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Kirsten Rat Sarcoma viral oncogene homolog (KRAS) is the most frequently altered
oncogene in Non-Small Cell Lung Cancer (NSCLC). KRAS mutant tumors constitute a
heterogeneous group of diseases, different from other oncogene-derived tumors in terms
of biology and response to treatment, which hinders the development of effective drugs
against KRAS. Therefore, for decades, despite enormous efforts invested in the
development of drugs aimed at inhibiting KRAS or its signaling pathways, KRAS was
considered to be undruggable. Recently, the discovery of a new pocket under the effector
binding switch II region of KRAS G12C has allowed the development of direct KRAS
inhibitors such as sotorasib, the first FDA-approved drug targeting KRAS G12C, or
adagrasib, initiating a new exciting era. However, treatment with targeted KRAS G12C
inhibitors also leads to resistance, and understanding the possible mechanisms of
resistance and which drugs could be useful to overcome it is key. Among others,
KRAS G12C (ON) tricomplex inhibitors and different combination therapy strategies are
being analyzed in clinical trials. Another area of interest is the potential role of co-mutations
in treatment selection, particularly immunotherapy. The best first-line strategy remains to
be determined and, due to the heterogeneity of KRAS, is likely to be based on
combination therapies.
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1 BACKGROUND

In recent years, there has been an enormous advance in the diagnosis and treatment of NSCLC
patients, thanks to the discovery of different oncogenes amenable to targeted therapy such as
Epidermal Growth Factor Receptor (EGFR), Anaplastic Lymphoma Kinase (ALK), ROS proto-
oncogene 1 (ROS1), B-Raf proto-oncogene (BRAF), mesenchymal-epithelial transition factor
(cMET), rearranged during transfection (RET) or neurotrophic tyrosine receptor (NTRK) (1),
together with the development of immune checkpoint inhibitors (ICPI) either as monotherapy or in
combination with chemotherapy, that have changed the management of patients with advanced
disease and improved long-term survival (2). However, lung cancer remains one of the leading
causes of cancer-related mortality, with nearly 1.8 million deaths worldwide in 2020 (3).
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KRAS is the most common oncogenic mutation detected in
patients with lung adenocarcinoma (LUAD) in the Western
world, being found in approximately 20-25% of patients with
NSCLC, most of them LUAD (4).

KRAS mutant(mt) NSCLC is a heterogeneous disease, which
differs from other oncogene-driven tumors such as EGFR or
ALK. This heterogeneity may be related to co-occurring genomic
alterations, different KRAS mutations or tumor dependence/
independence on KRAS, among others, that could condition
intrinsic or acquired resistance to different treatments.

1.1 KRAS Biology and Mutations
in Lung Cancer
The KRAS proto-oncogene encodes an intracellular guanine
nucleotide-binding protein (G protein) belonging to the family
of small GTPases. The structure of the KRAS protein consists of
six beta chains and five alpha helices comprising a catalytic
domain (G domain), which binds guanine nucleotides and
activates signaling, and a C-terminal hypervariable region
(HVR) that incorporates farnesyl or prenyl groups (post-
transcriptional modifications) to drive the anchoring of KRAS
to the membrane (5, 6). There are two isoforms of KRAS as a
result of alternative splicing (KRAS4A and KRAS4B) with
different posttranslational modifications and membrane
localization. KRAS 4A might have a role in stress adaptability,
such as hypoxia, and KRAS 4B might be overexpressed in stem
cells (5, 7, 8).

Downstream signaling is regulated by the switch between the
active state of guanosine triphosphate (GTP) and the inactive
state of guanosine diphosphate (GDP) (6, 9). The RAS-GTP
complex activates several downstream signaling effectors such as
Raf-MEK-ERK, the phosphoinositide 3-kinase/protein kinase
B/mechanistic target of rapamycin kinase (PI3K/AKT/mTOR),
Ral guanine nucleotide dissociation stimulator (RALGDS-RalA/
B pathways or the TIAM1-RAC1 pathway, which control
multiple cellular functions including proliferation, apoptosis,
metabolic changes, motility and survival (4, 6, 9, 10).

GDP-GTP exchange is regulated by additional proteins:
Guanine nucleotide Exchange Factors (GEFs), such as Son-Of
Sevenless (SOS), which decrease the affinity of RAS proteins for
GDP and favor GTP binding, resulting in RAS activation, while
GTPase activating proteins (GAPs), exemplified by
neurofibromin (NF1), accelerate intrinsic GTPase activity to
regulate RAS cycling. GEFs and GAPs bind to one or both of
the binding pockets in the RAS (known as switch I and switch II
regions) and these signaling cascades are triggered by the
engagement of several receptor tyrosine kinases (RTKs) such
as EGFR, human epidermal growth factor receptors 2-4 (HER2-
4/ERBB2-4) or fibroblast growth factor receptor (FGFR) among
others, which favor a constitutive activation of KRAS (5, 8, 11).

KRAS mutations are mostly point missense mutations
occurring in exon 2 (codons 12 and 13) and, less frequently, in
exon 3 (codon 61) of the G domain, impairing its GTP hydrolysis
capacity and resulting in constitutive activation of KRAS
proteins, promoting the GTP-bound active state (4, 10).

