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1. INTRODUCTION
On December 2019, the severe acute respiratory syndrome 
coronavirus 2, SARS-CoV-2 (formerly known as 2019-nCov)1 
was found in pneumonia patients in Wuhan, China. This virus 
is responsible for a life-threatening respiratory coronavirus dis-
ease 2019 (COVID-19).2 This virus then quickly spread to most 

continents around the globe. The death rates vary in different 
countries, but all of them tend to be on the high side compared 
with many respiratory infectious diseases. Elder persons have 
higher risks of mortality.3 As of April 2020, SARS-CoV-2 is still 
plaguing most countries in the world, with a total death count 
of more than 45 000 people. On the other hand, many infected 
patients have very mild symptoms or remain completely asymp-
tomatic during the entire course of infection. The occult infec-
tions represent a major threat to public health because infected 
persons with mild symptoms could still transmit the disease to  
other people. Reliable biosensor systems for the detection of this 
virus with high sensitivity and specificity are therefore in urgent 
demand for the control of the SARS-CoV-2 pandemic.

SARS-CoV-2 is a positive-sense, single-stranded RNA virus. 
The SARS-CoV-2 genome encodes nucleocapsid (N), spike (S), 
envelope (E), and membrane (M) proteins, where S, E, and M 
are components of the viral envelope. It also encodes nonstruc-
tural genes of open reading frames 1a, 1b, 3, 6, 7a, 8, and 10. 
Similar infection routes and life cycles were found between 
SARS-CoV-2 and SARS-CoV-1, the virus that caused the Asian 
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coronavirus endemic in 2003. SARS-CoV-2 enters the human 
cells through the binding of the spike protein and the viral 
receptor, the angiotensin-converting enzyme 2 (ACE2), trigger-
ing endocytosis. ACE2 are expressed in human cells including 
the type 2 alveolar cells.4 The size of viral particle is 70–90 nm.5 
Experimental data suggest that this virus is possibly airborne 
and take advantage of aerosol transmission.6 However, the sci-
entific community has yet to reach a consensus.7 In the environ-
ment, the virus can stay viable on the surface of plastics and 
stainless steels for several days.6

Designs of a biosensor platforms for the detection of SARS-
CoV-2 involve three essential aspects (1) the target of recognition, 
such as viral RNA, viral proteins, or human immunoglobulins; 
(2) the recognition method, such as via nucleic acid probes, 
aptamers, antibodies, receptors, where the antibody–antigen 
binding or receptor–ligand interaction can be detected via the 
conformational changes of sensor proteins. Enzymatic reactions 
represent one additional methods of recognition, such as the 
detection of proteolytic cleavage by specific protease; and (3) 
the signal amplification and transduction system, for example, 
electrochemical, electrical, optical, surface plasmon resonance, 
fluorescent signals, and mechanical systems.8 Aspects (2) and (3) 
are closely related with each other. For environmental applica-
tions, samplers need to be incorporated for handling samples 
directly from the environment. For example, if the samples were 
to be taken from the ambient air, then air samplers were needed 
to be designed.9 Here, we review biosensor technologies which 
may be utilized for the development of clinically useful SARS-
CoV-2 detection platforms.

2. TARGETS OF RECOGNITION
The viral RNA, viral proteins, or human immunoglobulin could 
all be the targets of recognition. Target regions for viral RNA 
detection can be selected from any region of the RNA genome. 
Additionally, the nucleocapsid (N),10–12 spike (S),4,13–16 envelope 
(E)17 and membrane (M)18 proteins and viral proteases could 
also be the targets of detection. In patients infected by SARS-
CoV-1 in 2003, the immunoglobulin IgA was observed in the 
serum, followed by IgM and IgG.19 The IgM and IgG are useful 
for indicating whether the person has been infected, and whether 
the infection has triggered host immunological response.

Nasopharyngeal swab and throat swab are the major sample 
collection methods for clinical diagnosis. Other samples may 
come from expectorated sputum,20 saliva, serum,11 and feces.21 
The speed and geographical range of the virus spread was unex-
pected. It remained unclear whether the virus can be transmitted 
via aerosol and ambient air.6 Thus, environmental detector of 
SARS-CoV-2 in the ambient air may help to clarify the trans-
mission route. Also, the circulated air in the ventilators in the 
intensive care unit may be a source of viral detection.

