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Medicinal inorganic chemistry has been stimulating largely by the success of the anticancer drug, cisplatin. Various metal
complexes are currently used as therapeutic agents (e.g., Pt, Au, and Ru) in the treatment of malignant diseases, including
several types of cancers. Understanding the mechanism of action of these metal-based drugs is for the design of more effective
drugs. Proteomic approaches combined with other biochemical methods can provide comprehensive understanding of responses
that are involved in metal-based anticancer drugs-induced cell death, including insights into cytotoxic effects of metal-based
anticancer drugs, correlation of protein alterations to drug targets, and prediction of drug resistance and toxicity. This information,
when coupled with clinical data, can provide rational basses for the future design and modification of present used metal-based
anticancer drugs.
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1. METAL-BASED ANTICANCER DRUGS

Medicinal applications of metal complexes as therapeutic
drugs have a more than 5000-year history [1]. Since
the discovery of the anticancer activity of cisplatin by
Shimizu and Rosenberg 35 years ago, there has been a
rapid expansion in research to find new, more effective
metal-based anticancer drugs [2]. The major classes of
metal-based anticancer drugs include platinum (II), gold
(I) and gold (III), metalloporphyrin, ruthenium (II) and
ruthenium (III), bismuth (III), rhenium (I), and copper (II)
compounds.

1.1. Platinum(II) anticancer drugs

Cisplatin represents one of the most potent drugs available
in the cancer chemotherapy for several solid tumors, such
as testicular, ovarian, bladder, and neck cancers [3]. It
is generally believed that cisplatin exhibited its anticancer
effects through preferentially binding to quinine N-7 of
DNA, and then cause DNA damage specifically in cancer
cells, subsequently leading to cell death [4]. After successes
achieved with platinum complexes, there is a tremendous

increase in the search for platinum complexes with different
ligands that might produce more specific anticancer effects.
Some of these platinum-based drugs have been approved
by the Food and Drug Administration (FDA), including
carboplatin for the treatment of ovarian cancer [5, 6],
oxaliplatin for metastatic colorectal cancer [7, 8], satraplatin
for hormone-refractory prostate cancer [9], and picoplatin
for small-cell lung cancer [10].

Transplatinum compounds follow different patterns of
cell killing in comparison to cisplatinum, thus giving a
reason for optimism in their development as a new class
of platinum-based anticancer drugs [11]. The initial report
of anticancer properties of a dinuclear platinum complex in
1988 started a new paradigm in platinum-based chemother-
apy. Several multinuclear platinum complexes have entered
clinical trials in recent years, with varying results [12, 13].
The major limitations of cisplatin and other platinum
anticancer drugs are related to drug resistance and their
side effects, including nephrotoxicity, neurotoxicity, and
emetogensis [14]. Resistance to cisplatin is multifactorial,
most cases consist of mechanisms limiting the formation of
DNA adducts or operating downstream of the cisplatin-DNA
interaction to promote cell survival [15].
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1.2. Gold (I) and gold (III) anticancer complexes

Gold (I) complexes had been used for the treatment of
arthritis some decades ago, but most of them disappeared
from the drug market because of intolerable side effects, such
as gastrointestinal adverse reactions, nephrotoxicity, and
haematological reactions. However, the design and testing
of gold complexes, especially gold (III) complexes with
anticancer activity begin to be intensively pursued in the
past few years. The potential use of gold (III) complexes
as anticancer drugs were based on three rationales [16–
18]: (a) analogies between square planar complexes of both
platinum (II) and gold (III) are d8 ions; (b) analogy to the
immunomodulatory effects of gold (I) antiarthritic agents;
and (c) complexation of gold (I) and gold (III) with known
anticancer agents to form new compounds with enhanced
activity. Buckley et al. first reported some organogold (III)
complexes endowed with significant cytotoxic and anticancer
properties [19]. During the past decades, various gold
(III) complexes with sufficient stability in the physiological
environment have been synthesized and evaluated for in vitro
anticancer properties. Some of these gold (III) complexes
turned out to exhibit relevant cytotoxic effects in vitro and
were the subject of further biochemical and pharmacological
investigations [20–33]. Our previous findings showed that
gold (III) mesotetraarylporphyrin 1a was stable against
demetallation in physiological conditions and exhibited
higher cytotoxicity than cisplatin against a panel of human
cancer cell lines [34–37]. The major limitation of gold
(III) complexes is that few exhibit good stability under
physiological conditions, due to the reduction of gold (III)
to gold (I) [38]. However, low cisplatin cross resistance has
been observed in gold complexes [39]. There is therefore
considerable interest in the development of tumor-selective
and stable gold anticancer drugs.

