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Objective. ,e purpose of the present study was to explore the mechanism of Astragalus membranaceus in the treatment of sepsis.
Methods. We searched the active components and targets of Astragalus membranaceus using the TCMSP and BATMAN da-
tabases. ,en, the GeneCards, MalaCards, and OMIM databases were used to screen out relevant targets of sepsis. ,e common
targets of the former two gene sets were uploaded to the STRING database to create an interaction network. DAVID was used to
perform KEGG enrichment analysis of the core targets. Based on the results of KEGG and previous studies, key pathways for the
development of sepsis were identified and experimentally validated. Result. We obtained 3,370 sepsis-related targets in databases
and 59 active components in Astragalus membranaceus through data mining, corresponding to 1,130 targets. ,e intersection of
the two types of targets led to a total of 318 common targets and 84 core targets were obtained after screening again. ,e KEGG
and previous studies showed that these 84 core targets were involved in sepsis by regulating TNF, MAPK, and PI3K pathways.
TNF, MAPK8, NF-κB, and IκBα are crucial in sepsis. Experimental validation demonstrated that some markers in sepsis model
rats were improved after the intervention with Astragalus granules and their chemical components. Among them, IL-1β, IL-6, and
TNF-α in rat serum were reduced. ,e mRNA and protein expression of TNF-α, IL-6, MMP9, MAPK8, and NF-κB were reduced
in rat blood. However, the mRNA and protein expression of IκBα and PI3K were increased in rat blood. Conclusion. ,e AST
could affect the TNF, PI3K, and MAPK pathway cascade responses centred on IκBα and NF-κB, attenuate the expression of IL-6
and MMP9, and interfere with the inflammatory response during sepsis.

1. Introduction

Sepsis is a systemic inflammatory disease caused by the
overactivation of the immune system and a cascade of in-
flammatory molecules released in the body under stress
conditions, such as infection by pathogenic microorganisms,
trauma, or shock. Without timely and effective treatment,
sepsis can develop into severe sepsis and threaten the pa-
tient’s life [1, 2]. Epidemiology has shown that there are
more than 30 million patients with sepsis worldwide [3].

Currently, the academic community suggests that excessive
activation of the inflammatory response [4], immune dys-
function [5], and coagulation dysfunction [6] affect the
prognosis of patients with sepsis. Clinically, the main
treatment for sepsis is allopathic based on antibiotics.
However, with the increasing number of drug-resistant
strains, the abuse of antibacterial drugs, the development of
new antibacterial drugs, and the relative lag in clinical ap-
plication, the prognosis of patients with sepsis is still un-
satisfactory [7].
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Astragalus membranaceus (AST) is a Chinese herb that
is effective in treating sepsis. AST is the dry root of
Astragalus membranaceus (Fisch.) Bge. var. mongholicus
(Bge.) Hsiao. modern pharmacological studies have shown
that AST and its constituents have good pharmacological
effects on organ damage caused by sepsis. Astragaloside IV
attenuates sepsis-induced intestinal barrier dysfunction by
inhibiting RhoA/NLRP3 inflammasome signal transduc-
tion [8]. Astragalus polysaccharides have a protective effect
on septic heart dysfunction by inhibiting the TLR4/NF-κB
signaling pathway [9]. Astragalus saponins can also regu-
late the levels of serum myeloperoxidase, nitric oxide, and
lactate dehydrogenase and reduce the mRNA expression of
inducible nitric oxide synthase and interleukin-1β in the
liver, alleviating sepsis caused by cecal ligation and
puncture [10].

Network pharmacology is a discipline that uses network
visualisation and other technologies to reveal the complex
biological network relationship among drugs, genes, dis-
eases, and targets [11]. Network pharmacology can analyse
drugs acting on different targets, cells, and organs at the
molecular and genetic levels as well as predict and reveal
the action and mechanisms of drugs. Network pharma-
cology can be used to construct a drug-target network
based on the structure and efficacy of drugs and effectively
predict the medicinal components and mechanism of ac-
tion of traditional Chinese medicines and their compound
preparations [12]. ,erefore, we explored the protective
effect of AST on the body. ,is study used network
pharmacology methods to predict the targets and pathways
of multiple compounds in AST. By constructing a “com-
pound-target-disease” network, we were able to further
clarify the improvement mechanism of AST in the process
of sepsis. At the same time, we intragastrically administered
ASTgranules to SD rats for one week and then constructed
a sepsis model by tail vein injection of LPS. Finally, crucial
gene changes were detected to explore the protective effect
of AST on sepsis.

2. Materials and Methods

2.1. $e Chemical Composition of AST and Its Targets.
,e main chemical components of AST were retrieved
from the Traditional Chinese Medicine Systems Phar-
macology Database and Analysis Platform (TCMSP)
(http://lsp.nwu.edu.cn/tcmsp.php) [13] and Bio-
informatics Analysis Tool for Molecular mechANism of
Traditional Chinese Medicine (BATMAN) [14] (http://
bionet.ncpsb.org.cn/batman-tcm/). Based on the phar-
macokinetic parameters of drug absorption, distribution,
metabolism, and toxicity in the human body [15], oral
bioavailability [16] (OB) ≥ 30% and druglikeness [17]
(DL) ≥ 0.18 were used as the screening conditions for
chemical components in TCMSP database. Adjusted
P< 0.05 was used as the screening condition for chemical
components in BATMAN database [18]. According to the
screening conditions, the effective active components of
AST were initially screened. If the screened composition
has no target, then we delete it.

2.2. Search for Sepsis-Related Targets. ,e Online Mendelian
Inheritance in Man (OMIM, https://www.omim.org/) and
the Human Disease Database (MalaCards, https://www.
malacards.org/), and the Human Gene Database (Gene-
Cards, https://www.genecards.org/) were the searched target
genes using “sepsis” as a keyword. After taking intersections
of sepsis-related targets with AST targets, we obtained po-
tential genes for AST in the treatment of sepsis.

