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Neonatal Encephalopathy (NE) describes neonates with disturbed neurological function

in the first post-natal days of life. NE is an overall term that does not specify the

etiology of the encephalopathy although it often involves hypoxia-ischaemia. In NE,

although neurological dysfunction is part of the injury and is most predictive of long-term

outcome, these infants may also have multiorgan injury and compromise, which

further contribute to neurological impairment and long-term morbidities. Therapeutic

hypothermia (TH) is the standard of care for moderate to severe NE. Infants with

NE may have co-existing immune, respiratory, endocrine, renal, hepatic, and cardiac

dysfunction that require individualized management and can be impacted by TH.

Non-neurological organ dysfunction not only has a negative effect on long term

outcome but may also influence the efficacy of treatments in the acute phase. Post

resuscitative care involves stabilization and decisions regarding TH and management of

multi-organ dysfunction. This management includes detailed neurological assessment,

cardio-respiratory stabilization, glycaemic and fluid control, sepsis evaluation and

antibiotics, seizure identification, and monitoring and responding to biochemical and

coagulation derangements. The emergence of new biomarkers of specific organ injury

may have predictive value and improve the definition of organ injury and prognosis.

Further evidence-based research is needed to optimize management of NE, prevent

further organ dysfunction and reduce neurodevelopmental impairment.

Keywords: Neonatal Encephalopathy, Therapeutic hypothermia, brain injury, multi-organ dysfunction,

neurodevelopmental outcome

INTRODUCTION

Neonatal encephalopathy (NE), is a clinically defined syndrome of disturbed neurologic function in
the earliest post-natal days of life in an infant born at or beyond 35 weeks of gestation, manifested by
a subnormal level of consciousness or seizures, and often accompanied by difficulty with initiating
and maintaining respiration and depression of tone and reflexes (1). In up to 50% of cases of NE
the exact underlying cause is unknown and is commonly a combination of factors (2). The terms

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://doi.org/10.3389/fped.2020.00239
http://crossmark.crossref.org/dialog/?doi=10.3389/fped.2020.00239&domain=pdf&date_stamp=2020-05-15
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:Eleanor.molloy@tcd.ie
https://doi.org/10.3389/fped.2020.00239
https://www.frontiersin.org/articles/10.3389/fped.2020.00239/full
http://loop.frontiersin.org/people/792642/overview
http://loop.frontiersin.org/people/712293/overview


O’Dea et al. Management of Neonatal Encephalopathy

NE and hypoxic-ischaemic encephalopathy (HIE) are used
interchangeably in the literature but as NE is all-encompassing
and does not specify etiology, it is the term used in this
review (3–5).

The neonatal period is the highest risk for brain injury during
the lifespan. In 2010, the estimated global burden of NE was
1.15 million, with 96% of these infants being born in low and
middle income countries (6). The global estimated incidence
from a systematic review in 2010 is 8.5 per 1,000 live births,
with an estimated incidence of 1–3 per 1,000 births in high
income countries.

Therapeutic hypothermia (TH) is known to be
neuroprotective by addressing the cascade of injurious events
that follow a hypoxic-ischemic insult in NE. Randomized
controlled trials demonstrated the safety and the efficacy of
TH by demonstrating a reduction in death and major neuro-
disability for infants with moderate to severe NE when their
clinical history, laboratory criteria, and neurological exam
meets agreed standardized criteria. Despite TH, the incidence of
death or moderate/severe disability remains high at 48% (7). A
systematic review including seven randomized controlled trials
(RCT) with 1,214 neonates with NE undergoing TH concluded
an overall mortality of 28%, with a range of 24–38% (7), with
the following incidences of neurological impairment; cognitive
impairment 24%, cerebral palsy 22%, epilepsy 19%, and cortical
visual impairment 6%.

These high morbidity and mortality rates suggest that there is
a need to improve outcomes by further optimizing TH candidate
selection, improving timeliness of treatment initiation, increasing
the use of brain monitoring for the identification and treatment
of seizures, improving multi-organ management during TH,
and identifying biomarkers to offer individualized adjunctive
therapies during TH. There is no single gold standard diagnostic
test to determine etiology, severity, or prognosis at present (8, 9).

Neurological dysfunction is only part of the spectrum of
injury in NE following hypoxic ischemic insult, infants can
have co-existing multi-organ dysfunction which contributes
to subsequent morbidities and mortality. The pathophysiology
underlying the brain injury in NE affects the immune,
respiratory, endocrine, renal, hepatic, and cardiac functioning
(10, 11). In addition, exposing these infants to TH has its
own impact on multi-organ function. Optimisation of multi-
organ monitoring and support during TH has the potential
to prevent injury progression and enhance the neuroprotective
effects of TH.

THERAPEUTIC HYPOTHERMIA

TH is the standard of care for moderate and severe NE. Major
randomized clinical trials (RCT) have demonstrated a reduction
in death and disability with TH (12). A Cochrane meta-analysis
of these trials concluded that in infants over 35 weeks and <6 h
of age with moderate or severe NE (n= 638), TH to 33.5–34.5◦C
for 72 h, reduced the mortality and disability at 18 months of
age with a typical risk ratio (RR) of 0.75 with a number needed
to treat (NNT) of 7 (12). The National Institute of Child Health

and Human Development (NICHD) and Committee of the Fetus
and Newborn of the American Academy of Pediatrics (AAP)
subsequently published a framework to ensure the appropriate
use of TH (13), and recommended that infants should meet
inclusion criteria outlined in clinical trials as follows: gestational
age >36 weeks; age <6 h; pH of ≤7.0 or a base deficit of ≥16
mmol/L in of umbilical cord blood or blood obtained during
the first hour after birth; history of an acute perinatal event;
10min Apgar score of <5 or assisted ventilation at birth and
for 10+ min; neurologic examination demonstrating moderate
to severe encephalopathy.

Evidence from animal studies suggest that earlier TH
initiation increases neuroprotection (14). The Neonatal
Resuscitation Programme (NRP) notes however that there is a
paucity of evidence regarding commencement of hypothermia
during resuscitation, as passive hypothermia without core
temperature monitoring during resuscitation may result in
overcooling with serious adverse effects (15). Thoresen et al.,
showed significantly improved motor development scores at 18
months when TH is initiated <3 h (n= 35) compared to >3 h of
age (n = 30) (16). This suggests that once indicated, TH should
be initiated immediately after resuscitation.

Two further RCT examined modifications from the original
TH protocols. Laptook et al. (17) examined late initiation of
TH in NE at between 6 and 24 h of age. The trial was a
multicentre RCT (n = 164) comparing late initiation of TH with
normothermia. Although there was no statistically significant
difference in death and disability between groups, the authors
used a pre-specified Bayesian analysis to demonstrate that there
was an increased probability of reduction in death or disability
with minimal adverse events in the TH group. Shankaran et al.
(18) examined TH to a lower temperature of 32◦C and/or for
a longer duration of 120 h in a multi-center RCT. The trial
was stopped at 50% (n = 364) of the planned recruitment due
to a number of adverse events including anuria, arrhythmia,
increased inhaled nitric oxide requirement and extra corporeal
membrane oxygenation (ECMO) use, more days of oxygen and a
higher incidence of bradycardia as well as trend toward increased
mortality. There was no difference between treatment groups
in the primary outcome of death or neuro-disability at 18–22
months of age.