The frequency of KRAS mutations varies according to patient
ethnicity, being more frequent in Western vs Asian populations
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(26% vs 11%), and more common in current or former smokers
compared to non-smokers (30% vs 10%) (10, 11). It has also been
observed that most KRAS mutations are clonal and appear early
in carcinogenesis (12, 13). KRAS mutations are usually mutually
exclusive of other predictive oncogenic mutations such as EGFR
or ALK, although KRAS mutations may arise as a mechanism of
resistance to targeted therapies (11, 13).

Although KRAS mutations have classically been defined as a
negative prognostic factor, with more undifferentiated tumors
having unfavorable survival and disease-free survival rates
compared to KRAS wild-type (wt) tumors, the role of KRAS as
a prognostic factor in NSCLC is not well established at this time
due to heterogeneity among studies (14, 15).

1.2 KRAS Mutation Subtypes
The most frequent mutations in KRAS mt NSCLC are
transversion mutations involving guanine to thymine or
guanine to cytosine nucleotide changes, such as glycine 12 to
cysteine (G12C) accounting for 41%, followed by glycine 12 to
valine (G12V), both associated with a history of smoking,
whereas transitions mutations, involving guanine to adenine
nucleotide changes, such as glycine 12 to aspartic acid (G12D),
are found mainly in never smokers (4).

It has been suggested that the type of point mutation may
affect downstream signaling differently, which may translate into
different clinical features and outcomes. G12C and G12V
mutations are usually associated with the Ral A/B signaling
pathway. However, KRAS G12D mutations preferentially
activate PI3K/AKT and MEK signaling, and are often
associated with non-smokers, especially KRAS G12D which is
also associated with mucinous histology (4, 10).

There are differences in the patterns of metastasis depending
on the KRAS mutation, with bone dissemination being more
frequent in the KRAS G12C mutation, while the KRAS G12V
mutation frequently presents with pericardial and pleural
involvement (13, 16, 17).

1.3 KRAS-Dependency
Recent works have established two different groups of KRAS mt
NSCLC: KRAS-dependent or KRAS-independent, according to
their requirement for mutant KRAS to maintain tumor viability
(4). KRAS-driven cells are associated with a well-differentiated
epithelial phenotype, whereas non KRAS-driven cells correlate
with an epithelial-mesenchymal transformation (EMT)
phenotype (18–22).

1.4 Co-Mutational Status of KRAS
The co-mutational status of KRAS in NSCLC has been studied,
showing that half (53%) of KRAS mt tumors had non-oncogenic
co-mutations, the most frequent being TP53 (39%), serine/
threonine kinase 11 (STK11) (20%), and kelch-like ECH-
associated protein 1 (KEAP1) (13%), being probably clonal in
nature and occurring early during oncogenesis (23–25). These
findings correlate with those previously published by Skoulidis et
al, who performed an integrative analysis of genomic,
transcriptomic and proteomic data from early stage lung
adenocarcinomas and metastatic tumors after progression to
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platinum, and identified three subtypes of KRAS mt NSCLC
dominated respectively, by concurrent genetic events in STK11/
LKB1 (the KL or subgroup 2), TP53 (KP, subgroup 3) and
CDKN2A/B inactivation together with low expression of the
transcription factor NKX2-1 (TTF1) (KC, subgroup 1), with
relevant biological and therapeutic differences between the
subgroups. KC tumors frequently had mucinous histology and
suppressed mTORC1 signaling. KL tumors had high rates of
KEAP1 mutational inactivation and expressed lower levels of
immune markers, including PD-L1. Inactivation of the LKB1
gene may be driven primarily by genomic copy number
suppression, inactivating mutation and down-regulation of its
own expression, showing LKB1 protein depletion (26).

KP tumors showed higher levels of somatic mutations
(although the smoking burden of the included patients was
similar in all three subgroups), inflammatory markers, immune
checkpoint effector molecules, and longer relapse-free survival
(26, 27). Subsequently, Skoulidis analyzed the efficacy of antiPD-
1 in advanced lines and observed higher responses in the KP
versus KC subgroup (35.7% vs 7.4%), identifying STK11 as an
antiPD-1 resistance mutation (28).

Consistent with this, Dong et al, observed that the TP53
mutation significantly increased PDL-1 expression and
interferon gamma signature, more so in the TP53/KRAS mt
subgroup, with increased antiPD-1 benefit in a small cohort of
patients. However, heterogeneity has also been described in
TP53-mutated LUAD, and there may be differences in
response to ICPI depending on the type of TP53 mutation (29).

To date, clinical trials that have given approval to immune
checkpoint inhibitor drugs targeting PD-1 or PD-L1 have not
been designed or sufficiently powered to find differences between
the molecular subgroups determined by Skoulidis based on
KRAS co-mutational profiling (30–34).