2.3. Protein-Protein Interaction (PPI) Construction and
Screening. ,e intersecting genes were imported into the
STRING database 11.5 (http://string.embl.de/). Species was
set as human; the minimum interaction threshold was set to
“highest confidence” (>0.9) [19]; and the disconnected nodes
in the network were hidden. In addition, a secondary screen
was performed to obtain more accurate targets. ,e
screening criteria were as follows: targets with a degree,
betweenness, and closeness greater than the median value of
all the nodes in the intersection network were selected as
core targets to build the protein-protein interaction (PPI)
network [20].

2.4. Construction of the Drug-Target-Disease Network Graph.
We imported the core genes and their corresponding
components into Cytoscape 3.6.1 in order to construct the
Drug-Target-Disease Network graph.

2.5. Kyoto Encyclopedia of Genes and Genomes (KEGG) En-
richmentAnalysis. To further understand the specific roles
of the screened intersection networks in terms of gene
function and related signaling pathways, KEGG pathway
enrichment analysis was performed on the genes asso-
ciated with the core targets using DAVID. A threshold of
P< 0.05 was set as statistically significant. Potential
connections between pathways were also found by
searching previous literature in PubMed, and the essential
targets of the significant pathways were visualised using
Cytoscape 3.6.1.

2.6. Molecular Docking. Molecular docking was performed
to validate the important targets screened by KEGG analysis
as well as their more closely related chemically synthesised
components. Protein targets were obtained from the RCSB
PDB (https://www.rcsb.org/) database, and compounds
were obtained from the TCMSP database. ,e proteins and
small molecules were optimised using SYBYL-X.2.0 soft-
ware, and molecular docking was performed using the
SurflexDock module. ,e interaction of the active ingre-
dients with the target proteins was scored according to the
total score scoring function, with larger total score values
indicating better matching of the small molecule compound
to the more significant protein. Generally, a score above 4.0
is considered to indicate some binding activity, and a value
greater than 5.0 indicates that the molecule has strong
binding to the target [21, 22].
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2.7. Experimental Validation

2.7.1. Main Reagents and Instruments. We used the fol-
lowing drugs and reagents: cycloeucalenol, encecalin,
kaempferol (Chengdu Push Bio-Technology Co., Ltd,
PS210726-09, PS210726-08, and PS011676), Interleukin-1β
(IL-1β), Interleukin-6 (IL-6), Tumor Necrosis Factor
(TNF-α) enzyme-linked immunoassay (ELISA) kits (Wuhan
Genome Biotechnology Co., Ltd., JYM0419Ra, JYM0646Ra,
and JYM0635Ra), LPS (Solarbio, L8880), rabbit polyclonal
antibodies TNF-α, MAPK8, PI3K, IL-6 (Affinity, No.
AF7014, DF6089, AF6241, and DF6087), GAPDH (Hang-
zhou Xianzhi Biological Co., Ltd., No. AB-P-R 001), rabbit
monoclonal antibody IκBa, MMP9, NF-κB, and β Actin
(abcam No. Ab32518, Ab76003, Ab32360 and Ab6276),
Methanol (Merck, Germany), Astragalus granules were
purchased from Baili Pharmaceutical Group in China
(authorised document number: country medicine accurate
character Z20003380), excipient (Referring to Liang Jun’s
production process [23], the auxiliaries were made in
Guizhou University of Traditional Chinese Medicine),
TRIzol (Ambion, 15596-026), HiScript Reverse Transcrip-
tase (VAZYME, R101-01/02), 5X HiScript Buffer
(VAZYME, R101-01/02), ddH2O (genecopoeia, C1D230A),
Ribonuclease Inhibitor (TransGen, AI101), dNTPs (TIAN-
GEN, CD117), SYBR Green Master Mix (VAZYME, Q111-
02), Taq Plus DNA Polymerase (TIANGEN, ET105-01),
DL2000 DNA Marker (TIANGEN, MD114-02), and Ran-
dom Primer (TAKARA, 3801); Primers (Wuhan Tsingke
Biological Company, China).

We used the following instruments: HBS-1096A ELISA
Analytical Instrument (,ermo Electron Corporation,
America), adjustable micropipette (Glison, France), high-
speed and low-temperature centrifuge (Eppendorf, Ger-
many), low-speed centrifuge (Shanghai Anting Technology
Instrument Factory, China), thermostat (Beijing Liuyi
Company, China), 4°C refrigerators (Zhongke Meiling,
China), 37°C incubation box (Henan Jinbo, China), and
QuantStudio 6 real-time quantitative PCR instrument (ABI,
America); High-Performance Liquid Chromatography
(waters, America) and PCR instrument (Dongsheng Inno-
vative Biotechnology Co., Ltd., China).

2.7.2. Determining Chemical Compounds and LD50 Pre-
diction Based on HPLC and Discovery Studio. Dissolve 4 g of
Astragalus granules in 10mL of ultrapure water, add meth-
anol to fix the volume to 50mL, extract with ultrasound for 2
hours, and then place in a centrifuge at 4°C and centrifuge at
12000 rpm for 10min.1mg standard product of cycloeucalenol
is dissolved in 1mL methanol. 1mg standard product of
encecalin is dissolved in 1mLmethanol.1mg standard product
of kaempferol is dissolved in 1mL methanol.

For the detection of cycloeucalenol, aWaters model 2695
HPLC with a Waters 2424 evaporative light detector was
used. ,e chromatographic column is Diamonsil C18 (2)
(250 ∗ 4.6mm, 5 μm), the mobile phase is methanol, col-
umn temperature is 60°C, the flow rate is 1mL/min, the drift
tube temperature is 80°C, nebuliser temperature is 30°C, the

nitrogen flow rate and gain is set to 25 psi and 100, re-
spectively, and the injection volume is 10 μL.

Encecalin was detected using a Waters Model 2695
HPLCwith a DAD detector.,e chromatographic column is
Diamonsil C18 (2) (250 ∗ 4.6mm, 5 μm), the flow rate is
1mL/min, the column temperature is 35°C, the detection
wavelength is 254 nm, and the injection volume is 10 μL.,e
gradient elution process is shown in Table 1.