The initial TH protocols included infants with moderate to
severe NE. Despite recommendations from organizations like
the AAP, there is evidence of therapeutic drift with TH being
provided to neonates with mild NE. A national survey in the
UK reported that 75% of centers offered TH to infants with
mild NE (19). The Prospective Research on Infants with Mild
Encephalopathy (PRIME) Study found that 52% of infants with
mild NE had an abnormal early aEEG or seizures, abnormal
brain MRI, or neurological exam at discharge (20). At follow
up at a mean of 19 months, 16% of infants had a disability
and 40% had Bayley III scores <85 (21). Murray et al. noted
that children with mild NE, not treated with TH, had cognitive
outcomes similar to that of children with moderate NE, who were
treated with TH (22). A systematic review examining outcome of
infants with mild NE found that 25% (n = 341) had abnormal
neurodevelopment outcome (23). There is an ongoing phase two
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RCT by Thayyil et al., Optimizing the duration of Cooling inMild
NE (COMET Study; NCT03409770), examining the feasibility
and duration of TH in mild NE in the UK. Interpretation of
research and smaller cohort studies of neonates with mild NE is
limited by a lack of consistent definition of mild NE across study
groups. Although a beneficial effect of TH in this population is
plausible, to date this benefit has not been demonstrated in an
RCT (24).

NEUROLOGICAL ASSESSMENT AND
MONITORING

Neurological Assessment
A detailed neurological assessment is required to diagnose NE
and ideally before the administration of sedating medications
that may alter the neurological examination. TheModified Sarnat
Examination (25) is used in the evaluation of neurological status
for initiation of TH. This was used as entry criteria in the
main TH RCTs (26) apart from the Total Body Hypothermia
(TOBY) trial and the Cool Cap Study, both of which included
amplitude integrated electroencephalogram (aEEG) as an entry
criterion (27). The Sarnat Score assesses three stages of NE:
mild (NE I), moderate (NE II), and severe (NE III) which were
correlated with clinical outcome. The score is derived from a
study of 21 infants with NE graded according to their level
of encephalopathy and EEG findings over the first post-natal
week of life. Sarnat et al. concluded that persistence of moderate
encephalopathy for more than 7 post-natal days was associated
with poor neurologic outcome or death (25). A systematic
review of newborn assessment to predict neurological outcome
including 12 studies concluded that the risk of neonatal death was
24-fold higher in Sarnat III than Sarnat II, and 171 times higher
in Sarnat III than Sarnat I (28).

The Amiel-Tison Neurologic Assessment at Term (ATNAT)
(29) was developed to provide a framework for observing the
development of cortical control in infants at term and has been
shown to predict the occurrence of cerebral palsy after birth
asphyxia. Amess et al. examined term infants postnatally (n= 28)
with NE with the ATNAT at 8 h and at 7 days. Both early and late
neurological examinations were reliable indicators of a favorable
outcome at 1 year, having negative predictive values of 100 and
91%, respectively (30). Murray et al., used the ATNAT serially
over the first 3 days of post-natal life in 57 infants with NE, and
found a significant correlation between ATNAT and neurological
outcome at 2 years (31). A normal early assessment predicted a
normal outcome, and a persistent neurological abnormality on
day of life 3 was associated with neuro-disability. The risk was
100% in those with a severely abnormal ATNAT, and 41% in those
with a moderately abnormal assessment.

The Thompson score is a clinical tool assessing central
nervous system dysfunction in NE, based on the longitudinal
clinical assessment of 9 signs, including tone, level of
consciousness, seizures, posture, Moro, grasp, suck, respiratory
function, and anterior fontanelle tension (32). Kothapali et al.
showed that the Thompson score has a good short-term
predictive capacity of morbidity and mortality (n = 145) (33).

Mendler et al. showed a strong association between Thompson
score and long-term, at a mean age of 53 months in infants with
NE (n = 36) (34). Almost all surviving infants with a maximal
Thompson score ≤10 had a normal IQ and almost all infants
with an impaired IQ (<85) had a Thompson Score ≥11.

Prechtl’s assessment of general movements assesses
spontaneous motor activity and has proven sensitive in the
prediction of cerebral palsy (35). General movements assesses
for two distinct patterns of normal movements, writhing
movements at 6–9 weeks post term, and fidgety movements
at 6–20 weeks. Abnormal movements include poor repertoire,
cramped-synchronized, and absent fidgety general movements.
General movements were highly correlated to gray matter injury
in infants with NE (36). All infants with severely abnormal
general movements had gray matter injury and poor motor
outcome. Infants with predominantly white matter, cortical
lesions or mild basal ganglia or thalamic injury had normal or
transiently abnormal general movements and normal or mild
motor impairment. The ATNAT was compared to Prechtl’s
qualitative assessment of general movement in a group of 45
preterm infants with risk factors for brain injury and correlated
better with neurodevelopmental outcome (37).

AMPLITUDE INTEGRATED EEG (AEEG)
AND IDENTIFICATION AND MANAGEMENT
OF NEONATAL SEIZURES

The incidence of seizures in NE is ∼50% (38). The presence
of seizures increases the incidence of neurodevelopmental
impairment. A cumulative seizure burden of 40min increases
neurodevelopmental impairment by nine-fold, independent of
grade of encephalopathy and TH (39). TH reduces the seizure
burden, especially in moderate NE (40). Seizures can be difficult
to diagnose in neonates as ∼50% do not have obvious clinical
signs (41, 42).

AMPLITUDE INTEGRATED EEG (AEEG)

Availability of continuous Electroencephalography (EEG) with
real-time interpretation by trained staff is ideal but most NICUs
use the modified form of amplitude integrated EEG (aEEG), a
single or double lead EEG recording from two parietal electrodes.
aEEG is useful to monitor baseline brain activity and to detect
seizures (43). The combination of early neurological examination
and aEEG, in comparison to each individually enhances the
ability to identify infants with NE (44). Svenningsen et al.
demonstrated that aEEG background activity over the first 6 h
of post-natal life accurately predicted neurological outcome
(45). The limitations of aEEG include limited short low voltage
seizure detection (46) and inaccurate readings due to artifact
compared to EEG. aEEG has been demonstrated to be less
predictive of outcome at early time points in infants treated
with TH compared to normothermia; infants with good outcome
had normalized background pattern by 24 h when treated with
normothermia and by 48 h when treated with hypothermia (47).
Various aEEG training modalities are available such as from the
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Total Body Hypothermia Register website (https://www.npeu.ox.
ac.uk/downloads/files/toby/TOBY-CFM-Manual.pdf).

