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Canine Model with Cardiac Arrest

Guanhua Li ,1,2 Shenyu Zhu ,3,4 Jianfeng Zeng ,5 Zhexuan Yu ,6 Fanji Meng ,7

Zhixian Tang ,3,4 and Ping Zhu 1

1Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South
China Structural Heart Disease, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences,
Guangzhou 510080, China
2Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
3Department of Cardiothoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
4Ganzhou Key Lab of Brain Injury & Brain Protection, Ganzhou 341000, China
5Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
6Zhejiang Chinese Medical University, Hangzhou 310053, China
7Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China

Correspondence should be addressed to Ping Zhu; tanganqier@163.com

Received 6 December 2021; Accepted 29 January 2022; Published 18 February 2022

Academic Editor: Fuqiang Liu

Copyright © 2022 Guanhua Li et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. The impairment of microcirculation is associated with the unfavorable outcome for extracorporeal membrane
oxygenation (ECMO) patients. Studies revealed that pulsatile modification improves hemodynamics and attenuates
inflammation during ECMO support. However, whether flow pattern impacts microcirculation and endothelial integrity is
rarely documented. The objective of this work was to explore how pulsatility affects microcirculation during ECMO. Methods.
Canine animal models with cardiac arrest were supported by ECMO, with the i-Cor system used to generate nonpulsatile or
pulsatile flow. The sublingual microcirculation parameters were examined using the CytoCam microscope system. The
expression of hsa_circ_0007367, a circular RNA, was measured during ECMO support. In vitro validation was performed in
pulmonary vascular endothelial cells (PMVECs) exposed to pulsatile or nonpulsatile flow, and the expressions of hsa_circ_
0007367, endothelial tight junction markers, endothelial adhesive molecules, endothelial nitric oxide synthases (eNOS), and
NF-κB signaling activity were analyzed. Results. The pulsatile modification of ECMO enhanced microcirculatory perfusion,
attenuated pulmonary inflammation, and stabilized endothelial integrity in animal models; meanwhile, the expression of hsa_
circ_0007367 was significantly upregulated both in animals and PMVECs exposed to pulsatile flow. In particular, upregulation
of hsa_circ_0007367 stabilized the expressions of endothelial tight junction markers zonula occludens- (ZO-) 1 and occludin,
followed by modulating the endothelial nitric oxide synthases (eNOS) activity and inhibiting the NF-κB signaling pathway.
Conclusion. The modification of pulsatility contributes to microcirculatory perfusion and endothelial integrity during ECMO.
The expression of hsa_circ_0007367 plays a pivotal role in this protective mechanism.
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1. Introduction

Extracorporeal membrane oxygenation (ECMO) is an impor-
tant device in critical care medicine, especially during the
COVID-19 pandemic [1]. Indeed, ECMO is so effective that
the American Heart Association (AHA) guidelines on cardio-
pulmonary resuscitation (CPR) highly recommend ECMO in
critical patients who are refractory to traditional means of life
support [2]. ECMO replaces the cardiorespiratory function
and reverses the macrocirculatory hemodynamics speedily;
however, whether ECMO overturns the compromised micro-
circulation after the support is uncertain. Microcirculation
impairment is closely associated with the undesirable high
mortality for ECMO patients [3].

Microcirculation malperfusion exaggerates systemic
inflammation, which subsequently damages the endothelial
barrier, leading to capillary leakage and vascular permeability
breakdown [4]. The ECMO centrifugal pump typically gener-
ates flow in a nonpulsatile manner and its main disadvantage
includes the inadequacy of microcirculatory perfusion [5].
Few ECMO pumps produce pulsatile flow, while the i-Cor
ECMO device (Xenios AG, Heilbronn, Germany), firstly
applied in Germany [6], delivers pulsatile flow which is trig-
gered by the electrocardiogram. We previously demonstrated
that pulsatile modification attenuates systemic inflammatory
responses [7] and protects the glycocalyx by maintaining
proper pulsatile shear stress [8] when introducing the i-Cor
system to ECMO animal models, but the potential mechanism
remains poorly understood.

Recent studies have suggested a significant role of circular
RNAs (circRNAs) in regulating the pathogenesis in various
cardiovascular diseases [9]. To investigate the underlying
epigenetic mechanism of pulsatility, we used bioinformatics
previously to explore differentially expressed genes and non-
coding RNAs between pulsatile or nonpulsatile flow in patients
with ventricular assisting devices [10]. The circular RNA
(circRNA) hsa_circ_0007367, a putative circRNA originating
from the ubiquitin-associated protein 2 (UBAP2) mRNA, was
initially identified to be tightly interrelated to the pathophysiol-
ogy of pulsatility. In the current study, we aimed to investigate
how hsa_circ_0007367 (circUBAP2) interacts with pulsatility
and improves microcirculatory homeostasis during ECMO.