,e instrument used for the determination of kaemp-
ferol was a Waters model 2695 HPLC with DAD detector.
,e chromatographic column was a Diamonsil C18 (2)
(250 ∗ 4.6mm, 5 μm) with a flow rate of 1mL/min, a col-
umn temperature of 35°C, and a detection wavelength of
360 nm. ,e mobile phase was methanol : 0.1% phosphoric
acid in water/50 : 50, and the injection volume was 10 μL.

Oral LD50 predictions for cycloeucalenol, encecalin, and
kaempferol were performed in rats using Discovery Studio
software to determine the subsequent dose to be adminis-
tered [24], with 1/20th of the respective LD50 resultant dose
being used as the final dose for subsequent pharmacological
experiments [25].

2.7.3. Experimental Animals. Seventy SD male rats aged 8∼9
weeks with bodyweight of (200±30) g were used in this lab-
oratory, all of which were provided by Changsha Tianqin
Biotechnology Co. LTD. (animal production licence number:
SCXK (Xiang) 2019-0014). According to the random number
tablemethod, theywere randomly divided into 7 groupswith 10
rats in each group, namely: control group, LPS group,
LPS+Astragalus granules group, LPS+excipient group,
LPS+cycloeucalenol group, LPS+encecalin group, and
LPS+kaempferol group.,e normal adult dosage ofAstragalus
granule is 8g per day. Based on the human-rat body surface area
conversion, the daily dose for rats is 0.8 g/kg. Dissolve 8 g of
Astragalus granules in 100ml of water to prepare an aqueous
solution of Astragalus granules at 80mg/ml. ,is study was
approved by the Medical Research Ethics Committee of the
Second Affiliated Hospital of Nanchang University and the
examination and approval no. review [2021], no. (A801).

2.7.4. Sepsis Model Preparation and Sampling. After a week
of adaptive feeding, each group of rats was given the appro-
priate intervention. Astragalus granule (0.8 g/kg), excipient
(0.8 g/kg), cycloeucalenol (350mg/kg), encecalin (14.1mg/kg),
and kaempferol (6.9mg/kg), respectively, were administered by
gavage for one week. LPS modelling was performed on all rats
except control group 24h after the last administration. In the
control group, only normal saline was injected into the tail vein.
Rats in other groups were injected with 10mg/kg of LPS
through tail vein according to body weight [26]. Twenty-four
hours after model establishment, all surviving rats in each
group were anaesthetised for blood sampling.

2.7.5. Observing the General Situation and Survival Rate of
Rats. Behavior change, fur color, and mental state before and
after modelling were observed. Death after modelling was
recorded, and survival curves of rats in each group were drawn.
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2.7.6. Detection of Serum IL1β, IL-6, and TNF-α Levels in
Rats by ELISA. After anaesthesia, abdominal aorta blood
was taken and centrifuged. ,e supernatant was taken, and
the contents of IL1β, IL-6, and TNF-α in serum were de-
tected by ELISA kit. ,e operation was carried out in strict
accordance with the instructions.

2.7.7. Real-Time Quantitative PCR Analysis. Total RNA was
extracted from rat blood using a TRIzol kit (Takara)
according to the manufacturer's instructions, reverse tran-
scribed into cDNA using the PrimeScript RT kit with ge-
nomic decontamination, and then amplified by PCR.
GAPDH was used as an internal reference gene to calculate
the 2-ΔΔCt value for IL-6, MAPK8, TNF-α, MMP9, PI3K, and
NF-κB genes. β-actin was used as an internal reference gene
to calculate the 2-ΔΔCt value for IκBα gene. ,e specific
primers were as follows (as shown in Table 2).

2.7.8. Western Blot. Use RIPA lysate to lyse the cells in the
blood, use the BCA kit to determine the protein concentration,
add the prepared protein sample to a 10% gel for electro-
phoresis, transfer the membrane, and then block it in 5% skim
milk for 2 hours. PVDF membranes of 0.45μm size were
immersed in primary antibody incubation solution and in-
cubated overnight at 4°C. Antibody dilutions were as follows:
GAPDH (1 :1000), TNF (1 : 500), β-actin (1 : 200), MAPK8 (1 :
1000), PI3K (1 : 2000), NF-κB (1 :1000), IL-6 (1 :1000), IκBa (1 :
5000), andMMP9 (1 : 5000). Add the corresponding secondary
antibody, soak the PVDFmembrane in the secondary antibody
incubation solution, and incubate for 2h at 37°C in a shaker.
Finally, the film was washed with TBST and developed with
ECL luminescence. ,e films were scanned, and the results
were analysed by ImageJ software for gel imaging systems.

2.7.9. Statistical Methods. All data were processed by SPSS
22.0 statistical software. ,e measured data are expressed as
the mean± standard deviation (mean± SD). One-way
ANOVA was used to compare multiple groups when the
data were normally distributed and homogeneity of vari-
ance. Survival analysis was performed using the log-rank
(Mantel–Cox) test function. Differences were indicated as
statistically significant at P< 0.05.

3. Results and Discussion

3.1. Results

3.1.1. AST Chemical Composition and Its Targets. After
screening, the TCMSP database contains 8 compounds and
111 targets, and the BATMAN database contains 51 com-
pounds and 1081 targets. After removing the blank and

duplicate targets, a total of 59 chemical components and
1,130 drug targets were obtained (as shown in Table 3).

3.1.2. Potential Targets of AST for Sepsis. 2498, 771, and 183
targets associated with sepsis were obtained from Gene-
Cards, MalaCards, and OMIM, respectively. A total of 3370
pathogenic genes were obtained after the removal of du-
plicates for these targets. A total of 318 intersecting genes
were obtained after intersecting these pathogenic genes with
the 1130 targets of AST. ,ese are potential targets that can
be used in the treatment of sepsis (as shown in Figure 1).