3. RECOGNITION METHODS
Generally, the SARS-CoV-2 genomic RNA is one major target of 
recognition. The detection processes often involve the amplifica-
tion of nucleic acid, such as the real-time reverse transcription pol-
ymerase chain reaction (RT-PCR).22 The drawback is on the time 
required, as this method requires a thermodynamic cycle which 
takes time. Apart from PCR-based methods, methods involving 
the nucleotide probes such as the nanoString technology can be 
used for SARS-Cov-2 detection (Canopy Bioscience, St. Louis, 
MO, USA). This technology requires the synthesis of the nucleotide 
probe which has the antisense binding with the target. Fluorescent 
agents were linked to the probes so as to provide a means of detec-
tion. Probes can also be linked to gold nanoparticles.19

Förster or fluorescence resonance energy transfer (FRET) rep-
resents one additional method of recognition.23–32 The concept 
was first proposed by Förster in 1948. Theoretically, FRET can 
achieve detection resolutions far beyond the limitation of optical 
resolution, namely, at the 1–10 nm range. Optical instruments 
that can get the specific FRET signals in situ have become one 
of the most powerful tools for many biological research fields, 
even superior than biochemical methods. Generally, there are 
two kinds of systems can be applied for monitoring FRET, that 
is, either using the intensity-based or utilizing the lifetime-based 
(the fluorescence-lifetime imaging microscopy) FRET imaging. 
Through getting the signal of FRET events inside living cells/
tissues, the protein–protein interactions can be revealed, pro-
teolytic cleavage may be further studied, and even the protein 
conformational changes can be analyzed. In addition, scientists 
found that this FRET strategy can be used to produce biological 
probes, that is, the biosensors in combination with the above-
mentioned optical platforms.

In terms of detecting viral proteins, the sensing of protein–
protein interactions (like antibody–antigen binding or receptor–
ligand) can be considered. Currently, antibodies represent the 
most effective recognition method.33 The antibody could be har-
vested from animal viral-challenge experiments with either N/S/E 
protein or from the blood samples of patients who are infected. 
Apart from conventional antibodies, the antibody-mimic pro-
teins represent novel approaches for target recognition.15,34 This 
approach is to genetically modify certain regions of a protein, 
for example, fibronectin,34 so that the modified protein can have 
noncovalent binding with the target macromolecule, thereby serv-
ing as the target recognition agent. Moreover, a promising design 
will be novel FRET-based biosensors. Among these SARS-CoV-2 
biosensors, the viral S protein-binding peptide (derived from the 
corresponding domain encoded by the human ACE2 gene) will be 
fused with the genes of FRET pair proteins (such as enhanced cyan 
fluorescent protein and enhanced yellow fluorescent protein).23–32

In addition, the enzyme reaction (proteolytic cleavage by spe-
cific protease) may proceed during the infection of SARV-CoV-2 
into human cells. Similar to the FRET biosensor strategy, the 
specific peptide sequence can serve as a bait to be digested by 
the viral protease so that this kind of sensor can be an off–on 
signaling to present the existence of viral activity.35–37

4. SIGNAL AMPLIFICATION AND TRANSDUCTION 
DEVICES
Chromatographic presentation has been commonly used for 
simple, point-of-care assays. In the clinical laboratory, optic 
systems such as light detectors or charged-coupled devices were 
commonly used. Plasmonic photothermal biosensors using the 
nucleotide probe attached to a gold nanoparticle has been con-
structed to detect SARS-CoV-2.38 A localized surface plasmon-
coupled fluorescence fiber-optic biosensor has been constructed 
for the detection of N protein of SARS-CoV-1.11

5. FUTURE PERSPECTIVES
In the past, significant technological achievements have been 
made in biosensors, including the recognition methods and the 
signal amplification and transduction devices. These biosen-
sor technologies can be used for the improvement of COVID-
19 diagnosis assays in clinical laboratories, by offering higher 
sensitivity and specificity in a shorter amount of time, with a 
fewer number of manual steps and occupy a smaller space. The 
biosensors can also be used to develop point-of-care devices, 
for example, connected to the intensive care ventilators. Finally, 
environmental detectors of the virus or viral macromolecules in 
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the ambient air may help to elucidate the transmission route of 
the SARS-CoV-2 virus.
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