1.3. Metalloporphyrin drugs

Metalloporphyrin drugs are new class of antioxidant enzyme
mimetics with novel structure: a metal in the center of
porphyrin ligand. Metalloporphyrins (e.g., MnTBAP) have
previously been used to inhibit age-related oxidative damage
in myocardium of mice that are lacking mitochondrial
enzyme manganese superoxide dismutase [40]. Afterwards,
metalloporphyrin drugs began to be used as photodynamic
therapy agents for certain solid tumors [41]. Photodynamic
therapy is based on the concept that porphyrins are known
to be rapidly and preferentially taken up by the tumor
cells with higher intakes of lipoproteins [42, 43]. When
such photosensitizers are irradiated with an appropriate
wavelength of visible or near infrared (NIR) light, the
excited molecules can transfer their energy to molecular
oxygen in the surroundings, which is normally in its triplet
ground state. This results in the formation of cytotoxic
reactive oxygen species (ROSs), particularly singlet oxygen
[44]. ROSs are responsible for oxidizing various cellular
compartments including plasma, mitochondrial, lysosomal,
and nuclear membranes, resulting in irreversible damage of
tumor [34, 44]. Therefore, under appropriate conditions,

photodynamic therapy offers the advantage of an effective
and selective method of destroying diseased tissues without
damaging adjacent healthy cells [42, 43].

Since the approval of Photofrin by FDA for chemother-
apy [45], porphyrin derivatives with different metal in the
center of the molecule have been widely used as photosen-
sitizers for photodynamic therapy in the treatment of can-
cer, including chlorophyllin copper complex as superoxide
dismutase mimics [46, 47], FeTBAP and MnTBAP [48, 49],
ZnTBAP [50], motexafin gadolinium (MGd) [51]. Different
modes of actions have been suggested for different kinds
of metalloporphyrins. For example, MGd has been shown
to inhibit heme oxygenase-1 (HO-1) activity that results in
inactivation of the antiapoptotic properties of the products
of HO-1 [51]. While FeTBAP and MnTBAP have been
reported to be superoxide anion scavengers [48]. MGd is also
an active inhibitor of cytochrome P450 enzymes, although
with a lower potency than that exhibited for inhibition of
HO-1.

1.4. Other metal-based anticancer drugs

In recent years, other approaches in the search for new,
metal-based anticancer agents are to examine complexes
that contain other transition metals. In the design of these
new drugs, octahedral ruthenium (II) and ruthenium (III)
complexes have shown antineoplastic properties on a num-
ber of experimental tumors. Tetraammine-, pentaammine-,
heterocycle-, and dimethylsulfoxide-coordinated ruthenium
complexes have been synthesized and shown high affinity
for nitrogen donor ligands in vitro and as a result exhibit
anticancer action in vivo [52–54]. Other transition metals
have been used as anticancer drugs, including bismuth (III)
labeled antibodies for systemic radioimmunotherapy [55,
56], rhenium (I) complexes as DNA-binding agents [57],
(MTR)2Zn2+ complex that induces cancer cell death by bind-
ing to chromatin [58], and Cu2+ compound chlorophyllin
initiated apoptosis in human colon cancer cells through
caspase-8 and apoptosis-inducing factor (AIF) activation in
a cytochrome c-independent manner [46].

2. PROTEOMICS

2.1. Introduction to proteomics

The proteome is defined as all expressed protein complement
of a cell, organ or organism, and it includes all isoforms and
posttranslational variants. Proteomic technology, first coined
in 1995 [59], attempts to separate, identify, and characterize
a global set of proteins in an effort to provide infor-
mation about protein abundance, location, modification,
and protein-protein interaction in the proteome of a given
biological system [59, 60]. This postgenomic technology
provides a direct measurement of the presence and relative
abundance of proteins, and reveals the consequence of pro-
tein functioning in establishing the biological phenotype of
organisms in different states. By studying interrelationships
of protein expressions and modifications in health and
disease or drug treatment, proteomics contributes important
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insights into determining the pathophysiological basis of
disease [61], validating drug targets [62], and illustrating
drug action [63], toxicity, and side effects [64].

2.2. Technological platforms

In the field of proteomics, several well-established methods
persist as means to resolve and analyze complex mixtures
of proteins derived from cells and tissues. Currently, the
most commonly used proteomic platforms include two-
dimensional gel electrophoresis (2DE) and protein chip
arrays, isotope-coded affinity tages (ICATs), and immo-
bilized metal affinity chromatography (IMAC) (Table 1).
These technological platforms are most often incorporated
with matrix-assisted laser desorption/ionization time of
flight (MALDI-TOF) [65], surface enhanced laser desorption
ionization time of flight (SELDI-TOF) [66], electrospray
ionization (ESI) [67], and/or tandem mass spectrometry
(MS/MS). In addition, inductively coupled plasma (ICP)
mass spectrometry has also been applied in proteomic-based
research of drug discovery [68].