3.1.3. Protein-Protein Interaction (PPI) Network Construc-
tion and Screening. To further clarify the extent of the role of
intersecting genes in the development of sepsis, we screened
318 intersection-based genes by the STRING database. Based
on the magnitude of the median degree, betweenness, and
closeness of individual genes in the entire network, we
identified 84 core targets (as shown in Figure 2).

3.1.4. AST Active Ingredient Target-of-Action Disease Net-
work Diagram. ,e 84 core targets and their corresponding
44 chemo-components were visualised using Cytoscape 3.6.1
software (as shown in Figure 3).

3.1.5. KEGG Result Presentation. KEGG analysis of the
targets related to the treatment of sepsis by AST was per-
formed using DAVID. Eighty-four markers were found to be
involved in 104 signaling pathways (P< 0.05), mainly in-
cluding cancer, the TNF signaling pathway, Chagas disease,
influenza A, hepatitis B, leishmaniasis, the MAPK signaling
pathway, proteoglycans in cancer, osteoclast differentiation,
Tollas disease, osteoclast differentiation, influenza A, hep-
atitis B, leishmaniasis, the MAPK signaling pathway, pro-
teoglycans in cancer, osteoclast differentiation, the Toll-like
receptor signaling pathway, toxoplasmosis, Salmonella in-
fection, nonalcoholic fatty liver disease (NAFLD), the
prolactin signaling pathway, measles, the chemokine sig-
naling pathway, pertussis, the HIF-1 signaling pathway,
neurotrophin signaling pathway, the PI3K-Akt signaling
pathway, etc. In this study, the top 20 KEGG signaling
pathways were screened according to the count value to
generate a map (as shown in Figure 4). Based on the KEGG
results and summary of previous studied, we found the TNF,
MAPK, and PI3K pathways in the pathogenesis of sepsis
[27]. We finally identified IκBα, MAPK8, NFκB1, and TNF
as possible indicators of sepsis development based on the
frequency of 84 core targets in the TNF, MAPK, and PI3K
pathways and relevant references [28–30]. In Figure 3, the
compounds corresponding to these targets, include
kaempferol, cycloeucalenol, cyperol, encecalin, gamma-si-
tosterol, and encecalin, may play an important therapeutic
role. We identified the active components in the AST based
on the core targets and mapped the network diagram of core
targets, pathways, and components in conjunction with the
KEGG results (as shown in Figure 5).

Table 1: Elution gradient.

Time (min) %A (water) %B (methanol)
0 80 20
8 0 100
13 0 100
15 80 20
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Table 2: Specific primer sequences for GAPDH, β-actin, MAPK8, NF-κB, IκBα, PI3K, TNF-α, IL-6, and MMP9.

Gene Primer Sequence (5′-3′) PCR products (bp)

Rat GAPDH Forward ACAGCAACAGGGTGGTGGAC 253Reverse TTTGAGGGTGCAGCGAACTT

Rat MAPK8 Forward ATTTGGAGGAGCGAACTAAG 160Reverse CTGCTGTCTGTATCCGAGGC

Rat NF-κB Forward TGACGGGAGGGGAAGAAATC 211Reverse TGAACAAACACGGAAGCTGG

Rat IκBα Forward ATGGCTACCTGGGCATCGTG 136Reverse TTCAACAGGAGCGAGACCAG

Rat PI3K Forward GTGGTAGATGGCGAAGTCA 126Reverse CAGGGAGGTGTGTTGGTAA

Rat TNF-α Forward CCGATTTGCCATTTCATACCAG 232Reverse TCACAGAGCAATGACTCCAAAG

Rat IL-6 Forward GTTGCCTTCTTGGGACTGATG 102Reverse TACTGGTCTGTTGTGGGTGGT

Rat MMP9 Forward GCTGGGCTTAGATCATTCTTCAGTG 109Reverse CAGATGCTGGATGCCTTTTATGTCG

Rat β-actin Forward CACGATGGAGGGGCCGGACTCATC 240Reverse TAAAGACCTCTATGCCAACACAGT

Table 3: ,e chemical composition of AST and its targets.

Components ,e number of target Structural formula Database

Mairin 1

O
H

H

H

H

H

H

O

O TCMSP

Jaranol 9
O

O

O

OO

O

H

H

TCMSP

Kaempferol 51
O

O

O

OO

O

H

H
H

H TCMSP

Isorhamnetin 24
O

O

O

OO

O

H

H
H

H TCMSP

Bifendate 4
O

O
O

O
O

O

O
O

O

O

TCMSP
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Table 3: Continued.

Components ,e number of target Structural formula Database

1,7-Dihydroxy-3,9-dimethoxy pterocarpene 3

H

H

O

O
O

O

O
O

TCMSP

(6aR,11aR)-9,10-Dimethoxy-6a,11a-dihydro-
6H-benzofurano[3,2-c]chromen-3-ol 18

H
H

H

O

O

O
O

O TCMSP

(3S,8S,9S,10R,13R,14S,17R)-10,13-Dimethyl-17-
[(2R,5S)-5-propan-2-yloctan-2-yl]-2,3,4,7,8,9,11,
12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

1

OH

H

HH

H TCMSP

Tetradecane 98 BATMAN
Tridecene 98 BATMAN
1,22-Docosanediol 159 OH OH BATMAN

Ginsenoside 19
O

O

O

O
O

O
O

O

H

H

H
H

H H
H

H H

H

BATMAN

(-)-Dicentrine 47

O

O

O

O

H

N

BATMAN

Notoginsenoside 1
H

O

O

O O

O

O

OOO
O

O
O

O O

O
O

O
O

H

H

H H

H
H

HH
H

H

H H

HHH

BATMAN

(-)2d,4d,6d,8d-Tetramethyl undecanoic acid 226 O

O

H BATMAN

Sandaracopimarinol 51

O
H

H

H

BATMAN

Ginsenoside Rb1 1

O

O

O

O O

O
O

O
O

O

O

O

OO
O

O O O

O
OO

O

O

H

H

H
H

H
H

H
H

H
H

H
H

H

H H

H

HH

H

BATMAN
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Table 3: Continued.