TREATMENT OF NEONATAL SEIZURES

The treatment of seizures in NE remains a therapeutic challenge
(48). Phenobarbitone is used as first line agent (49), however
its efficacy is limited. Phenobarbitone has been demonstrated
to reduce both the amplitude and propagation of seizures
(50) which may result in electroclinical uncoupling of seizures,
which refers to electrographic seizure activity that is not
clinically manifested and may make seizure detection more
difficult on aEEG monitoring. There are concerns about
adverse cognitive effects of phenobarbitone on the neonatal
developing brain (51). Animal models have demonstrated that
early phenobarbitone exposure causes adverse neurological
outcomes later in life (52) and most of the pharmacological
data on phenobarbitone is extrapolated from adult data (53).
The “efficacy of intravenous levetiracetam in neonatal seizures”
trial (NEOLEV2; NCT01720667) examined the efficacy of
using levetiracetam first line in comparison to phenobarbitone
for neonatal seizures from all causes. The primary outcome
was to determine the efficacy of intravenous levetiracetam in
terminating neonatal seizures (from all causes) when given as
first line therapy compared to phenobarbitone. The provisional
results demonstrated that phenobarbitone was more effective
then levetiracetam with 80% remaining seizure free for 24 h
compared to 28% (54). Sharpe et al. provided continuous
monitoring for patients in the NEOLEV2 trial with real-time
response to seizure detection. They reported that automatic
seizure detection algorithm was useful but not accurate enough
to replace human review and that placement of EEG monitors
after hours was problematic (55). Levetiracetam pharmacokinetic
studies in term neonates found a higher than expected renal
clearance, that increased significantly over the first week of post-
natal life requiring increased interval dosing (56).

Second line agents to treat neonatal seizures include
phenytoin, levetiracetam, topiramate, lidocaine, and midazolam
(57). Phenytoin was found to be 57% effective as a combination
therapy with phenobarbitone to achieve seizure control in
an RCT of neonates with seizures from all causes (n = 59)
(53). Bumetanide was evaluated as a second line therapy for
neonatal seizures via the NEMO (Treatment of Neonatal seizures
with Medication Off-patent: evaluation of efficacy and safety
of bumetanide) open label feasibility trial. The trial had safety
concerns regarding ototoxicity and was stopped prematurely (n
= 14) (58). Bumetanide did not show signs of clinical efficacy
for the treatment of neonatal seizures in the 14 infants that were
studied prior to the premature cessation.

A survey of 55 pediatric neurologists predominantly based in
USA showed a high off label use of levetiracetam and topiramate
as second line for neonatal seizures (3). No side effects in
the levetiracetam group were reported in the survey and the
treatment was reported as beneficial in over half of cases. There
was no consensus on the dosage to use and a wide range
of doses were reported (10–30 mg/kg). Midazolam has been

shown to have a good response rate in seizure termination in
a group of neonates with seizures refractory to phenobarbitone
and phenytoin (59). A retrospective review of neonatal seizure
management reported that lidocaine demonstrated effectiveness
in 50% of neonatal seizures as second line therapy but caution is
warranted in view of cardiac toxicity, with bradycardia reported
in 3% of patients (60). These studies demonstrate that there is
an urgent need for clinical trials to determine safe and effective
treatment for neonatal seizures (61).

In summary, 50% of infants with NE have seizures, with
phenobarbitone remaining the first line agent with demonstrated
clinical efficacy but some overall safety concerns. A global
working group of experts established a consensus for protocols
for new RCTs in neonatal seizures using evidence based neonatal
seizure treatment (62).

NEURO IMAGING

MRI is the gold standard technique to detect patterns of cerebral
damage in NE and provides a reliable guide to prognosis (63).
Cranial ultrasound (US) and Doppler sonography have useful
adjuncts in early diagnostic imaging (64–66). Conventional MRI,
with T1 and T2 weighted images, has been demonstrated to have
good diagnostic ability to detect brain injury at the end of the
first post-natal week of life. There are limitations to the predictive
value of MRIs, a normal MRI does not guarantee a normal
neurodevelopmental outcome. In one study 32% of infants who
had a normal MRI brain in the neonatal period post TH had
abnormal development at follow up (67).

The advancement of MR diffusion weighted imaging (DWI)
(68) and magnetic resonance spectroscopy (MRS) means lesions
may be visualized within the first few post-natal days.

The optimal timing of the MRI brain is important for clinical
prognostication and potential redirection of care in the case
of end of life decisions, with most cases of withdrawal of care
occurring in the first three post-natal days of life (69).

High correlation of sequential conventional MRI and DWI on
post-natal day 4 and during the secondweek was demonstrated in
15 patients with NE (70). 3 Tesla (T) MRI brain was performed
in 12 infants with NE at four time points, on post-natal day 1,
days 2–3, days 8–13, and at 1 month of age (71). All injuries were
already visible on early MRI scans, the later MRIs did not show
any new lesions, and in severe NE, DWI changes were subtle on
post-natal day 1 and became more apparent on days 2–3. The
image quality and diagnostic accuracy in comparison is better
with 3T in comparison to a conventional 1.5 TMRI (72). 3TMRI
has a good safety profile and is safe for the developing brain but
is not universally available (73).

MRI changes in NE may commonly involve parasagittal
watershed infarcts between anterior/middle cerebral artery
and middle/posterior cerebral artery, with both cortical
and subcortical involvement, and injury to metabolically
active tissues such as the basal ganglia (BG), thalami,
putamen, hippocampi, brainstem, and corticospinal tracts
(74). Abnormalities in the signal of the posterior limb of the
internal capsule (PLIC), BG and thalami have been demonstrated
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to have the greatest predictive value of poor neurodevelopmental
outcome, in particular for motor outcome (75, 76). Severe
BG and thalami lesions predictive accuracy for severe motor
impairment was 0.89 in one study, with abnormal PLIC signal
intensity predicting the inability to walk independently by 2
years with a positive predictive value of 0.88 (77). In contrast,
infants with white matter damage and no BG or thalamic injury
had a good prognosis for independent walking by 2 years of age
in infants with NE (n= 270) (78).

TH has demonstrated a reduction in BG, thalamic, white
matter, and PLIC signal abnormalities (79). TH may be better at
reducing the severity of BG and thalamic injury as these regions
are selectively vulnerable to acute hypoxia-ischemia compared
to parasagittal areas which are more associated with partial
prolonged injury (80). The accuracy of MRI as a biomarker to
predict outcome is not altered by TH (79).

Magnetic resonance spectroscopy (MRS) provides a non-
invasive examination of biochemical brain biomarkers. The
Magnetic Resonance Biomarkers in Neonatal Encephalopathy
(MARBLE) Study (81) found that thalamic N-acetyl aspartate
(NAA) concentration had the highest sensitivity (100%) and
specificity (97%) to predict neurodevelopmental outcome at 2
years (n = 223). A meta-analysis on MR biomarkers identified
MRS deep gray matter Lactate/NAA as the most accurate
biomarker to predict neonatal outcome and commented that
MRS scoring systems can increase prognostic objectivity (82).