1.5 KRAS Molecular Testing
KRAS can be performed as part of a multigene or Next-
Generation Sequencing (NGS) panel or as a single-gene test.
Single-gene tests, such as quantitative real-time PCR, droplet
digital PCR, or pyrosequencing, can only detect prespecified
mutations that are encoded in the molecular probe of a gene of
interest, whereas NGS can detect multiple biomarkers from
multiple genes related to carcinogenesis, with higher cost and
more time (35, 36).

With the emergence of new predictive biomarkers for
targeted therapies in NSCLC, NGS has become an essential
genomic test in many institutions for clinical decision making,
as it allows analyzing mutational hotspots in many oncogenes for
different patients at the same time, which is crucial in patients
with advanced NSCLC. Moreover, considering the heterogeneity
of KRAS mt NSCLC, NGS would allow analyzing the presence of
other co-mutations (36).

Circulating tumor DNA (ctDNA) liquid biopsy has been
accepted as a noninvasive tool for diagnosis in patients without
available or suitable tissue (37, 38). However, liquid biopsy has
some limitations such as false positives of clonal hematopoiesis,
i.e., accumulation of somatic mutations and clonal expansion of
hematopoietic stem cells as a result of aging. Unlike other
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oncogenes, KRAS mutations arising from clonal hematopoiesis
are rare false positives in liquid biopsy tests (13, 39).

To date, KRAS molecular testing is not indicated as a routine
stand-alone assay as the sole determinant of targeted therapy
(35). KRAS testing was performed to provide prognostic
information or to rule out less common driver alterations (e.g.,
EGFR, ALK) mutually exclusive with KRAS mutations (38).
However, this approach may soon change with the approval of
KRAS-targeted drugs, which will require the determination of
this biomarker.
2 KRAS AND IMMUNOTHERAPY

Initially, KRAS was associated with a favorable response to ICPI,
as it was more frequently associated with smokers, high tumor
mutational burden (TMB) and enhanced PD-L1, as well as high
infiltration of immune cells (TILs) (13, 29, 30).

Exploratory, retrospective studies and meta-analyses have
suggested that patients with KRAS mt may benefit from PD-1
blockade, without delving into the underlying mechanisms (31–
34, 40).

Two meta-analyses that included three randomized phase II
or III clinical trials examining Overall Survival (OS) in KRAS mt
NSCLC ICPIs as second- or third-line therapy in mt KRAS
NSCLC have shown contradictory results. The first one
demonstrated an OS improvement compared to standard
chemotherapy (HR = 0.64 [95% confidence interval, 0.43–
0.96], P = 0.03) without significant OS benefit between ICPIs
and chemotherapy in KRAS wt NSCLC (HR = 0.88 [95%
confidence interval, 0.68–1.13], P = 0.30) (41). However,
another meta-analysis concluded that there was not enough
evidence to recommend KRAS mt alone as a predictive
biomarker for ICPIs as no significant treatment interaction for
KRAS mt (KRAS mt HR0.86 vs. KRAS wt HR, 0.65; P = 0.24) was
found (10, 42).

The phase III KEYNOTE-042 trial that demonstrated an OS
benefit of pembrolizumab in the first-line setting versus
platinum-based chemotherapy in patients with advanced
NSCLC with PD-L1 expression ≥ 1%, evaluated in an
exploratory analysis, the association between KRAS status and
efficacy to ICPI. KRAS status was determined by whole exome
sequencing (WES) of tumor tissue in 301 patients with LUAD of
the 1274 randomized participants with NSCLC, being 69/301
(22.9%) KRAS mt LUAD. The benefit of pembrolizumab versus
chemotherapy was independent of KRAS mutational status in
LUAD, although it was more pronounced in KRAS mt patients,
with an Objective Response Rate (ORR) of 56.7% vs. 18% for
LUAD patients with KRAS mt than those with KRAS wt (29.1%
vs. 21%), a median Progression Free Survival (PFS) of 12 vs. 6
months (HR= 0. 51 [95% confidence interval, 0.29-0.87]) for
LUAD patients with KRAS mt, compared to a PFS of 6 vs 6
months (HR=1.00 [95% confidence interval, 0.75-1.34]) in
LUAD patients with KRAS wt and a median OS of 28 vs 11
months (HR=0.42 [95% confidence interval, 0.22-0.81]) in
patients with KRAS mt compared to 15 vs 12 months
(HR=0.86 [95% CI 0.63-1.18]) in LUAD patients with KRAS
January 2022 | Volume 11 | Article 792635

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


de la Fuente et al. Targeting KRAS in Non-Small Cell Lung Cancer
wt LUAD tumors. Notably, tumors with KRAS mt had increased
expression of PD-L1 and TMB (32).

Recently, a retrospective study evaluating the association of
KRAS mutational status with the benefit of antiPD-1 versus
chemo-antiPD1 in patients with PD-L1 ≥ 50% has been
published. Among 1127 patients with advanced LUAD and PD-
L1 expression ≥ 50%, the prevalence of KRAS mt was 50%, similar
to that published in other studies (13, 32, 34). Among patients
with KRAS mt, OS did not differ between those treated with
antiPD1 monotherapy and chemo-antiPD1 (mOS, 21.1 vs 20.0
months; P = .78). However, among patients with KRAS wt status,
those treated with antiPD1 monotherapy had worse survival than
those treated with chemo-antiPD1, although this difference was
not statistically significant (median OS, 13.6 vs 19.3 months; P =
0.06). These results suggested that patients with KRAS wt NSCLC
and PD-L1 expression ≥ 50%, treated with anti-PD-1 in
monotherapy had worse survival than patients with mt KRAS
NSCLC, while there was no difference in survival with chemo-
antiPD1, suggesting that chemo-antiPD1 might be preferable in
patients with KRAS wt and high PD-L1 expression (33).