Components ,e number of target Structural formula Database

Dicapryl phthalate 13

O

O O O
BATMAN

Cyperene 98 BATMAN

(-)-Trifara-9,14-diene 98
H

BATMAN

Cycloeucalenol 32

H
OH

H

BATMAN

4,4′-Diketo-3-hydroxy-beta-carotene 43

O
O

O

H

H H
H

H
H

H H
H

H H

H
HH

H
BATMAN

Nonadecanoic acid 22
O

O
H BATMAN

Quercetin 15 O O

O O

O

O

O

H

H
H

H

H

BATMAN

Notoginsenoside R3 1

O

OO

O
O O

O

O

O

O

OO

O

O

O
O O

O O

H

H
H

H

H

H

H
H

H

H

H H

H

BATMAN

Ditertbutyl phthalate 27
O

O
O O

BATMAN

Hexadecanoic acid 226
O

O
H BATMAN

Dauricine 22

O

O

O

O

O

OH

N

N

BATMAN
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Table 3: Continued.

Components ,e number of target Structural formula Database

3,4-Dimethylbenzoic acid 131

O O
H

BATMAN

Notoginsenoside R1 1
O O O

O

O
O

OO

O O

O

OO
O O O

O
O

H

H
H H

H

H
H

H
H

H

H

H

HH
H

H

BATMAN

Notoginsenoside A 1

O
O

O
O

O O

O
O

O
O

O

OOO
O

OO

O

O
O

O
O

O

O
H

H H
H
H

H

H H

H
H

H

H
H

H

H
H

H H

H

H

H
H

BATMAN

Gypenoside Xvii 1
O

O
O O O

O

O
O

O

O
O

O O
O

O

O O

O
HH

H

H

H H H

H H H

H

H

H

H H

H BATMAN

Epsilon-cadinene 98
H

H

BATMAN

1-Tetradecanol 193 HO BATMAN
1-Heptadecanol 159 OH BATMAN
N-Nonanol 159 H O BATMAN

Acetophenone 40

O

BATMAN

Encecalin 60
OO

O
BATMAN

20-Hexadecanoylingenol 10

HO O
H

HH

O
O

O

O
BATMAN
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Table 3: Continued.

Components ,e number of target Structural formula Database

Notoginsenoside R2 1

H

H

H

H
H

H
H

H

H H

H

H
H

O
O O O

O

OO

O O

O
O

O
O

BATMAN

Elemicin 61

O

O

O

BATMAN

Sanchinoside B1 2

O

O

O O
O

O
O

H

H
H

H

H

O

O

H

H

H

BATMAN

Alpha-cuparenol 4

O
H

BATMAN

Cyclododecanone 23

O

BATMAN

Stigmasterol 119

H

H
H

H

H
H

H

O

BATMAN

Panaxatriol 2

OO

O

O

H

H
H

H

H
H

H

BATMAN

Panaxadiol 2

O
O

OO

H

H

H

H

H

H

H

BATMAN

Heneicosanic acid 226 O

OH BATMAN
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Table 3: Continued.

Components ,e number of target Structural formula Database

Coprine 386

O

O

O

O
H

H
H

NH

N

BATMAN

1,1,5,5-Tetramethyl-4-methano-2,3,4,6,7,10-hexahydronaphthalene 100 BATMAN

Delta-guaiene 98

H

BATMAN

1-Methyl-4-isoallyl-cyclohexane 98

HH

BATMAN

Gamma-sitosterol 35

OH

H

H

HH

BATMAN

Pentadecanoic acid 226 O

OH
BATMAN

Ginsenoside-Rb2 1

O
O

O
O

O

O

O
O

O
O

OO

O O
O

OO
O

OO

H

H

H

H
H

H
H

H

H
H

H
H

OH

H

HH

H

OH

BATMAN

Cuparene 10 BATMAN

Ginsenoside-Rd 1

O
O

O
O

O
O O

O

O
O

O
O

O
O

O
O

O

O

O

H

H

H
H

H

H
H

HH
H

H
H

H

H

H

H

H

BATMAN

Delta-elemene 99 BATMAN

Cyperol 33
O

H

BATMAN

,e table lists the names of the chemical components within Astragalus, the number of corresponding targets, their structural formulas, and the databases
from which they are sourced.
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AST

812
(19.4%)

318
(7.6%)

3052
(73%)

sepsis

Figure 1: Intersecting genes of AST and sepsis. ,e blue circle on the left represents the target of AST. ,e yellow circles at the right
represent sepsis targets. ,e intersection in the middle indicates the potential target of AST for the treatment of sepsis.
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Figure 2: Protein-protein interaction of 318 genes is shown.
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3.1.6. Molecular Docking. ,e main active components of
AST obtained in Section 3.1.5 were c-sitosterol, cyclo-
eucalenol, kaempferol, encecalin, and cyperol. TNF, MAPK8
(JNK), NF-κB1, and IκBαwere the critical genes identified in
Section 3.1.5. ,e protein receptors and active compounds
corresponding to IκBα (PID: 6Y1J), NF-κB (PID: 1NFK),
TNF (PID: 1DU3), and MAPK8 (PID: 4G1W) were selected
from the RSCB PDB database for molecular docking. ,e
main active components in AST enter the active site during
the docking process with the core targets, indicating that the
main active components and the core targets demonstrate

good binding, which verifies the reliability of the results of
this study. ,e total score results are shown in Figure 6.
Graph showing molecular docking results is given in
Figure 7.