Diffusion tensorMRI is more sensitive than conventionalMRI
to explore brain development and white matter fibers density and
maturation (83), and can display early injury prior to T1 and T2
abnormalities being apparent (84). A systematic review by Dibble
et al., of white matter tracts in NE, found three areas of altered
diffusion commonly seen in NE were associated with adverse
outcomes, the posterior limb of internal capsule and the genu
and splenium of the corpus callosum (85). Gray matter diffusion
changes in the BG and thalami post NE are associated with
dyskinetic cerebral palsy (86). Weeke et al. included diffusion
weighted changes in the corpus callosum in a new NEMRI brain
scoring system correlating with outcome at 2 years (87). The
limitation however of DWI is that the changes normalize within
the first week (88).

In addition to conventional MRI techniques, there are further
advanced research methods where the acquired data is amenable
to derive specific measures through computational analysis and
exploration of their ability to predict outcome. This includes
diffusion MRI tractography to visualize white matter structure
(89–91), and model based measures of tissue microstructure
such as Neurite Orientation Dispersion and Density Imaging
(NODDI) (92, 93) and diffusion tensor imaging (DTI) based
parameters like apparent diffusion coefficient (ADC), radial
diffusivity (RD) and fractional anisotropy (FA) (94). Other
physiological parameters such as regional cerebral blood flow can
be measured with Arterial Spin Labeling (ASL) (95).

Near-infrared spectroscopy (NIRS) is a tool to monitor
regional cerebral oxygen saturation, via a calculation based
on the absorption spectra of oxygenated and deoxygenated
hemoglobin. The measurement of regional cerebral oxygen
saturation represented mixed oxygenation of both arterial,

venous and capillary readings (96). A systematic review of the use
of NIRS in NE showed an association between impaired cerebral
autoregulation and cardio-respiratory injury, abnormal MRI and
long-term outcome (97).

NEUROCRITICAL CARE

Neurocritical care is an evolving field of tertiary intensive care
units through collaboration of neonatologists, neurologists, nurse
specialists, and allied health professionals who coordinate care
for neurologically ill neonates and has improved outcome of
babies with NE (98).

Neurocritical care provides consistency in diagnostic and
management strategies focused on improved neurological
outcomes. A retrospective review compared the MRI brains’ of
infants cared for in their normal NICU (n = 109) to those of
infants cared for after their introduction of a neurocritical ICU
(n= 107) (99) and demonstrated a reduction in abnormalities on
MRI brain of infants cared for in the neuro NICU after adjusting
for confounding factors (odds ratio 0.3, CI 0.15–0.57, p <

0.001). The changes implemented in that neuro NICU included
the introduction of a new multi-disciplinary team, full EEG
monitoring done for duration of hypothermia and rewarming,
neuroprotection protocols, quality improvement practices, and
implementation of a long-term follow-up program.

CARDIOVASCULAR

The spectrum of cardiovascular (CVS) dysfunction in NE ranges
in severity and may be attributed to hypoxia or be secondary
to ischemia, metabolic acidosis, and multiorgan injury (100).
Myocardial contractility, cardiac output and blood pressure are
all negatively impacted and co-existing pulmonary hypertension
is common. CVS dysfunction may be evaluated from a number
of modalities including vital signs, biochemical parameters,
echocardiography, and other haemodynamic assessments.

TH affects haemodynamic functioning by causing bradycardia
(101), peripheral vasoconstriction, and decreasing cardiac output
(102). TH increases the QTc interval (103) and increases the
risk of cardiac arrhythmias (104). The initial TH RCTs were not
adequately powered to examine cardiovascular benefit however
creatinine-kinase muscle/brain (CK MB) and brain natriuretic
peptide (BNP) decrease with TH suggesting a cardioprotective
effect (105) and animal model studies have demonstrated an
improvement in cardiac ischaemia (106).

Both troponin-T and troponin-I have been demonstrated
to be sensitive markers of cardiac dysfunction in NE (100,
107). Gunes et al. measured serial troponin-T, creatinine Kinase
(CK-MB), in 45 infants with NE (108). CK-MB levels were
significantly higher in moderate and severe NE then in mild NE.
Boo et al. found the sensitivity of serum troponin-T in detecting
myocardial injury in NE presenting with heart failure was 72.7%
and the specificity was 35.9% (109). Serial serum troponin levels
during the first 48 h of post-natal life have been found to be
significantly higher in infants with NE who died.
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Hypotension is observed in up to 62% of patients and
may cause secondary multiorgan ischaemic injury. There is
no consensus on the ideal target mean systolic, diastolic nor
pulse pressure during TH nor on the best pharmacologic
agents to maintain it. Long term clinical outcomes of
inotropic and chronotropic support lack evidence, with
dopamine, dobutamine, and adrenaline commonly chosen
demonstrating short term haemodynamic improvements in
BP (110). Vasopressor use warrants caution due to potential
pulmonary and systemic vasoconstriction (110). McNamara
et al. recommended that inotropes administration be done on
an individual patient basis depending on echocardiography
(ECHO) and clinical status (111). Echo is the best diagnostic tool
available to assess cardiovascular function and guide inotropic,
chronotropic, and fluid management.

Medications used to treat systemic hypotension include
dopamine, dobutamine, adrenaline and noradrenaline,
depending on coexisting myocardial dysfunction. Adrenaline
may be the most appropriate inotrope due to its’ action on α1,
α2, β1, and β2 receptors and its’ favorable impact on pulmonary
vascular resistance (PVR)/systemic vascular resistance (SVR)
ratio (112). The action of dobutamine via α and β receptors
decreasing SVR may have advantages as an inotrope in the
context of persistent pulmonary hypertension of the newborn
(PPHN) and myocardial dysfunction but has not been subject to
controlled trials (113). Dopamine is predominantly a vasopressor
and in neonatal animal studies has been shown to increase PVR
and SVR (112), which has the potential to increase afterload,
decrease left-to-right shunting, and compromise systemic
oxygen delivery (113). Dopamine is the most widely studied
and the most commonly prescribed inotrope in neonatology
(114). Studies of developmental outcome favor dobutamine
use over dopamine in the preterm population but there are no
comparative RCTs in NE (115). McNamara et al. recommended
dobutamine use in NE to improve cardiac contractility and
heart rate. Milrinone has altered pharmacokinetics during
TH affecting its clearance and caution needs to be used with
noradrenaline administration as there is little evidence of benefit
and it has not been subject to RCT for follow up data (111).

A sustained difference of >5–10% between continuous
pre- and post- ductal saturation monitoring may indicate
PPHN, which can be confirmed on echocardiography (116).
Echocardiography helps to quantify the degree of PPHN and
guides treatment including choice of inotropic support. The
development of serial functional echocardiography in the NICU
allows tracking of the dynamic changes occurring over the course
of PPHN (113, 117).