It is now known that KRAS mt NSCLC is a heterogeneous
disease, which differs from other oncogene-derived tumors, and
that this heterogeneity may be related to concurrent genomic
alterations such STK11 or TP53, different subtypes of KRAS or
tumor dependence/independence on KRAS. The influence of
these factors on the response to ICPI is being studied. As it was
mentioned before, TP53/KRAS mt NSCLC tumors are related to
an inflammatory microenvironment, enriched in TILs, have an
increased presence of neoantigens and high PDL1 expression
levels, whereas LKB1 inactivation in KRAS mt NSCLC tumors
generally generates a suppressive immune microenvironment
which could be linked to the lack of response to antiPD-1/PD-L1
blockade alone described in some studies (27–29). However, the
value of these mutations in guiding ICPI for NSCLC patients is
still uncertain.
3 KRAS AND TARGETED THERAPY

3.1 Direct Targeting of KRAS G12C
3.1.1 KRAS G12C (OFF) Inhibitors
KRAS proteins are small proteins with a relatively smooth
molecular surface without readily accessible binding pockets,
with a high affinity for GDP/GTP and complex downstream
pathways (5, 43, 44). Therefore, direct targeting KRAS by small
molecule inhibitor was a difficult approach until the discovery of
a new pocket beneath the effector binding switch II region of
KRAS glycine-to-cysteine amino acid substitutions at codon 12
(KRAS G12C), that has allowed the development of direct KRAS
G12C inhibitors (45–47). Initially it was thought that mutation
of KRAS led to constitutive activation in its GTP-bound state.
However, KRAS G12C presents an intrinsic GTPase activity, not
presented in other KRAS subtypes, of importance for the activity
and efficacy of the direct KRAS G12C inhibitors (8, 46).

Sotorasib (AMG 510) is an oral covalent KRAS G12C (OFF)
inhibitor that irreversibly and selectively binds to the cysteine 12,
Frontiers in Oncology | www.frontiersin.org 4
next to pocket (P2) of the switch II region within KRAS mt,
keeping it in the inactive GDP-bound state. It was evaluated in a
phase I/II study (CodeBreak 100: NCT03600883) in pretreated
KRAS G12C mt solid tumors (47, 48). At the 960 mg once-daily
dose selected for phase II in patients with metastatic NSCLC
(N = 126), the ORR was 37.1% and Disease Control Rate (DCR)
was 80.6%. The median duration of response was 11.1 months,
the median time to objective response was 1.4 months, with a
median PFS 6.8 months (95% confidence interval, 5.1 to 8.2) and
a median overall survival of 12.5 months (95% confidence
interval, 10.0 to could not be evaluated). The activity of
sotorasib was observed across a spectrum of prevalent co-
occurring mutations such as STK11, KEAP1 or TP53 as well as
different PD-L1 expression or TMB levels. However, these
exploratory analyses were not statistically powered, subgroup
sample sizes were small, and therefore future prospective studies
are warranted to identify subgroups of patients who may benefit
differently from sotorasib therapy. Treatment-related adverse
events (TRAEs) occurred in 69.8% patients, including grade 3
events in 19.8%. Most common adverse events related to
sotorasib were gastrointestinal side effects such as diarrhea
(31.7%) and nausea (19%) as well as low-grade hepatic toxicity
l ike alanine aminotransferase (ALT) and aspartate
aminotransferase increase (AST) (each 15.1%). No fatal TRAEs
were reported. Patients with active brain metastases were
ineligible, so the efficacy of sotorasib in the treatment of
patients with central nervous system metastases is unknown
(48–50). Based on these results, Sotorasib was granted
breakthrough designation by the U.S. Food and Drug
Administration (FDA) for the treatment of adult patients with
KRAS G12C mt locally advanced or metastatic NSCLC who have
received at least one prior systemic therapy, becoming the first
targeted therapy approved for advanced NSCLC KRAS G12C mt
(50). The global phase III trial, CodeBreak 200 (NCT04303780),
comparing sotorasib with docetaxel in patients with mt KRAS
G12C NSCLC is ongoing, as well as different clinical trials are
evaluating sotorasib in combination therapies (CodeBreaK101;
NCT04185883) with the aim to identify patients who may benefit
from sotorasib regimens in the context of first-line
treatment (Figure 1).