3.1.7. Experimental Validation

(1) Determination of Substances and Prediction of LD50
Based on HPLC and Discovery Studio for Chemistry Com-
ponents. In chromatographic analysis, samples of Astragalus
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Figure 3: ASTactive ingredient target-of-action disease network diagram. Components of the drugs are shown as green shuttles, and the 84
core targets of the components acting on the disease are marked with blue squares and arranged in outer circles. Inside the circles, the yellow
and purple squares represent “AST” and “sepsis,” respectively.
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granules showed the same retention times as the standard
products of cycloeucalenol, encecalin, and kaempferol (as
shown in Figure 8).

According to the calculation by Discovery Studio, the
oral LD50 of cycloeucalenol, encecalin, and kaempferol was
7 g/kg, 282.7mg/kg, and 138.9mg/kg, respectively.

(2) General Situation and Survival Analyses. Compared with
the control group, rats in the LPS group, LPS +Astragalus
granules group, LPS + excipient group, LPS + cycloeucalenol

group, LPS + encecalin group, and LPS + kaempferol group
have decreased diet and water consumption. LPS group and
LPS + excipient group have the worst mental state and
weakened activities, while LPS + Astragalus granules group
and LPS + cycloeucalenol group situation was significantly
improved. When the time to death of the rats within 24
hours was counted, a significant difference was found in the
survival curve of LPS group compared to control group
(P< 0.01). ,is demonstrated that LPS has a strong lethal
effect. ,e survival rate was significantly improved with the
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Figure 4: KEGG bubble chart. ,e size of dots indicates the number of genes. ,e color of dots indicates the size of P value.
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intervention of Astragalus granules and cycloeucalenol
(P< 0.05) (as shown in Figure 9). ,is implied that Astra-
galus granules and cycloeucalenol could significantly reduce
the toxicity of LPS in rats.

(3) Determination of the Serum IL-1β, IL-6, and TNF-α Levels
in Rats by ELISA. IL-1β, IL-6, and TNF-α are critical in-
flammatory factors and biological markers of sepsis [31].
,ey can be used as a criterion for the success of the sepsis
model. ,is study verified the expression of serum in-
flammatory factors in vivo in septicemic rats affected by

sepsis. IL-1β, IL-6, and TNF-α of serum expression of bi-
ological markers were increased in the LPS group compared
to that in the control group (P< 0.01). ,e levels of IL-1β,
IL-6, and TNF-α were downregulated after Astragalus
granules intervention (P< 0.01). Cycloeucalenol signifi-
cantly inhibited IL-1β (P< 0.01) and also suppressed the
elevation of IL-6 and TNF-α to some extent (P< 0.05).
Encecalin significantly inhibited TNF-α (P< 0.01) and also
suppressed the elevation of IL-1β to some extent (P< 0.05).
Kaempferol significantly inhibited IL-1β (P< 0.01) and also
suppressed the elevation of IL-6 to some extent (P< 0.05) (as
shown in Figure 10).

(4) Detection of TNF-α, IL-6, MMP9, MAPK8, PI3K, NF-κB,
and IκBαmRNAExpression in Rat Blood by Real-Time qPCR.
,e result showed that the targets of TNF-α, IL-6, MMP9,
MAPK8 (JNK), and NF-κB in the blood of rats in the LPS
group were significantly higher than those in the blood of
rats in the control group (P< 0.01), and PI3K and IκBα were
substantially lower than those in the blood of rats in the
control group (P< 0.01). ,is trend was reversed after
Astragalus granules intervention (P< 0.01). In addition,
cycloeucalenol, encecalin, and kaempferol also regulate the
expression of these genes in the blood of the sepsis model to
varying degrees. Among them, cycloeucalenol significantly
inhibited the mRNA expression of MMP9 (P< 0.01) and the
mRNA expression of inhibited MAPK8, TNF-α, and IL-6
(P< 0.05). Cycloeucalenol significantly upregulated PI3K
expression (P< 0.01) and IκBα (P< 0.05). Encecalin
inhibited the upregulation of MMP9, NF-κB, and TNF-α
(P< 0.05). Encecalin upregulated PI3K expression
(P< 0.05). Kaempferol inhibited the elevation of NF-κB and
IL-6 (P< 0.05). ,ese manifestations illustrate that

(a)

GENE Degree

IκBα 4

MAPK8 3

TNF 3

NF-κB1 7

(b)

Figure 5: Network diagram of core targets, pathways, and components. (a) Network diagram of core targets, pathways, and components. (b)
Degree of core genes in the network diagram.
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Figure 6: Molecular docking total score. ,e horizontal axis in-
dicates the protein. ,e vertical axis indicates the score of the
compound to protein docking results.
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Astragalus granules and their components can regulate the
expression of these genes during transcription (as shown in
Figure 11).

(5) $e Protein Expression Levels of TNF-α, IL-6, MMP9,
MAPK8, PI3K, NF-κB, and IκBα in Rat Blood. Our study
revealed significant changes in blood protein expression of
core targets such as TNF-α, IL-6, MMP9, MAPK8, PI3K,
NF-κB, and IκBα in LPS group after LPS intervention
(P< 0.01). ,e protein expression of TNF-α, IL-6, MMP9,
MAPK8, and NF-κB was significantly increased in the LPS
group (P< 0.01), while the protein expression of PI3K and
IκBα was significantly decreased (P< 0.01). ,ese trends
were significantly reversed in LPS +Astragalus granules
group after intervention with Astragalus granules (P< 0.01).
In addition, cycloeucalenol, encecalin, and kaempferol can
also regulate the expression of related proteins in the blood
of the sepsis model to varying degrees. Among them,
cycloeucalenol significantly inhibited the expression of
MMP9 (P< 0.01) and inhibited MAPK8, TNF-α, and IL-6
(P< 0.05). Cycloeucalenol significantly upregulated PI3K

expression (P< 0.01) and IκBα (P< 0.05). Encecalin sig-
nificantly inhibited the upregulation of MMP9 (P< 0.05),
TNF-α, and NF-κB (P< 0.01). Encecalin significantly
upregulated PI3K expression (P< 0.01). Kaempferol sig-
nificantly inhibited NF-κB (P< 0.01) and IL-6 (P< 0.05) (as
shown in Figure 12).