3. POTENTIAL APPLICATIONS OF PROTEOMICS
IN ILLUSTRATING METAL-BASED DRUG
DEVELOPMENT AND DISCOVERY

Ever since the initial discovery of the anticancer activity of
cisplatin, major efforts have been devoted to elucidate the
biochemical mechanisms of anticancer activities of metal-
based drugs to facilitate rational design of novel metal-based
drugs with better pharmacological profiles. A comprehensive
understanding of the molecular action mechanisms, which
are triggered by metal-based drugs to kill cancer cells can lead
to the design of more effective anticancer drugs, as well as to
provide new therapeutic strategies based on the molecular
activity of metal-based drug activity.

3.1. Target discovery and validation

Target discovery, which involves the identification and early
validation of disease-associated targets, is an essential first
step in the drug discovery pipeline [81]. Indeed, the drive
to determine protein function has been stimulated, both in
industry and academia, by the human genome and proteome
projects in progress. Proteomics, the study of cellular protein
expression, is an evolving technology platform that has the
potential to identify novel proteins involved in key biological
processes in cells. These proteins may serve as potential drug
targets. Proteomics thus holds great promise as a powerful
technique for drug target discovery. It must be pointed
out, however, that numerous drug-targeted proteins are
membrane-bound proteins, for example, receptors and ion
channels. These proteins may not be amenable for study by
proteomics due to their poor solubility and low abundance,
and thus they are disproportionally represented in proteome
profiles [82]. Up to date, only a fraction of putative drug tar-
gets has been identified by proteomic approaches, including
the volume-sensitive organic osmolyte/anion channel as key
elements of tumor development, migration, and invasiveness

[83], and integrin alpha-4 as a molecular target of oxidative
stress [84].

Studying protein expression profiling of drug-treatment
leads to the identification of a number of drug-specific
targets both in vivo and in vitro. Using HPLC-MALDI-TOF
MS, Hasinoff et al. have identified topoisomerase IIα con-
tained at least five free cysteins (170, 216, 300, 392, and 405)
and two disulfide-bonded cyteine pairs (427-455 and 997-
1008) [85]. Cisplatin was found to antagonize the formation
of a fluorescence adduct between topoisomeraser IIα and the
sulfhydryl-reactive maleimide reagent 10-(2,5-dihydro-2,5-
dioxo-1H-pyrrol-1-yl)-9-methoxy-3-oxo-3H-naphtho[2,1-
b]pyran-2-carboxylic acid methyl ester (ThioGlo-1). Based
on these results, the authors suggested that topoisomeraser
IIα cysteines may be possible sites responsible for the
inhibition of the catalytic activity of topoisomeraser IIα
observed in the presence of cisplatin, and topoisomeraser
IIα cysteins and DNA as targets responsible for cisplatin-
induced inhibition of topoisomeraser IIα [85]. Besides,
mitochondrial proteins, especially ATP synthase-beta
subunit, have been reported to be key proteins that serve
as primary target of manganese porphyrin [MnTnHex-
2-PyP(5+)] treatment during renal ischemia/reperfusion
injury by proteomic study [86].

ICP MS coupled with capillary electrophoresis (CE)
has been used in the identification, characterization, and
determination of different chemical species of an element
in complex biological systems, that is, the impetus of
biochemical speciation analysis [87, 88]. Polec-Pawlak et
al. have used this approach to study the platinum group
metallodrug-protein binding aiming to characterize the
interactions between cancer-inhibiting metal complexes and
serum transport proteins [89]. Such binding does not
only regulate the uptake and accumulation of the drug in
tumor tissue but also determines its overall distribution and
exertion and differences in efficacy, activity, and toxicity [90,
91]. Their study provides clear evidence that a ruthenium
(III) complex [trans-tetrachlorobis(1H-indazole)ruthenate
(III)] (KP1019) preferentially binds toward albumin whose
adduct is a dominating protein-bound species of ruthenium
[89].