The management of PPHN involves reducing the cardiac
afterload and maintaining high preductal mean blood pressures
(113, 118). Milrinone has been shown to improve oxygenation
index in term neonates with severe PPHNwithout compromising
systemic blood pressure (119). A Cochrane review (120)
concluded that the efficacy and safety of milrinone in the
treatment of PPHN are not known and recommended that use
is restricted to RCTs. Milrinone metabolism is known to be
decreased by TH and in an animal model study the inotropic
effect was abolished at temperatures of between 31 and 34◦C

(121). Sildenafil is increasingly used in PPHN. A Cochrane
review of sildenafil for PPHN found a significant reduction in
mortality in the sildenafil group vs. the control group with a
number needed to treat of three (122). The review concluded that
sildenafil has significant benefits especially in resource-limited
settings and recommended a large-scale randomized control trial
comparing sildenafil to the currently used vasodilator inhaled
Nitric Oxide (iNO). A Cochrane Review (123) of iNO for
respiratory failure in near term or term infants found that iNO
improved the outcome in hypoxaemic term infants by reducing
the incidence of the combined endpoint of death or need for
extra-corporeal membrane oxygenation (ECMO). Oxygenation
improved in ∼50% of infants receiving iNO. Long-term follow
up studies have found no increase in neurodevelopmental
impairment with its use (124, 125).

In summary, cardiovascular dysfunction in NE can be
negatively impacted by TH. Echo is the best tool to guide
management and other physiological parameter thresholds have
not been well-defined. Inotropic and chronotropic medications
have altered pharmacokinetics during TH and the choice of agent
is best guided by individual hemodynamics.

RESPIRATORY MANAGEMENT IN NE

The incidence of respiratory dysfunction in babies with NE
varies from 23 to 86% (10, 11, 126, 127). The spectrum of
injury ranges from transient oxygen requirement to severe
persistent pulmonary hypertension (PPHN). The pathogenesis of
pulmonary dysfunction is complex, although hypoxia is a major
component via disruption of the normal physiological fall in
pulmonary vascular resistance (113, 118, 128, 129).

The Neonatal Resuscitation Program R© (NRP), 7th edition
(130) and European Resuscitation Council Guidelines (131)
advise on initial management and resuscitation for a non-
vigorous term infant. The NRP recommends resuscitation using
21% fraction of inspired oxygen concentration and titrating the
oxygen to maintain oxygen saturations within a standardized
oxygen centile range depending on minutes of life. The exception
to this is if a neonate requires cardiopulmonary resuscitation
to titrate the fraction of oxygen to 100%. Neonates are at risk
of hyperoxia when exposed to high oxygen concentration, after
coming from a relatively hypoxic environment in utero and their
free radical scavenger systems are underdeveloped (132). Infants
with perinatal stress (n = 609) were enrolled in a multi-center
RCT comparing resuscitation at 100% fraction of inspired oxygen
to 21% (133). The infants with higher oxygen exposure had
more oxidative stress but no differences were found in mortality
or short-term morbidity. This study was limited by the fact
that the infants who were resuscitated were relatively well, as
all had oxygen saturations of over 90% at 2min and <2% of
them required supplementary oxygen after resuscitation. Expert
opinion from this study recommended restoring normoxia as
quickly as possible during resuscitation and that a properly
powered RCT to establish correct fraction of inspired oxygen
would need to recruit 7,000 neonates (134).
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Respiratory support in NE aims to maintain a pH over
7.25 and a normal to high partial pressure of arterial
carbon dioxide (PaCO2 5–7 kPa, 37.5–52.5 mmHg) (113,
135–137). Hypocarbia has detrimental effects on cerebral
perfusion in an already compromised infant (138–143) and is
associated with neurosensory hearing impairment and abnormal
neurodevelopment (143, 144). Both isolated low PaCO2 levels
and cumulative PaCO2 <4.6 kPa (35 mmHg) were associated
with death and disability.

Hypothermia is known to decrease the partial pressure of
oxygen and carbon dioxide whilst increasing the pH (142,
145–147). The temperature corrected blood gas values can be
obtained by inputting the temperature to the blood gas analyser.
Fraction of inspired oxygen, mean airway pressure, oxygenation
index, and alveolar-arterial gradient decrease during induction
of TH increase during rewarming. Minute ventilation increases
with TH and decreases upon rewarming. The inspiratory
time, respiratory rate, and positive end expiratory pressure are
unaffected. Eicher reported a higher iNO requirement with TH,
with 5/35 neonates requiring iNO compared to 1/30 managed
at normothermia (p < 0.01) (148), however a Cochrane meta-
analysis of four TH trials showed no significant effect of
hypothermia on PPHN (26).

In summary TH impacts respiratory function in neonates and
requires altered blood gas interpretation. Tight control of carbon
dioxide and avoidance of hypoxia is essential. There is expert
evidence on the use of iNO in PPHN however trials to evaluate
the evidence of milrinone and sildenafil use are required.

RENAL MANAGEMENT IN NE

Renal dysfunction resulting in acute kidney injury (AKI) varies
from 22 to 70% in NE (149). Selewski (150) reported that
infants with NE and co-existing AKI had both a longer length
of stay even after controlling for other confounders and an
increased incidence of abnormal MRI brain (151). TH has not
been associated with a reduction in AKI in NE (150).

The current Kidney Disease Improving Global Outcomes
(152) (KDIGO) guidelines for AKI use a rise in creatinine as part
of its definition. Creatinine is not an ideal biomarker of neonatal
AKI as it peaks late, only rises when 50% of renal function
is impaired, may reflect maternal creatinine level, and reflects
kidney function rather than injury.

The optimal biomarker would diagnose AKI earlier so active
management can be initiated. Cystatin C is a better indicator of
glomerular filtration rate than creatinine and correlates with NE
severity (153, 154). Neutrophil gelatinase- associated lipocalin
(NGAL) correlates to severity of NE and can predict a later
creatinine rise (155). Neonates with moderate to severe NE had
significantly elevated urinary levels of cystatin-C, NGAL and
lower epidermal growth factor in comparison to mildly affected
infants (156).

Electrolyte abnormalities were seen in 50% of infants,
with hyponatraemia, hypokalaemia, and hypocalcaemia being
the most common (157). Renal profile, fluid balance, urine
electrolytes, and acid-base balance need regularly monitoring.

Urinary catheterisation may be necessary as morphine can cause
urinary retention via anti-cholinergic effects.

Oliguria is common in NE. There is a significant risk of fluid
retention and hyponatremia due to a poor capacity to produce
urine. Fluid intake is frequently restricted in NE during TH due
to concerns regarding cerebral oedema (158). A Cochrane review
however found no RCT evidence to support this practice and
recommended further studies (158). A subsequent RCT of infants
with NE undergoing TH randomized infants to a restricted fluid
intake of two thirds of normal (n = 40); at 40, 55, 65, and 80
mls per kilogram per day on post-natal days one to four of life,
respectively, vs. normal fluid intake (n = 40); of 60, 80, 100,
and 120 mls per kilogram per day, respectively, for the first four
post-natal days of life. The fluid composition was 10% dextrose
in the first 48 h of post-natal life with sodium and postassium
added to the dextrose over the next 48 h. Restricted fluid did
not reduce death or major neuro-disability at 6 months of age
and was associated with a trend toward more hypoglycaemia
(159). Hyponatraemia can result from kidney injury causing fluid
retention, the syndrome of inappropriate anti diuretic hormone
(SIADH), and tubular dysfunction. The Bartter and Schwartz
(160) criteria define SIADH as hyponatremia (serum Na+ <135
mmol/L) with a corresponding serum hypoosmolality (<280
mOsm/kg), and continued renal excretion of Na+ (>40 mEq/L),
in the absence of clinical evidence of volume and of other causes
of hyponatremia. Water restriction is necessary to manage the
SIADH safely (161).