3.2. Discussion. As an inflammatory blood disease, the oc-
currence and development of sepsis is the result of multiple
protein molecules and multiple signal pathways modulating
on various cell biological behaviors. AST, a traditional
Chinese medicine, has a significant effect on sepsis, and it
can play a role in the treatment of sepsis in various ways.
Recent studies have shown that there are many components
in the AST that can slow the progression of sepsis. ,e
literature has demonstrated that kaempferol, stigmasterol,
(-)-dicentrine, 1-tetradecanol, cyperene, tetradecane, tride-
cene, elemicin, and other components can relieve the in-
flammatory response of the body. Stigmasterol can
effectively inhibit the inflammatory response induced by LPS

γ-sitosterol-NF-κB

Kaempferol-NF-κB

γ-sitosterol-TNF

Cyperol-NF-κB

kaempferol-TNF

γ-sitosterol-IκBα

γ-sitosterol-MAPK8

Cycloeucalenol-MAPK8

Cycloeucalenol-TNF

Figure 7: Molecular docking. Ribbons represent proteins. ,e molecule directly attached to the ribbon is the ligand. ,e molecule not
directly linked to the strip is a compound of AST.
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and has an excellent regulatory impact on the abnormal
levels of serum liver enzyme markers, alanine amino-
transferase, aspartate aminotransferase, ALT, and AST [32].
Kaempferol can be used to treat acute and chronic in-
flammatory damage to many organs, such as the colon, liver,
and lung [33]. (-)-Dicentrine can inhibit the MAPK/Akt
pathway activated by LPS to a certain extent and relieve the
body’s inflammatory response [34]. ,e tetradecane family

can affect PPARc signaling and weaken tissue damage in the
intestine [35]. Cyperene has an excellent protective effect on
LPS-induced inflammation and oxidative stress damage in
astrocytes [36]. Elemicin and other components have sig-
nificant effects on inhibiting pneumonia, reducing serum
IFN-c and IL-4 levels, and enhancing their antioxidant
activity [37]. c-sitosterol can inhibit the expression of NF-κB
and the synthesis of TNF-α in macrophages [38]. AST can
alleviate inflammatory damage in patients with sepsis by
regulating theMAPK pathway, PPARc signaling, IFN-c, and
IL-4.

After analysing the PPI network, it was found that TNF,
MAPK14, AKT1, MAPK8 (JNK), and NF-κB1 were impor-
tant in the progression of the disease. TNF is a bipolar
molecule derived from macrophages and immune cells.
When the body is activated during infection or tissue damage,
it can transmit signals via ligands and receptors back to cells,
causing subsequent inflammatory cascade reactions [39].
TNF-α can not only induce a massive release of a variety of
inflammatory factors and stimulate the development of in-
flammation [40] but also directly consume the antioxidant
substance glutathione in the body [41] and stimulate neu-
trophils and endothelial cells to release oxygen free radicals
and other free radicals [42]. MAPK14 (p38) and MAPK8
(JNK) can receive and prolong the path and duration of TNF
signal transduction and jointly affect the level of systemic
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Figure 8: HPLC chromatogram. (a) Cycloeucalenol standard chromatogram. (b) Cycloeucalenol chromatogram in Astragalus granules.
(c) Encecalin standard chromatogram. (d) Encecalin chromatogram in Astragalus granules. (e) Kaempferol standard chromatogram.
(f ) Kaempferol chromatogram in Astragalus granules.
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inflammation response, the area of tissue damage, and the
degree of organ function impairment by activating NF-κB
[43]. In this process, AKT1 (also called protein kinase B or
PKB) activates IκBα under the action of PI3k. IκBα can pass
through the 300 amino acid residue Rel homology region.,e
Rel homology domain (RHD) interacts with IκBα to prevent
the NF-κB dimer from entering the nucleus to exert its
negative feedback regulation on NF-κB [44, 45]. In summary,
the above targets will eventually activate the PI3k, MAPK,
TNF, and NF-κB pathways to aggravate the inflammatory
response in the body.

According to the KEGG results and previous literature,
we found that the PI3K signaling pathway, MAPK signaling
pathway, and TNF signaling pathway played essential roles
in the pathogenesis of sepsis. ,e PI3K (phosphatidylino-
sitol-3-kinase) pathway is a crucial signaling pathway in the
body, and it maintains tissue homeostasis by regulating
protein phosphorylation, methylation, and ubiquitination
[44]. In sepsis, activation of the PI3K pathway can reduce
damage to the diaphragm [46], myocardium [47], lung [48],
and other tissues and organs by inhibiting the degradation of
IκBα. Mitogen-activated protein kinase (MAPK) is an es-
sential member of the intracellular signaling protein net-
work that mediates extracellular stimuli to intracellular
responses. ,e activation of its subtype JNK is based on
thermal-induced apoptosis of macrophages, and the release
of IL-6, MMP9, TNF-α, and other inflammatory factors
further aggravates organ damage in patients with sepsis [49].
,ese inflammatory mediators in blood circulation mediate
the damage to host cells, tissues, and organs and act as
triggers of subsequent cascade reactions [50]. IL-6 is an
essential indicator for evaluating the degree of the inflam-
matory response [51], and it can interact with a variety of
cytokines, initiate a series of signal transduction mecha-
nisms, and form a complex network of cytokines, which can
mediate endothelial cells and monocytes [52]. ,e pro-
duction of chemotactic protein (MCP)-1 can also recruit
peripheral blood mononuclear cells to accumulate at the site