2. Materials and Methods

2.1. Animals and ECMO Instrumentation. Ten beagles pur-
chased from the Laboratory Animal Center of the Southern
Medical University were included in our work. Animals were
randomized and divided into two groups: the nonpulsatile
group (control group) and the pulsatile group (intervention
group). Animals were anesthetized and managed as described
previously [7, 8]. In brief, anesthesia was maintained using
fentanyl (150μg/kg) and 2.5% sevoflurane. Animals were then
tracheotomized and ventilated using an animal mechanical
ventilator (HX-300S, Taimeng Inc., Chengdu, China). Animal
models with cardiac arrest were created using a 4V alternating
current to induce ventricular fibrillation. After unfractionated
heparin bolus, we cannulated the right jugular vein and
advanced into the right atrium with a 10Fr cannula (Medtro-

nic Inc., Minneapolis, MN, USA). The ECMO inflow was
established by an 8Fr cannula (Medtronic Inc., Minneapolis,
MN, USA) which was cannulated to the right common carotid
artery.

The circuit was connected to the i-Cor system (Xenios AG,
Heilbronn, Germany) with a diagonal pump and a membrane
oxygenator (Medos Medizintechnik AG, Stolberg, Germany).
The i-Cor system enabled simply switching flow modes
(nonpulsatile or pulsatile) and delivered pulsatile flow at an
equivalent rate (1 : 1). Venous-arterial (V-A) ECMO was
implemented at 130mL/kg/min and was maintained with an
activated clotting time (ACT) of approximately 200 seconds.
Macrocirculatory hemodynamics, blood gas analyses, and
microcirculatory parameters were collected at baseline (T0),
1 hour (T1), 2 hours (T2), 4 hours (T3), and 6 hours (T4).
After 6 hours of ECMO support, lung tissues were collected
and stored for molecular evaluations.

2.2. Microcirculation Assessment. The CytoCam microscope
system (Braedius Medical, Huizen, The Netherlands) was
applied to assess the microcirculation of the sublingual area.
Incident dark field (IDF) images of sublingual microcircula-
tion were collected thrice. Video clips with acceptable quality
were recorded and analyzed by only one investigator
through the AVA 3.0 software (University of Amsterdam,
the Netherlands). Only vessels less than 20μm with blood
flow were counted. Microvascular flow index (MFI) and per-
fused vessel density (PVD) were calculated and were
reported according to the second consensus on the assess-
ment of sublingual microcirculation in critically ill patients
from the European Society of Intensive Care Medicine [11].

2.3. Pulmonary Microvascular Endothelial Cell (PMVEC)
Culture. 10 Sprague Dawley (SD) rats were obtained from
the Laboratory Animal Center of the Southern Medical Uni-
versity. The SD rats were euthanized, and the lung tissues
were obtained after removing the pleura and large vessels.
Tissues were then stored in culture flasks and were cultivated
at room temperature for 4 days. PMVECs were isolated
subsequently, with mediums changed at an interval of two
days. PMVECs were cultured according to the proven tech-
niques in our laboratory, as described previously [8].

2.4. In Vitro Pulsatile Experiments. In vitro pulsatile experi-
ments were performed using the Flexcell apparatus (Flexcell™
Inc., McKeesport, PA, USA), which produced pulsatility to
PMVECs. Seeded PMVECs (1 × 105 cells/well) on 6-well
Flexcell plates were deprived of fetal bovine protein and were
exposed to continuous flow (0 dyne/cm2) or pulsatile flow
(5 dyne/cm2), with frequency and flow rate set at 1Hz and
2mL/min, respectively. PMVECs were cultured and treated
with pulsatile or nonpulsatile flow under different conditions
for 6 hours, as we described previously [8].

2.5. Quantitative RT-PCR. Total RNA from tissues and
PMVECs was extracted with the Trizol reagent (Thermo
Fisher Scientific, MA, USA). The extracted RNAwas subjected
to reverse transcription, and the complementary DNA was
made using the Oligo (dT) primers. Quantitative PCR samples
were prepared bymixing complementary DNAs, power-SYBR
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Mix (Yeason Biotech Co., Shanghai, China), and specific
primers (Table 1). Real-time PCR was carried out thrice for
each experiment using the LightCycler 480 (Roche, Basel, Swit-
zerland). Gene expression levels were normalized to GADPH.