During TH renal perfusion is reduced, pharmacokinetic
parameters change, and therefore there is a reduction in renally
excreted drugs. Nephrotoxic medications, such as acyclovir,
aminoglycosides, non-steroidal anti-inflammatory drugs, and
vancomycin administration are recommended at renal doses and
require therapeutic monitoring. Cefotaxime can be substituted
for gentamicin as it has similar coverage without nephrotoxicity
(162). The PharmaCool study group demonstrated that
morphine-6-glucuronide, the active metabolite of morphine,
excretion was decreased during TH. They recommend a loading
dose of 50 mg/kg of morphine followed by 5 mcg/kg/hour
during TH but acknowledged that there is a large variability of
plasma concentrations between patients so dosing may require
alterations on an individual patient basis (163).

Renal replacement therapy for severe AKI refractory to
medical therapy is not a frequently used therapy, but when
indicated peritoneal dialysis is preferred over continuous renal
replacement therapy (164). There is a lack of data with long
term renal follow up of neonates from a renal perspective post
AKI, despite the knowledge that AKI from all causes carries the
risk of chronic kidney disease (CKD) with Mammen (165) et al.
finding that 10.3% of children had CKD in the 1–3 years post
AKI. Askenazi et al. (149) recommend the need for post AKI long
term follow up on a threemonthly basis with urinalysis and blood
pressure measurement identify those children who will go on to
develop chronic kidney disease.

To summarize, the definition of AKI is less suitable in neonatal
AKI. Electrolyte disturbance and SIADH are common in NE
and require monitoring. Morphine elimination is decreased by
TH. There is no consensus on AKI management in NE nor
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recommendation for long term follow up which is essential post
AKI. The optimal fluid management was subject to a small RCT
on whether to restrict fluids with no difference in outcome.

GASTROINTESTINAL, LIVER, AND
NUTRITION

Enteral feeds were held in the initial TH RCTs, although
the risk of necrotizing enterocolitis was similar in TH and
neonates managed at normothermia. Some TH centers are now
implementing trophic enteral feeds of expressed breast milk (166,
167). A pilot retrospective review of 17 neonates who received
minimal enteral nutrition compared to no enteral feed during TH
(n = 17) found the enteral feeding group was associated with a
reduced length of stay and time to full feeds, and did not increase
feeding complications nor systemic inflammation (168).

An important finding on the review of available evidence and
literature is that no trials have examined the optimal type of fluids
to be used. There are no recommendations on whether TPN or
dextrose plus electrolytes is the optimal fluids. In anuric renal
failure, losses (30 ml/kg/day) plus urine output replacement are
recommended for infusion volume (169). There is no evidence to
support the use of frusemide in fluid overload in NE.

Glycaemic control is critical in NE as glycogen stores are
metabolized via anaerobic metabolism commonly resulting
in hypoglycaemia. Initial hypoglycaemia and subsequent
hyperglycaemia are associated with poor neurological outcome
(170–175). Optimal timing and intervals of glucose monitoring
is unknown, however, one evidenced based recommendation is
to initiate glucose infusion rate (GIR) of 6–8 mg/kg/min, with
2 mg/kg/min increases in GIR if hypoglycaemia occurs (176).
Glucose monitoring recommendation is every 30–60min until
the glucose is over 2.8 mmol/L (50 mg/dl) and subsequently
every 4–6 h.

Shah et al. (10) defined hepatic involvement in NE
as an elevated aspartate aminotransferase (AST) or alanine
aminotransferase (ALT) to >100 IU/ during the first week after
birth. Transaminitis, defined as 1.5 times the upper limit of
normal was reported in 80% of babies with NE by Hankins
et al. (126). They suggested that elevated lactate dehydrogenase,
ALT and AST to 1.5 times the upper normal level indicates
liver involvement in NE (177). Severity of NE is associated
with higher ALT and AST (178). Abnormalities in markers of
hepatic synthetic function such as albumin and prothrombin
have not been shown to correlate with severity of NE (178, 179).
Management of liver dysfunction in NE remains supportive
in nature, with platelet, plasma, and albumin infusions as
necessary and vitamin K administration. Caution is warranted
with use of hepatotoxic medications (paracetamol, ampicillin,
and gentamicin). Ensuring normalization of liver function
testing in the neonatal periods avoids missing underlying
metabolic disorders.

In summary, glycaemic control is critical and can contribute to
neurological morbidities. There is a lack of evidence from RCTs
regarding enteral nutrition during TH, and optimal fluid volume

and type to be infused parenterally. Liver dysfunction requires
monitoring alongside caution with hepatotoxic medications.

HEMATOLOGICAL ASSESSMENT AND
MONITORING

NE is associated with elevated nucleated red blood cells,
thrombocytopenia, and prolonged coagulation profile.
Coagulopathy is caused by blood loss, hypoxia-ischaemia,
and disseminated intravascular coagulation. The incidence of
coagulopathy causing major or life threatening bleeding reported
in the initial TH RCTs ranged from 3 to 12% (26). Coagulopathy
was reported in 18% in the NICHD study, 19% in the Cool
CAP study, and 40% in the TOBY study. There is limited data
regarding recommended levels to currently transfuse neonates
to overcome coagulopathic or anemic states (180). One study
reported that 57% of NE infants required a blood product
transfusion in the first 12 h (180).

Foreman et al. established a higher incidence of clinically
significant bleeding in infants with NE with platelets below 130
× 10 9/L, fibrinogen under 1.5 g/L and international normalized
ratio (INR) over 2 (181). Patel et al. define haemostatic
dysfunction as prothrombin time (PT)≥18 s, platelet count<100
× 109/L and/or fibrinogen <150 mg/dl (180). Hankins et al.
(177) defined hematological injury as the development of early
thrombocytopenia (<100× 109 per liter) in the absence of other
causes, or an increase in nucleated red blood cell count to ≥26
per 100 white blood cells. A number of guidelines recommend
discontinuation of TH in the case of life threatening hemorrhage
and ILCOR recommend platelet monitoring but do not specify
intervals nor thresholds to intervene at (182).

TH is known to slow the production of enzymes involved in
the coagulation cascade (183), but has not been demonstrated
to cause an increase in any major hemorrhage (184). Severe
hypoxia has been shown to decrease the platelet lifespan (185),
whereas hyperoxia exposure has been demonstrated to worsen
platelet aggregatory response (186). Protein C, protein S, and
antithrombin III were increased in 100% of infants with NE
demonstrating a potential to have an increase in thromboembolic
events (187). Fetal thrombotic vasculopathy is a common finding
on placental pathology in NE (188).