of inflammation, activate specific white blood cells, and
initiate and maintain an inflammatory response [53]. TNF-α
can effectively control the increase inMMP9 expression after
initiation by MAPK8 (JNK) [54], and the increase in MMP9
can promote a further inflammatory response and degrade
extracellular matrix components [55]. In addition, TNF-α in
combination with TNFR leads to the high expression of the
transcription factor NF-κB and aggravates the inflammatory
response throughout the body [56]. Under normal cir-
cumstances, the combination of the NF-κB dimer and IκBα
in resting cells masks the nuclear localisation signal of NF-
κB, but when stimulated, IκBα is degraded, so the NF-κB
dimer is released into the nucleus and activates the tran-
scription of target genes [57]. After NF-κB is released, it
initiates MAPK8 (JNK) and aggravates the inflammatory
response [58]. ,e PI3K pathway is critical for synthesising
IκBα [59, 60]. ,erefore, these three factors do not inde-
pendently affect the physiological and pathological changes
of the body. During the development of sepsis, these
pathways are mostly interrelated and intertwined. ,e TNF
signaling pathway is an essential condition for the early
activation of the MAPK and PI3K signaling pathways, and it
also establishes a connection between the PI3K and MAPK
signaling pathways in the inflammatory response by regu-
lating the hub of the NF-κB pathway. ,e TNF, MAPK, and
PI3K signaling pathways are connected through IκBα and
NF-κB. ,e interaction between these pathways in the
pathogenesis of sepsis determines the degree of widespread
inflammation throughout the body, and exchange among
these three pathways may be achieved by affecting the
balance of IκBα and NF-κB.

Molecular docking technology is an essential means to
confirm the interaction between a compound and its target
[61]. To verify whether the critical targets in the above three
pathways can be combined with the internal chemical
components of AST, we used SYBYL-X.2.0 to carry out
molecular docking between markers and compounds that
are closely related to these pathways that had a total score
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Figure 10: Effects of Astragalus granules and its components on the levels of IL-1β, IL-6, and TNF-α in serum of rats in each group (n� 4).
(a) Expression of IL-1β in the serum of rats in each group; (b) Expression of IL-6 in the serum of rats in each group, (c) Expression of TNF-α
in the serum of rats in each group. a: Control group; b: LPS group, c: LPS + Astragalus granules group; d: LPS + excipient group; e: LPS +
cycloeucalenol group; f: LPS + Encecalin group; g: LPS + Kaempferol group. ∗P < 0.05, compared with LPS group. ∗∗P < 0.01, compared
with LPS group. ##P< 0.01, compared with control group.
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greater than 4, which is a sensible standard for defining the
combination of the markers and compounds. ,e results
showed that c-sitosterol, cycloeucalenol, kaempferol,
encecalin, and cyperol boundwell to the joint targets of TNF,
MAPK8 (JNK), NF-κB, and IκBα in these three pathways.
However, although we can determine the potential of
binding between a compound and its target through this
method, the biological changes of the target gene after
binding are still unclear.

Because the interactions that occur among the chemical
components of Astragalus granules are not clear, the ad-
vantage of Chinese medicine lies in the superimposed effect of
multiple features on multiple pathways. Core genes such as
TNF-α, MAPK8 (JNK), NF-κB, and IκBα were validated by
ELISA, real-time quantitative PCR, and western blot. ,e
results showed that the levels of sepsis markers IL1β, IL-6, and

TNFα in the blood of model rats and the mortality rate of rats
were significantly increased after tail vein injection. ,ese
phenomena are closely related to alterations in the PI3K
signaling pathway, MAPK signaling pathway, and TNF sig-
naling pathway in rats. ,e high mortality of rats is often
accompanied by an imbalance between their own internal
NF-κB and IκBα.,e balance betweenNF-κB and IκBα can be
altered by the expression of key genes such as TNF-α, IL-6,
MMP9, MAPK8, and PI3K. Fortunately, Astragalus granules
and their components significantly modulated mortality and
altered the expression of these key genes in rats.

Indeed, the effects of cycloeucalenol, encecalin, and
kaempferol are somewhat deviated compared to the effects
of Astragalus granules. ,ese compounds exhibit some
targeting of the regulation of these key genes. For example,
although cycloeucalenol has a modulating effect on most
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Figure 11: PCR results (n� 3). (a–g) Effects of Astragalus granules and their components on the expression levels of IL-6, MMP9, TNF-α,
MAPK8, IκBα, NF-κB, and PI3K mRNA in the blood of rats in each group. a: control group; b: LPS group; c: LPS + Astragalus granules
group; d: LPS + excipient group; e: LPS + cycloeucalenol group; f: LPS + encecalin group; g: LPS + kaempferol group. ∗P < 0.05, compared
with LPS group. ∗∗P < 0.01, compared with LPS group. ##P< 0.01, compared with control group.
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indicators, it has a weaker modulating effect on NF-κB.
Encecalin can modulation of MMP9, TNF-α, PI3K, and NF-
κB. Kaempferol is more likely to affect targets such as IL-6

and NF-κB. ,erefore, to some extent, cycloeucalenol,
encecalin, and kaempferol can all reduce the expression of
inflammatory factors and reduce the mortality rate in rats.
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Figure 12:,e protein expression levels of TNF-α, IL-6, MMP9, MAPK8, PI3K, NF-κB, and IκBα in blood (n� 3). (a) Western blot analysis
of the proteins MMP9, MAPK8, IL-6, and TNF-α in the blood. (b) Western blot analysis of the proteins PI3K and NF-κB in the blood.
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,is demonstrates that the pharmacological action of
Astragalus granules may be the result of the combined action
of its internal chemotactic components such as cyclo-
eucalenol, encecalin, and kaempferol. ,e pharmacological
effects of Astragalus granules cannot be replaced by their
own internal chemotactic components. Of course, the results
of this study are subject to the dose-effect relationship. In the
future, we will further clarify the respective advantages of
Astragalus granules and chemically combined ingredients to
provide new ideas and approaches for clinical use.

4. Conclusions

,is study is based on network pharmacology and used the
TCMSP, BATMAN, GeneCards, MalaCards, and OMIM
databases to obtain ASTand sepsis-related targets to identify
shared genes between them. ,e AST could affect the TNF,
PI3K, and MAPK pathway cascade responses centred on
IκBα and NF-κB, attenuate the expression of IL-6 and
MMP9, and interfere with the inflammatory response during
sepsis.
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