Adagrasib (MRTX849) is another oral covalent KRASG12C
inhibitor that irreversibly and selectively binds KRAS G12C in its
inactive GDP-bound state. It was evaluated in a phase I/II study
(KRYSTAL-1; NCT03785249) in pretreated patients with
advanced solid tumors. At dose of 600 mg twice daily, of 51
evaluable patients with NSCLC, 45% had ORR and DCR was
96% with 8.2-month median duration of response. Regarding
safety for all patients treated at the 600mg twice-daily dose (n =
110), grade 3 or 4 TRAEs occurred in 30% of patients; the most
commonly reported (>5%) grade 3 or 4 TRAEs were fatigue (6%)
and increased AST/ALT (5%). Two fatal TRAEs due to
pneumonitis and cardiac failure were reported (51).

It has been also presented a preliminary analysis examining
co-mutations with KRAS G12C. Patients who had KRAS G12C
and STK11 co-mutations experienced an ORR of 64%, without
apparent trends with KEAP1 or TP53, although the number of
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


de la Fuente et al. Targeting KRAS in Non-Small Cell Lung Cancer
samples was small. Moreover, preclinical data and early phase
studies indicate that adagrasib can penetrate the brain and
cerebrospinal fluid (11, 51–53), although more data are needed
to determine the brain activity of adagrasib.
Frontiers in Oncology | www.frontiersin.org 5
A phase III trial (KRYSTAL-12) of adagrasib versus docetaxel
for pretreated patients with KRASG12C-mutated NSCLC
(NCT04685135) is ongoing and several combination strategies
with adagrasib is under development (Figure 1).

(Similarities and differences among sotorasib and adagrasib
(direct KRAS G12C inhibitors) are summarized in Table 1).

Other direct KRASG12C (OFF) inhibitors are in the early
stages of clinical development as monotherapy and in
combination with other therapies, such as GDC-6036, D-1553
JAB-21822, JDQ443 or LY3537982 (NCT04449874,
NCT04585035, NCT05009329, NCT04699188, NCT04956640),
that will be investigated alone or in combination with other study
treatments (11, 13, 54, 55) (Figure 1).

On the other hand, LY3499446 and JNJ-74699157 (ARS
3248) were discontinued, the first one, due to safety issues.
3.1.2 Tri-Complex Inhibitors of KRAS G12C (ON)
Novel second generation KRAS G12C inhibitors are under
development in preclinical models, that consist of tri-complex
inhibitors of the oncogenic GTP-bound form of KRAS G12C
(ON) that overcome RTK-mediated escape mechanisms and lead
to tumor regressions. The covalent tri-complex inhibitor of
KRAS G12C (ON) exhibit a preclinical profile that is superior
to the leading KRAS G12C (OFF) inhibitors in clinical
development (13, 56). RMC-6291 is a first-in-class, potent, oral
and selective tri-complex inhibitor of KRAS G12C (ON) and
NRAS G12C (ON) that has demonstrated deep and sustained
anti-tumor activity in preclinical lung and colorectal cancer
models driven by a KRAS G12C mutation (57), and RMC-
6236, another first-in-class, potent, oral RAS-selective tri-
complex RASMULTI(ON) inhibitor, which has demonstrated
pronounced anti-tumor activity in preclinical models of
human lung, colorectal and pancreatic cancers caused by
multiple RAS variants including KRAS G12D and KRAS G12V
and also in RAS-dependent wt tumors and RAS-mediated
TABLE 1 | Similarities and differences among sotorasib and adagrasib (direct KRAS G12C inhibitors).

Compound Sotorasib (AMG 510) Adagrasib (MRTX 849)

Mode of action and target Covalent allosteric inhibitor KRAS G12C (OFF) Covalent allosteric inhibitor KRAS G12C (OFF)
KRAS-GTP loading inhibition
(IC50 value)

47.9 nM 89.9 nM

RP2D 960mg QD 600mg BID
Half-life 5.5 hours 24.7 hours
Study Phase I/II study (CodeBreak 100; NCT03600883) in

pretreated KRAS G12C mt solid tumors
Phase I/II study (KRYSTAL-1; NCT03785249) in pretreated KRAS G12C mt
solid tumors

N 124 evaluable patients with advanced NSCLC KRAS
G12C mt

51 evaluable patients

ORR 37.1% 45%
DCR 80.6% 96%
mPFS 6.8 months —

mOS 12.5 months —

Safety (TRAEs) Any grade 69.8% Any grade 85%
G3 19.8%. G3-4 30%
Most common any grade TRAEs: Diarrhea (31.7%),
nausea (19%) and ALT/AST increased (15.1%)

Most common G3-4 TRAEs: fatigue (6%) and AST/ALT (5%) increased.

Intracraneal activity Patients with active brain metastases were ineligible Adagrasib can penetrate the brain and cerebrospinal fluid (preclinical data) and
has demonstrated antitumor activity against brain metastases (clinical data).
FIGURE 1 | Ongoing studies with direct KRAS G12C inhibitors. Drug
combination strategies.
January 2022 | Volume 11 | Article 792635

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


de la Fuente et al. Targeting KRAS in Non-Small Cell Lung Cancer
adaptive resistance tumors (13). Both drugs are pending of being
tested in early phase trials.