2.6. Western Blotting. PMVECs were lysed with RIPA lysis
buffer with protease inhibitors. Protein concentrations were
examined, and cell lysates were subjected to SDS-PAGE.
After transferring to the nitrocellulose membranes and
blocking with 5% skimmed milk, primary antibodies against
zonula occludens- (ZO-) 1, occludin, VCAM-1, ICAM-1,
NF-κB, endothelial nitric oxide synthases (eNOS), or
GADPH were added to incubate overnight at 4°C. After
washing properly, the secondary antibodies were added to
the membrane to incubate for 2 hours at room temperature.
Using GADPH as controls, the expressions of proteins were
visualized with the ECL system.

2.7. Immunofluorescence. PMVECs were fixed with 4% para-
formaldehyde for half an hour, followed by permeabilization
with PBS containing 0.01% Triton X-100. Samples were incu-
bated with PBS containing 3% bovine serum albumin for 1
hour and were then incubated overnight with primary anti-
bodies against ZO-1 and occludin. PMVECs were washed
three times with PBS and were cultivated with secondary anti-
bodies. With the nuclei stained with DAPI, the mounted slides
were examined by a fluorescence microscope.

2.8. Statistics. Statistical analyses were performed with IBM
SPSS Statistics version 21.0 software (SPSS Inc., Chicago, IL,
USA). Data were checked for distribution and homogeneity
of variance before analyses. Continuous data were expressed
as mean ± standard deviation (SD) if normally distributed;
otherwise, the median (interquartile range) was used. The
repeated measures of analysis of variance (ANOVA) was used
to compare between-group differences at different time points
in normally distributed variables, whereas theMann–Whitney
U test and Friedman test were applied to compare between-
group and within-group variations in nonnormally distributed

data, respectively. A p value below 0.05 was assumed to be sta-
tistically significant.

3. Results

All animals survived during the experiment. Most circuits
went smoothly, with blood flow above 80mL/kg/min. The cir-
cuit blood flow, ACT, and the time from shock to ECMO
establishment did not differ between these two groups. The
time from cardiac arrest to ECMO initiation was 31:2 ± 9:7
minutes in the nonpulsatile group versus 28:7 ± 11:4 minutes
in the pulsatile group. As shown in Table 2, ECMO improved
macrocirculation and hemodynamics, while the hemoglobin
level decreased during ECMO support. However, there were
no significant differences observed between these two groups
for macrocirculatory and blood gas parameters, including
mean arterial pressure (MAP), pH, arterial partial pressure
of oxygen (PaO2), hemoglobin (Hb), and arterial oxygen satu-
ration (SaO2). The mean dosage for noradrenaline showed no
remarkable between-group differences.

3.1. Pulsatility Improves the Microcirculatory Hemodynamics
during ECMO. Using the CytoCam microscope system, the
PVD and MFI were measured at different time points, as
shown in Figure 1. The pulsatile group had higher PVD
values after 4 hours of ECMO support than did the nonpul-
satile group (Figure 1(a)). Meanwhile, MFI was significantly
higher in the pulsatile group as compared to the nonpulsatile
group after 2 hours of ECMO support (Figure 1(b)).

As shown in Figures 2(a) and 2(b), lung tissues of the
pulsatile group demonstrated decreased pulmonary injury
after ECMO support as compared to the nonpulsatile group,
presenting as attenuated infiltration of inflammatory cells
and less capillary leakage. When comparing the expressions
of hsa_circ_0007367 in lung tissues after 6 hours of ECMO
support, the pulsatile group animals had significantly higher
hsa_circ_0007367 levels (Figure 2(c)); moreover, positive cor-
relations were observed between the expressions of hsa_circ_
0007367 and the microcirculatory parameters (Figures 2(d)

Table 1: Primers for qRT-PCR.

Genes Primer sequences

hsa_circ_0007367
Forward 5′-TCCTCAGTCATCTTGCTTTCTG-3′
Reverse 5′-TGAGGAACAGGCTTCTGGAG-3′

ZO-1
Forward 5′-ACCCGAAACTGATGCTGTGGATAG-3′
Reverse 5′-AAATGGCCGGGCAGAACTTGTGTA-3′

Occludin
Forward 5′-ACGGACCCTGACCACTATGA-3′
Reverse 5′-TCAGCAGCAGCCATGTACTC-3′

NF-κB
Forward 5′-CTGATGGCACAGGACGAGAA-3′
Reverse 5′-TGGGCTATCTGCTCAATGACAC-3′

eNOS
Forward 5′-TCCAGAGCATACCCGCACTTC-3′
Reverse 5′-GTCCAGACGCACCAGGATTG-3′

GADPH
Forward 5′-GAAGGTGAAGGTCGGAGTCAAC-3′
Reverse 5′-CATCGCCCCACTTGATTTTGGA-3′
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and 2(e)), inferring that hsa_circ_0007367 is closely related to
microcirculatory perfusion.

