 6.88
isoleucine I 3.44

leucine L 9.13
phenylalanine F 2.92

valine V 4.97
proline P 10.06
glycine G 4.21
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Figure A3. Logos of the fractions of three rounds of biopanning against on-column immobilized arsenic.
Shown are logos, calculated using pLogo [18] based on the significance of the individual residues in
context to the naïve phage library Ph.D.TM–12 as background frequency.
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Figure A4. Occurrence of sequences carrying the motif SxHS in the randomized 12-mer displayed on
the Ph.D.TM–12 phage library. The occurrence in reads (blue) and sequences (orange) of the respective
fraction of three rounds of biopanning against on-column immobilized arsenic (A) and of the calculated
core fractions (B) is shown.

Figure A5. Proportion of reads (blue) and sequences (orange) carrying the motif SxHSxxxxxxxx relative
to all reads and sequences carrying SxHS on random positions for three rounds of biopanning against
on-column immobilized arsenic and of the calculated core fractions.
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Figure A6. Comparison of motif occurrence in two different lots of the naïve Ph.D.TM–12 phage library
(which were not used in this work) on 48hd.cloud [23]. Motifs QxQ and SxHS (green) are shown in
comparison to the respective most abundant motifs (red).
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