3.1.3 Intrinsic/Acquired Resistance Mechanisms to
Direct KRAS G12C Inhibitors
A better understanding of the mechanisms of resistance to direct
KRAS G12C inhibitors is crucial to guide combination strategies
and the development of new drugs to improve outcomes for
patients with KRAS mt NSCLC.

As previously mentioned, an independence of KRAS
signaling and an epithelial-mesenchymal phenotype could lead
to an intrinsic resistance to therapy based on direct KRAS G12C
inhibitors (18–22).

A potential acquired resistance mechanism to direct KRAS
G12C inhibitors is the reactivation following KRAS G12C
inhibition driven by RTKs. The combination on RTKs
inhibitors with direct KRAS G12C inhibitors as well as with
Src homology phosphatase 2 (SHP2) inhibitors could reverse this
reactivation (58–61).

A study of the possible mechanisms of acquired resistance to
adagrasib from KRYSTAL-1 trial has recently been published.
This study performed histologic and genomic analyses (NGS on
tissue or ctDNA) developing a deep mutational scanning, and
compared pretreatment samples of 38 patients (27 with NSCLC)
who initially had stable disease for at least 12 weeks or an
objective response to therapy followed by subsequent disease
progression, with samples obtained after the development of
resistance. 41% of patients had more than one concurrent
potential resistance mechanism.

The most frequent on-target mechanisms to adagrasib
included activating mutations in KRAS (G12D, G12V and
G13D), Q61H), secondary KRAS mutations within the
adagrasib-binding pocket (R68S, H95D/Q/R or Y96C) and
high-level amplification of the KRAS G12C allele (62).

Recently, it has been suggested that the mechanisms of
acquired resistance based on the presence of non-KRAS G12C
mutations may be present at baseline, and selected by treatment
with direct KRAS G12C inhibitors, becoming more prominent
during the course of therapy, being potentially also involved in
intrinsic resistance (63).

In relation to off-target mechanisms of resistance, the most
frequent detected were MET amplification, activating mutations
in NRAS, BRAF, MAP2K1, and RET; oncogenic fusions
involving ALK, RET, BRAF, RAF1, and FGFR3; and
inactivation mutations in NF1 and PTEN. Moreover, it was
described histologic transformation to squamous-cell carcinoma
in two patients with advanced NSCLC.

In addition, these authors also performed in vitro experimental
studies to compare these acquired resistance mechanisms with
adagrasib and sotorasib, and it was seen that while R68S and
Y96C mutations conferred resistance to both drugs, H95D/Q/R
mutations do not confer in vitro resistance to sotorasib, as seen in
patients treated with adagrasib (62). Figure 2.

Other authors studied in vitro model exposed Ba/F3 cells
transduced with KRAS G12C, derived resistant cell lines to
sotorasib or adagrasib, searching for secondary KRAS mutations,
and identifiedY96D andY96S as resistantmutations to both drugs;
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while G13D, R68M, A59S and A59T were highly resistant to
sotorasib but remained sensitive to adagrasib, and Q99L was
resistant to adagrasib but sensitive to sotorasib. According to the
different resistancemutations and their patterns of sensitivity to the
different KRAS inhibitors, these authors proposed a possible
treatment sequencing strategy (64).

3.2 Combination Strategies
It seems that resistance to direct KRAS G12C inhibitors could
involve diverse mechanisms that will imply a great challenge for
the development of new targeted therapies and drug
combination strategies (62). Figure 3.

3.2.1 Combination of a KRASG12C Inhibitor With
SHP2 Inhibitors
Src homology phosphatase 2 (SHP2) protein transduces signals
fromactivatedRTKs todownstreamRASpathways (65, 66). Recent
studies have shown that SHP2 inhibition specifically suppresses the
growth capacity of KRAS-mutant, but not wt NSCLC cells in vitro,
which is promoted by TKI treatment (8, 11, 65–67).

There are several SHP2 inhibitors in development. RMC-4630
has shown clinical activity with a DCR of 67% for all KRAS
mutations, and 75% for KRAS G12C mutations (phase I
NCT03989115) (11, 58, 68, 69). TNO155 is a selective, allosteric,
oral inhibitor of SHP2 and is being studied in a phase I trial in
advanced solid tumors after disease progression following standard
therapy (NCT03114319, NCT04330664) (68, 69).

SPH2 inhibition increases KRAS-GDP occupancy what it
could increase the effect of direct KRAS G12C (OFF)
inhibitors. This also has been demonstrated in preclinical
studies of adagrasib combined with SHP2 inhibition (58, 66–
69). Based on this, several ongoing clinical studies with both
sotorasib and adagrasib are evaluating the combination of
FIGURE 2 | Possibly mechanisms of resistance to KRAS inhibitors.
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a KRAS G12C (OFF) inhibitor and a SHP2 inhibitor
(NCT04330664, NCT04699188, NCT04185883).

SOS1 decreases the affinity of RAS proteins for GDP and
favors GTP binding, leading to RAS activation. BI-3406 is a
potent and selective inhibitor of the SOS1-KRAS interaction that
attenuates reactivation by MEK inhibitors and enhances the
sensitivity of KRAS-dependent cancers to MEK inhibition in
preclinical models. Consequently, the combination of this new
drug with a MEK inhibitor could be a good option for future
research on KRAS-driven cancers (8, 11, 70).