3.2. Validation of drug toxicity and resistance

Insights into toxic responses are an asset for the interpre-
tation of adverse drug effects and contribution to accurate
risk assessment for humans. Proteomics in combination with
combinatorial chemistry and high-throughput screening can
help to bring forward validating toxicity and resistance of
an unprecedented number of potential lead compounds
[92]. Benefits can be expected in optimized clinical trials
based on the availability of biologically relevant markers
of drug efficacy and safety. Proteomics has demonstrated
proof-of-concept in toxicology as shown by a number of
successful applications in mechanistic toxicology and lead
selection. Proteomic studies of liver toxicity have been
carried out with thioacetamide [93] and ethanol [64]. Other
researches have studied nephrotoxicity of cyclosporine A by
proteomic approaches [94, 95] and reported a profound
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Table 1: Major technological platforms in proteomics.

Technique
2DE (Two-dimensional gel
electrophoresis)

SELDI-TOF MS
ICAT (Isotope-coded
affinity tags)

IMAC (Immobilized metal
affinity chromatography)

Principles

2DE separates protein
mixtures by their isoelectric
points and molecular
weights, proteins can be
identified by MALDI-TOF
MS through enzyme
digestion

This technique employs
protein chip separates
protein mixtures by
different surface binding
affinity and molecular
weights, and roughly
identifies proteins through
SELDI-TOF MS

ICAT separates proteins by
chemical labeling and
relative abundance, and
then obtains protein
identification through ESI
MS/MS

IMAC is a powerful protein
fractionation method used
to enrich metal-associated
proteins and peptides,
proteins and peptides can
be determined by ESI
MS/MS

Remarks

Suitable for whole
proteome or specific
pre-fractioned proteomes,
detect large quantity of
proteins in a single run, not
suitable for low abundant
proteins, affected by
posttranslational
modifications

Simple preparation
procedures, sensitive
detection limit, small
sample requirement,
significant results, wide
detection range in
molecular weight, modified
by different surface
affinities

Biotinylated tags labeling
before analysis; suitable for
low abundant proteins; not
suitable for post
translational modified
proteins; more automated

Enrich metal-associated
proteins and peptides, easy
regeneration, longevity and
stability to proteolytic
degradation, have to be
facilitated by other
separation methods,
suitable for
posttranslational
modification

Potential
applications

Study drug-induced
cellular signaling pathway
in a global scale [35, 69]

Identification of drug
targets [70]

Identification of drug
targets [70]

Screen drug candidates
[72, 73]

Receptome profiling
[75, 76]

Mapping of
phosphoproteomes [77, 78]
and metalloproteomes
[79, 80]

Study of drug toxicity and
side effects [71]

Study of protein-drug
interactions [74]

downregulation of the calcium binding protein calbindin
D28 responsible for cyclosporine A-induced kidney toxicity.
However, this technology-driven acceleration in drug dis-
covery moves the bottlenecks in drug development to the
downstream, which is the improvement in the selection of
patient populations for clinical trials.

Proteomic approaches have been used to identify the
underlying mechanisms for cisplatin resistance [96]. In this
study, the authors used cervix squamous cell carcinoma
cell line A431 and its cisplatin-resistant subline, A431/Pt
as model system. The identified differentially expressed
proteins can be classified into several groups, including
molecular chaperones (e.g., heat-shock protein HSP60,
HSP90, and HSC71), Ca2+-binding proteins (e.g., calmod-
ulin and calumenin), proteins involved in drug detoxification
(e.g., peroxiredoxin 2 and 6, and glutathione-S-transferase),
antiapoptotic proteins (e.g., 14-3-3 switched on in cisplatin-
exposed cells) and ion channels (e.g., voltage-dependent
anion channel 1, voltage-dependent anion-selective chan-
nel). Besides this, proteome profile of cisplatin sensitive ovar-
ian cell line IGROV1 and its cisplatin-resistant counterpart
IGROV1-R10 have been compared aiming to find any pro-
tein markers or to establish new therapeutic strategies [97,
98]. Increased expression of cytokeratin 8 and cytokeratin 18
was considered to play a role in acquired chemoresistance
of IGROV1-R10 cancer cell line to cisplatin [97, 98].

Cytokeratin 8 and cytokeratin 18 have been implicated
in resistance to TNF-α-induced apoptosis by binding the
cytoplasmic domain of tumor necrosis factor receptor 1
[69, 99]. Moreover, human nasopharyngeal carcinoma cells
deficient for cytokeratin 8 were more sensitive to cisplatin-
induced apoptosis [100].