Neonatal stroke was implicated in 4.8% of cases of NE in
one study (189). Neonatal stroke as the etiology of NE has been
demonstrated to have a worse long term outcome (189, 190). The
stroke may be venous or arterial in nature, and of hemorrhagic
or ischemic origin. Arterial ischemic stroke previously is
demonstrated to have a higher incidence in the literature,
however it is more common preterm infants in comparison
to term infants. Radiconi et al. hypothesized the incidence of
cerebral sino-venous thrombosis is underrecognized in neonates
undergoing TH (191). They found 27% of neonates had
cerebral sinovenous thrombosis by performing MR venography
post rewarming.

Antenatal fetal, maternal, and placental risk factors are all
be implicated, including placental infarction, pre-eclampsia,
maternal smoking, maternal chorioamnionitis, perinatal
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asphyxia, resuscitation, low Apgar scores, fetal thrombophilia
(for venous stroke), and congenital heart disease (192). Alongside
TH if indicated in the case of stroke causing NE, the management
involves treating underlying condition.

Leukocytosis has been shown to correlate to abnormal
neurodevelopmental outcome (193, 194). Morkos reported that
elevated neutrophil best predicted adverse neurological outcome
at 1 year.

In summary, coagulopathy is common in NE at up to
40% and blood product transfusion requirement is common.
Stroke may be implicated in the etiology of NE. TH impacts
coagulopathy and may require discontinuation in event of life
threatening hemorrhage.

INFECTION

Infection and inflammation are implicated in the etiology of
NE (195). Maternal chorioamnionitis is a risk factor for NE,
with up to one third of placentas in NE displaying histological
chorioamnionitis (179). The Vermont Oxford Network reported
that 24% of cases of NE have an associated antenatal
inflammatory finding (2).

TH has not been associated with a higher incidence of culture
positive sepsis (26). Robertson et al. postulated that the higher
mortality in a pilot RCT in Uganda in infants receiving TH (33%
died) compared to normothermia (7%), may have been related
to a higher incidence of sepsis during TH, but the laboratory
infrastructure was lacking to support this hypothesis (196). In
animal model study TH appears to be protective in gram positive
infection but not gram-negative sepsis (197). This has not been
studied in controlled studies in human neonates.

Broad spectrum antibiotic therapy covering gram positive,
negative, and anaerobes is common practice until sepsis has
been excluded, with negative blood cultures and normal infection
markers of white cell count and C-reactive protein (CRP).
Caution with CRP interpretation is advised as the peak value is
delayed by TH (198). Group B Streptococcal (GBS) sepsis was
implicated in 0.58% of cases of NE from a systematic review
(199). The NE mortality was higher in cases of GBS associated
NE at 21% compared to NE mortality not complicated by GBS
at 13.7%. The systematic review identified that infants with NE
have a 10-fold higher risk of GBS in comparison to term infants
without NE (199).

A small pilot study of 16 infants with NE screened extensively
for neurotropic viruses, bacteria, and protozoa, by performing
bacterial cultures in blood and cerebrospinal fluid (CSF) before
antibiotic treatment, and viral CSF, polymerase chain reaction
(PCR) for cytomegalovirus, herpes simplex 1 and 2, Epstein-Barr
virus, enterovirus, and human parechovirus (200). One case of
blood culture positive bacterial sepsis and four cases of clinical
sepsis were diagnosed, with no PCR positive results.

Neonatal herpes simplex virus (HSV) central nervous system
(CNS) infection may be associated with neonatal seizures
and present as with similar signs to NE (201). Maternal
primary infection of HSV during the third trimester or
maternal mucocutaneous or genital lesions raises suspicion and

warrants investigation and empiric treatment in the neonate.
Mucocutaneous infection has an absence of clinical lesions in
20% of cases (202) and in 80% of neonatal HSV infection there
are no known maternal risk factors (202). A rapid HSV Swab
PCR testing and viral culture with the areas of skin swabbing
to include the anus, conjunctivae, mouth, nasopharynx, and any
suspected vesicles is advised with clinical suspicion (201). Renal
function monitoring and adequate hydration are important in
view of nephrotoxicity associated with acyclovir (203).

In summary, sepsis evaluation and broad spectrum antibiotics
are routine in NE but there is no expert or evidence-based
consensus on indication to sample cerebrospinal fluid (CSF) nor
viral and bacterial PCR screening. The incidence of HSV andGBS
is higher in NE.

SKIN

Regular full skin observation is suggested in view of the potential
complications during TH such as subcutaneous fat necrosis, a
benign condition characterized by inflammation and necrosis
of subcutaneous fat, and cold panniculitis which is an acute
nodular, erythematous eruption. In the TOBY RCT 1% of infants
had subcutaneous fat necrosis (204) which can be complicated
by hypercalcaemia and require hyperhydration and diuretic
treatment (205). Sclerema neonatorum is a diffuse hardening of
the subcutaneous tissue during TH that usually self resolves. The
use of a gradient variable mode of temperature control has less
adverse skin events than automatic servo-controlled mode (206).

In summary, daily skin examination for complications and
calcium monitoring during TH is recommended.

INBORN ERRORS OF METABOLISM (IEM)

Many IEM present with NE due to early accumulation of toxic
metabolites in the CNS including urea cycle defects, amino
acid, and organic acid disorders. IEM of energy deficiency most
commonly present in the first few hours and days of postnatal
life, with NE, cardiorespiratory compromise and organomegaly,
including galactosemia, some organic acidemias, urea cycle
defects and fatty acid oxidation defects, whereas inborn errors of
intermediate metabolism and substrate usually present later.

Persistent acidosis, hyperlactaemia, and refractory
hypoglycaemiamay indicate an IEM causing the encephalopathy.
Congenital malformations, dysplasias, and dysmorphic features
raise suspicion of inherited metabolic disorders in an infant with
NE (207). Opisthotonus and myoclonic jerks may distinguish
metabolic encephalopathies from other etiologies of NE (208).
Full family history of metabolic disorders, sudden infant death,
failure to thrive, specialized dietary requirement, developmental
delay, and consanguinity may help with the diagnosis.

In the context where an IEM is suspected, Burton et al.,
recommend serum investigations of blood gas, electrolytes,
glucose, ammonia, amino acids, and lactate as well as
urinalysis for reducing substances, ketones, amino acids, and
organic acids as first line investigations (209). Laboratory
findings of lactic acidosis with normoglycaemia may indicate
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TABLE 1 | Comparison of definitions of Multi-Organ Dysfunction in Neonatal Encephalopathy.