Another inhibitor of the SOS1-KRAS interaction is BAY-293,
which has demonstrated efficacy in KRAS-driven cancers in
preclinical studies (71). BI-1701963 is a drug similar to BI-
3406 that is being evaluated in a phase 1 trial in combination
with a direct KRAS G12C inhibitor (OFF) (NCT04835714,
NCT04975256) or trametinib (NCT04111458) in patients with
advanced solid tumors with KRAS mutations.

3.2.2 Combination KRAS Inhibition With RTKIs
(Upstream Co-Inhibition)
The up-regulation activity of RTKs and, consequently,
reactivation of RAS wt is an off-target mechanism of adaptive
resistance to direct KRAS G12C (OFF) inhibitors. Therefore,
vertical inhibition strategies are being developed to improve the
clinical efficacy of KRAS G12C inhibitors (59, 72).

The KRYSTAL-1 study will evaluate adagrasib in
combination with afatinib (an EGFR/HER2 inhibitor) or
cetuximab (an EGFR monoclonal antibody) among other
combinations, and CodeBreak 101 (NCT04185883) also
includes an arm combining sotorasib with afatinib and another
with panitumumab (an EGFR monoclonal antibody).

3.2.3 Combination KRAS Inhibition With Downstream
Co-Inhibition
The RAS-GTP complex activates several downstream signaling
effectors, including the mitogen-activated protein kinase (MAP-
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K)/ERK and PI3K/AKT/mTORC1 pathways. Over the past
decades, several attempts have been made to block these
signaling pathways with disappointing results (8, 73).

In contrast to the first generation of RAF inhibitors, which
failed due to activation of the RAF/MEK/ERK pathway in BRAF-
like tumor cells, pan-RAF inhibitors with a more effective RAS
pathway blocking profile are being developed (74, 75). Another
potential strategy involves the combination of MEK inhibitors
with direct KRAS G12C inhibitors (OFF) (NCT04185883). VS-
6766 is a dual RAF/MEK inhibitor that blocks both the kinase
activity of MEK and the ability of RAF to phosphorylate MEK
(75, 76). The use of VS-6766 in combination with defactinib, an
FAK inhibitor, is being investigated in patients with advanced
KRAS mt solid tumors (NCT03875820).

The PI3K/AKT/mTORC1 pathway is not dependent on RAS
alone for activation (13, 61, 72). In this setting, combination
therapies including a direct KRAS G12C inhibitor and PI3K
inhibitor could synergistically increase response (77).

Other therapeutic agents being studied in combination with
direct KRAS (OFF) inhibitors include cyclin-dependent kinase 4/
6 inhibitors (13).

3.2.4 KRAS G12C (OFF) Inhibitors in Combination
With ICPI
Sotorasib in combination with antiPD-1 has demonstrated
complete responses in immunocompetent mice with patient-
derived xenografts, and induced in these mice, a durable immune
response with increased TILS and antigen presenting cells,
greater benefit than that obtained with each agent in
monotherapy (11, 43). On the other hand, adagrasib was
shown to modulate factors involved in antigen presentation or
an immunosuppressive tumor microenvironment in a panel of
human xenograft models. Adagrasib was also shown in mice to
decrease myeloid-derived immunosuppressive suppressor cells
and increase M1-polarized macrophages, dendritic cells, and
CD4+ and CD8+ T cells when administered as a single agent,
FIGURE 3 | Novel strategies targeting KRAS mt NSCLC. Created in BioRender.com.
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whereas when administered in combination with anti-PD-1
therapy it leads to durable complete regressions through an
immune-mediated antitumor response (78).

Early phase clinical trials are evaluating the combination of
ICPI with the KRAS G12C inhibitor adagrasib or sotorasib
(NCT03785249, NCT04185883, NCT03600883, NCT04613596)
(43, 77).

It represents an attractive strategy for those KRAS subgroups
less likely to respond to anti-PD1 monotherapy, such as the
STK11/KRAS co-mutated subgroup.

The use of combination regimens of IPCIwithTKIs has resulted
in excess toxicities without additional efficacy inmetastatic NSCLC
with actionable driver mutations such as EGFR or ALK (79). To
date, no increase in grade 3 or higher toxicities, such as interstitial
lung disease or liver toxicity, has been reported with sotorasib or
adagrasib in phase I/II clinical trials (48–51). However, the impact
ofKRASG12C inhibitors on toxicities arising fromprior ICPI use is
not well understood and remains an important question, as most
patients eligible for KRAS G12C inhibitors will have been
previously exposed to ICPIs. Recently, a case of severe immune-
related hepatitis likely triggered by sotorasib has been reported in a
patient with KRAS G12C mt NSCLC who had been previously
treated with antiPD-1 (80).

3.2.5 Other Strategies
KRAS-targeted degradation might be an important therapeutic
approach to KRAS mt tumors regardless of KRAS subtype.