In addition, acquired and intrinsic cellular drug resis-
tances are multifactorial processes, involving induction of
drug detoxifying mechanisms, quantitative and qualitative
modification of drug targets, cell cycle arrest, regulation of
DNA replication or reparation mechanisms, modulation of
apoptosis, and other mechanisms [101, 102]. Global exami-
nation of the glycoproteomes of the cisplatin-resistant ovar-
ian cancer cell line IGROV-1/CP using shotgun glycopeptide
capture approach coupled with MS has been used to study
cisplatin resistance [103]. In this approach, glycopeptides
derived from glycoproteins are enriched by selective capture
onto a solid support using hydrazide chemistry followed by
enzymatic release of the peptides and subsequent analysis by
MS/MS. This method improves solubility of large membrane
proteins and exposes all of the glycosylation sites to ensure
equal accessibility to capture reagents. Stewart et al. also used
isotope-coded affinity tags (ICATs) integrated with mRNA
expression levels to study cisplatin resistance in ovarian
cancer cells [104]. Their study identified three pathways
in Panther database (http://www.pantherdb.org/) that were

http://www.pantherdb.org/
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significantly (p < .05) upregulated in cisplatin-sensitive cells,
including glycolysis, interleukin signaling pathway, and PI 3-
kinase pathway [104].

3.3. Mapping drug action mechanisms

An understanding of protein function within the context
of complex cellular networks is required to facilitate the
discovery of novel drug targets and, subsequently, new thera-
pies directed against them. Proteomics offers comprehensive
monitoring of protein alterations at molecular level upon
drug treatments. Being the basic biochemical mode of drug
activities, drug action mechanism should be better under-
stood to provide valuable insights into drug modification
and new drug development [34, 105]. Successful examples
in drug mechanism study using proteomics include the
illustration of insulin-like growth factor-binding protein-
6-induced sublethal hydrogen peroxide stress in human
diploid fibroblasts cells [106]. By using ESI MS/MS, Kanski
et al. have applied proteomic analysis of protein nitration in
aging skeletal muscle and identified nitrotyrosine-containing
sequences in vivo [107].

In our previous study, we have used 2DE-based pro-
teomic technology to compare the protein profile of human
nasopharyngeal carcinoma SUNE1 cell line treated with gold
(III) porphyrin 1a, and a number of differentially expressed
proteins were identified [35]. These proteins can be classified
into several categories based on their major biological func-
tions, including cellular structural proteins, stress-related
and chaperone proteins, proteins involved in ROS, enzyme
proteins and translation factors, proteins that mediate cell
death and survival signaling, and proteins that participate in
the internal degradation system [35]. Among these proteins,
one of the significant increased proteins is voltage-dependent
anion channel 1 (VDAC 1). VDAC 1 is a mitochondrial
outer membrane channel protein, which functions as the
pathway for the movement of various substances in and
out of the mitochondria [108]. It is considered to be a
component of the permeability transition pore oligoprotein
complex that plays a role in the permeability transition
[109, 110]. VDAC 1 also plays an essential role in Bax/Bak-
induced apoptotic mitochondrial changes in the process
of mammalian cell death [111–113]. In this process, the
proapoptotic proteins Bax and Bak bind to VDAC 1, and
enhance its permeability so that cytochrome c passes through
the channel and releases to cytoplasm [111–113]. Our data
on VDAC 1 upregulation [35] and Bax overexpression [37]
suggest that gold (III) porphyrin 1a may induce cell death
via the mitochondria-mediated apoptosis pathway. Further
functional studies revealed that gold (III) porphyrin 1a
caused depletion of mitochondrial transmembrane potential
(ΔΨm) soon after uptake with suppression of Bcl-2, and
activation of caspase 9 and caspase 3 [34]. Taken together,
these results suggested that mitochondria are the primary
target of gold (III) porphyrin 1a.

Quantitative proteomic analysis on other metal-based
anticancer drugs has also been pursuit. Schmidt et al. have
used nano-LC coupled offline MALDI-TOF/TOF-MS to
study cisplatin-induced apoptosis in Jurkat T cells [114].

Their results showed that this method is more accurate than
the commonly used online LC-ESI-MS.

4. CONCLUSION AND FUTURE PROSPECTS

The potential value of proteomics in metal-based drug devel-
opment, especially in mapping drug action mechanisms, has
been demonstrated in many successful examples. Proteomic
approaches have been recognized as promising techniques
that can facilitate the systematic characterization of a drug
targets’ physiology, thereby helping to reduce the typically
high attrition rates in discovery projects, and improving
the overall efficiency of pharmaceutical research processes.
However, at present stage, the bottleneck for taking full
advantage of this new experimental technology is the rapidly
growing volumes of automatically produced biological data,
and technical challenges with regards to sampling, tumor
heterogeneity, and lack of standardized methodologies. In
addition, to complement the limitation of current proteomic
technology, systematic biological and pharmaceutical studies
should be integrated with proteomics to better serve the
purpose of illustrating the action mechanism of drugs
and thus contribute to the success in metal-based drug
development.
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