Shah et al. (10) Hankins et al. (177) Martin-Ancel et al. (11) Perlman et al. (213) Alsina et al. (214)

Multi-Organ dysfunction in neonatal encephalopathy

CVS Hypotension treated

with an inotrope for

>24 h to maintain

normal BP

ECG evidence of

transient

myocardial ischaemia

Need for inotropic

support beyond 2 h

post birth

Elevated

CK-MB isoenzyme

Systolic and or diastolic

BP <5th percentile for

age and sex

ECG abnormalities

ECHO abnormalities

ECG or ECHO

abnormalities

(values > 2 SDs from

the mean normal

values)

Troponin >1 ug/L

Need for

vasoactive drugs

Hepatic AST or ALT> 100

IU/l during week one

Elevation of AST,

ALT, LDH to 1.5 x

upper normal level

Not included Not included GOT or GPT >100

Prothrombin

activity <60%

Renal Anuria or oliguria for

≥24 h and a SCr

>100 mmol/l

Anuria/oliguria for>36 h

Any SCr >125

mmol/l

Serial SCr

increasing postnatally

Elevation of SCr to

≥88.4 mmol/l

Oliguria >24 h

Persistent

haematuria

or proteinuria

Oliguria for > 24 h

≥2+ of proteinuria

Azotaemia = BUN

>7 mmol/l

Urea >7 mmol/l

azotaemia

SCr >90 mmol/l after

post-natal D3

Oliguria (<1 ml/kg/hr)

for >24 h

Creatinine >1 mg/dl

Diuresis <0.99

ml/kg/h

Need for

replacement

therapy

Neuro Not included Clinical evidence of

NE

EEG abnormalities

Neuroimaging abnormalities

Abnormal Neurological

exam

EEG abnormalities

Neuroimaging abnormalities

Abnormal neurological

exam

Cranial

ultrasound abnormalities

Not included

Resp Need for ventilatory

support with 40%

oxygen for at least

the first 4 h after

birth

Not included Abnormal Silverman Score

Need for 02
supplementation

Need for

Mechanical Ventilation

Requirement for

intubation and

Mechanical Ventilation

> 48 h post birth

Need for resp

support due to

causes other than

central apnoea or

pharmacological

effects

GI Not included Not included Gastric residuals,

vomiting, abdominal

distension/tenderness,

and GI bleeding

Evidence of NEC Not included

Haem Not included Thrombocytopenia

(<100 × 109/L)

Increase in nRBCs

to ≥26 per

100 WBCs

Not included Not included Leucocyte <4.5 or

>30 mm3

Platelet <149

APTT >45 s

Platelet or FFP

Scoring systems by Shah, Hankins, Martin-Ancel, Perlman, and Alsina assess systems of Cardiovascular, Hepatic, Renal, Neurological, Gastrointestinal, and Hematological Dysfunction.

CVS, cardiovascular; Neuro, neurological; resp, respiratory; GI, gastrointestinal; Haem, hematological; BP, Blood Pressure; AST, Aspartate Amino Transferase; ALT, Alanine Amino

Transferase; SCr, Serum Creatinine; CK-MB, Creatinine Kinase Muscle-Brain-Type Isoenzyme; ECG, Electrocardiographic; ECHO, Echocardiographic; SDs, Standard Deviations; NE,

Neonatal Encephalopathy; EEG, Electroencephalographic; BUN, Blood Urea Nitrogen; 02, Oxygen; GI, Gastrointestinal; MV, Mechanical Ventilation; NEC, Necrotising Enterocolitis;

nRBCs, Nucleated Red Blood Cells; WBCs, White Blood Cell; Glutamic oxaloacetic transaminase (GOT) Glutamic pyruvic transaminase (GPT).

potential medium or long chain fatty acid disorder or glutaric
aciduria T2, whereas lactic acidosis with hypoglycaemia may
indicate an oxidative phosphorylation disorder. Ketosis with
normoglycaemia differential include the organic acidurias,
however an acquired metabolic disorder from sepsis and/or
dehydration may present similarly (210). Moderately high
ammonia levels may be seen in NE without an IEM disorder,
with mean levels of 222 µg/dl in one review of infants with
NE (211). Higher levels of ammonia is seen in both urea cycle
defects are accompanied by respiratory alkalosis and no acidosis
and in organic acidemias distinguished by an accompanied
metabolic acidosis.

Management of IEM is dependent on the
underlying etiology and is done in conjunction with

metabolic specialist advice. The overall management
includes prevention of accumulation of harmful
substances by stopping enteral and parenteral
nutrition and correction of metabolic abnormalities by
normalizing glucose with IV dextrose, and aiming to
normalize blood pH, and eliminate toxic metabolite
accumulation (212).

In conclusion; IEM may present as NE, with distinguishing
laboratory and or dysmorphic features. Prompt investigation
and targeted management of the underlying IEM disorder
is necessary. Acquired metabolic disorders secondary
to other etiologies of NE may present with laboratory
findings of high lactate levels, moderately high ammonia,
and hypoglycaemia.
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MULTI-ORGAN SCORING IN NE

In view of the multiorgan involvement on NE several groups
have developed scoring systems to evaluate organ involvement
(Table 1). Shah et al. described multi organ scoring dysfunction
in infants with severe NE (n = 144) (10). They included
renal, pulmonary, cardiovascular, and hepatic parameters. All
infants had minimum of one end organ dysfunction. Renal,
cardiovascular, pulmonary, and hepatic dysfunction were found
to present in 70, 62, 86, and 85% of infants, respectively. They
concluded that multi organ dysfunction may be included to
support a diagnosis of NE, but that multi-organ dysfunction
did not correlate with adverse neurodevelopmental outcomes
or death.

Martin-Ancel et al. examined multi organ dysfunction in 72
infants with perinatal asphyxia (11) and found the following
distribution: pulmonary (26%), cardiac (29%), gastrointestinal
(29%), renal (15%), and respiratory (19%). They included infants
from mild to severe NE but only 35% of their included infants
required NICU admission, suggesting many of the included
infants had milder NE. Apgar score was the only perinatal factor
that correlated with the degree of multi- organ dysfunction in
their review.

Hankins et al. reported liver injury in 80%, cardiac
involvement in 78%, and renal injury in 72% in a prospective
review (n = 46) (126). These scoring systems allow the
evaluation of organ dysfunction but have not yet been
assessed in conjunction with longer-term neurodevelopmental or
multiorgan follow-up in childhood.

CONCLUSION

There has been significant progress over the past two decades
in neuroprotective strategies and with the establishment of TH
as the standard of care in NE. There remains a gap in the full
understanding of the optimal management of the infants during
TH, and evidenced based multi-organ support. Ongoing RCTs

and systematic reviews to gather information to recommend
evidence based best practices is essential to establish the most
appropriate practices for management of neonatal seizures, fluid
status, inotropic support, and respiratory support.

Establishing evidenced based guidelines for managing multi-
organ dysfunction in NE during TH can reduce practice
variation, optimize management, and contribute to better
outcomes. New adjunctive therapies for NE efficacy may be
dependent on the adequate functioning of specific end organs.
Dysfunction of these end organs may negatively impact on the
efficacy of new treatments and conversely new treatments may
have possible adverse side effects on already impaired organ
functioning. The introduction of specialized neurocritical care
units shows promise in non-pharmacological advancements of
management of NE.

Further biomarker development and validation is important
to aid in diagnosis of organ injury and prediction of long term
outcome, with the BEST (Biomarkers, EndpointS, and other
Tools) and twenty first Century Cures Act, providing framework
and supportive infrastructure for this (215). Development of an
overall predictive model which includes multiorgan dysfunction
as part of its criteria is vital to furthering our understanding of
NE, and will help in the long-term follow up and care of survivors
of NE.
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