PROteolysis TArgeting Chimeras (PROTACs) or small
molecule degrader technology are novel compounds design to
induce targeted protein ubiquitination and proteasomal
degradation by the cereblon E3 ligase complex (81). These
bifunctional molecules simultaneously engage a target protein
and an E3 ligase, forming a ternary complex, which allows the E3
ligase to ubiquitinate the target protein at proximal lysine residues
that is recognized and degraded by the 26S proteasome (82).
Initially, PROTACs targeting KRAS G12C did not degrade
endogenous KRAS (83). However, the emergence of covalent
inhibitors to target KRAS has enabled the development of
PROTACs capable of inducing endogenous KRASG12C
degradation in cancer cells, such as LC-2 that couples the
covalent KRASG12C inhibitor adagrasib to the von Hippel–
Lindau (VHL) ligand (82).
4 VACCINES ANDADOPTIVE CELL THERAPY

KRAS mutations are cancer-specific and do not exist in normal
tissues (84), constituting mostly driver mutations that are ideal
vaccine and ACT targets due to their clonal nature. More than 20
years ago it was shown that KRAS mt protein peptides were
immunogenic, could be presented by the major histocompatibility
complex (MHC)andundergoantigen recognitionbyT-cell receptors
(TCRs) (85, 86).

4.1 Cancer Vaccines
Several KRAS vaccines are being evaluated in early phase clinical
trials, alone or in combination with antiPD-1 therapy.
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V941 is an mRNA-based cancer vaccine formulated with lipid
nanoparticles that targets four of the most prevalent KRAS
mutations (G12D, G12V, G13D and G12C). V941 induces
cytotoxic T lymphocyte (CTL)- and memory T cell-dependent
immune responses that specifically target and destroy tumor cells
harboring these specific KRAS mutations (58). It is being
evaluated in an ongoing Phase I study (NCT03948763) in
patients with advanced or metastatic NSCLC, colorectal or
pancreatic adenocarcinoma, alone or in combination with
pembrolizumab. In part 2 of the study, patients with HLA-
A*1101 and/or HLA-C*0802, most likely to respond to
pembrolizumab, will be selected.

4.2 Adoptive Cell Therapy (ACT) and
Bispecific T-cell Engager (BiTE)
ACT involves the use of tumor-reactive T cells expanded ex vivo
and administered to a recipient after having undergone
preparative lymphodepletion. It is based on the use of
genetically modified T cells driven to the cancer cells through
the introduction of a synthetic T Cell Receptor (TCR) or a
Chimeric Antigen Receptor (CAR) (87, 88).

Tran et al. identified for the first-time polyclonal reactivity of
CD8+ TILs against KRAS G12D in TILs from a patient with
colorectal carcinoma carrying the G12D mutation and HLA-
C*08:02, after infusion of expanded TILs, which achieved
objective tumor regression in multiple pulmonary metastases (89).

The use of cloned TCR technology might be more appropriate
for direct targeting of KRAS mt antigens, as they are present on
the inner leaflet of the cell membrane. Multiple cloned TCRs that
recognize specific KRAS subtypes are being developed.
Autologous T cells transduced with murine KRAS G12D-
specific TCR and KRAS G12V-specific TCR for HLA-A*11:01
in patients with advanced solid tumors are currently being
evaluated in phase I/II clinical trials (NCT03745326,
NCT03190941 respectively).

Among the limitations of engineered TCR are the restriction
of this treatment to patients with a specific HLA subtype and, on
the other hand the potential mechanisms of resistance such as
loss of antigen, HLA or interferon gamma signaling (87, 90).

Both CAR-T and BiTE are HLA-independent therapies that
could overcome the limitations of engineered TCRs related to
patient selection based on specific HLA subtype, as well as the
mechanism of resistance secondary to HLA loss. However, the
intracellular nature of KRASmakes direct antigen binding difficult.
Specific driver mutations in NSCLC may be associated with high
levels of expression of multiple tumor surface antigens potentially
amenable to targeting CAR-T and BiTE strategies (90).

KRAS mt NSCLC has previously been associated with
increased mesothelin expression and an indirect approach is
the development of CAR-Ts directed against mesothelin (91, 92).

The need to perform leukopheresis and lymphodepletion,
which involves hospitalization, the high complexity of the
manufacturing components, as well as the potential serious
side effects arising from this therapy such as cytokine release
syndrome (CRS), immune effector cell-associated neurotoxicity
syndrome (ICANS) or infections secondary to prolonged aplasia
are the powerful challenges posed by these therapies (90).
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5 CONCLUSIONS

Despite multiple efforts to develop therapies directed against
RAS or its signaling pathways, the fact is that, to date, first-
line treatment in advanced mt KRAS NSCLC does not differ
from NSCLC without actionable driver genomic alterations.
Recent advances in the understanding of the structure of
mutant KRAS have led to the development of new allele-
specific inhibitors that have shown promising efficacy in
pretreated advanced KRAS mt G12C NSCLC patients in
phase I/II clinical trials.
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These direct KRAS G12C inhibitors alone or in combination
with therapies that target RAS-activating or RAS effector pathways
aswell as ICPI are being evaluated in phase III and phase I/II clinical
trials respectively, with the aim of providing better outcomes.
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