3.2. Pulsatility Protects the Endothelial Integrity and
Preserves the Expressions of ZO-1 and Occludin. To investi-
gate how ECMO flow pattern affects the endothelial integ-
rity, cultured PMVECs were exposed to continuous flow (0
dyne/cm2) or pulsatile flow (5 dyne/cm2) for 6 hours, and
the expressions of tight junction biomarkers were measured,
including ZO-1 and occludin. As shown by the immunoflu-
orescent analyses, the distribution of ZO-1 and occludin was
disrupted in PMVECs exposed to nonpulsatile flow, while
PMVECs treated with pulsatile flow showed more normal
distribution of the endothelial tight junction proteins
(Figures 3(a) and 3(b)). Moreover, qPCR and western blot
demonstrated that the expressions of ZO-1 and occludin
were upregulated in PMVECs of the pulsatile group as com-
pared to the nonpulsatile group (Figures 3(c)–3(e)).

3.3. hsa_circ_0007367 (UBAP2) Preserves the Endothelial
Barrier in PMVECs. Consistent with the findings in animal
models, hsa_circ_0007367 upregulation was also seen in
PMVECs after 6-hour exposure to pulsatile flow
(Figure 4(a)). To investigate the effects of hsa_circ_
0007367 upregulation on endothelial integrity, we silenced
hsa_circ_0007367 in PMVECs using siRNAs. Western blot
assay revealed downregulation of ZO-1 and occludin in
PMVECs with hsa_circ_0007367 knockdown, as compared
to the scrambled control (Figure 4(b)). Meanwhile, the dis-
tribution of ZO-1 and occludin became detached when
silencing hsa_circ_0007367 as compared to the control
siRNA (Figures 4(c) and 4(d)).

3.4. hsa_circ_0007367 (UBAP2) Is Required for the
Upregulation of ZO-1 and Occludin Induced by Pulsatile Flow.
To investigate if hsa_circ_0007367 is necessary for the
pulsatility-mediated upregulation of tight junction biomarkers,

Table 2: Macrocirculatory parameters and blood gas during ECMO support.

Time points Groups MAP (mmHg) MND (μg/kg/min) pH PaO2 (mmHg) Hb (g/L) SaO2 (%) Lac (mmol/L)

Baseline (T0)
NP-ECMO 60:20 ± 7:19 0:15 ± 0:09 7:26 ± 0:07 79:00 ± 16:05 96:00 ± 9:38 95:40 ± 1:95 4:12 ± 1:02
P-ECMO 61:00 ± 9:11 0:17 ± 0:10 7:26 ± 0:05 88:40 ± 11:04 102:00 ± 5:45 96:80 ± 1:92 4:66 ± 0:72

ECMO 1 h (T1)
NP-ECMO 62:60 ± 9:81 0:08 ± 0:06 7:30 ± 0:05 187:60 ± 20:07 91:00 ± 5:92 99:60 ± 0:55 2:12 ± 0:40
P-ECMO 59:40 ± 8:93 0:06 ± 0:04 7:35 ± 0:06 217:20 ± 44:28 84:00 ± 7:18 99:80 ± 0:45 2:56 ± 0:70

ECMO 2 h (T2)
NP-ECMO 61:20 ± 5:36 0:09 ± 0:05 7:40 ± 0:04 188:60 ± 20:55 85:60 ± 5:13 99:80 ± 0:45 1:60 ± 0:25
P-ECMO 62:40 ± 7:60 0:07 ± 0:08 7:42 ± 0:05 207:80 ± 24:08 81:00 ± 5:29 99:60 ± 0:55 1:88 ± 0:24

ECMO 4 h (T3)
NP-ECMO 63:00 ± 8:15 0:07 ± 0:03 7:40 ± 0:03 195:00 ± 27:38 82:20 ± 2:86 99:80 ± 0:45 1:16 ± 0:17
P-ECMO 61:00 ± 9:54 0:05 ± 0:08 7:38 ± 0:04 205:80 ± 20:19 78:20 ± 4:49 99:20 ± 0:84 1:22 ± 0:19

ECMO 6 h (T4)
NP-ECMO 62:00 ± 6:32 0:05 ± 0:05 7:40 ± 0:03 186:40 ± 11:37 82:40 ± 2:88 99:60 ± 0:55 0:94 ± 0:15
P-ECMO 61:80 ± 6:61 0:06 ± 0:08 7:39 ± 0:03 188:40 ± 19:77 77:80 ± 4:27 99:80 ± 0:45 1:12 ± 0:33

Abbreviations: ECMO: extracorporeal membrane oxygenation; MAP: mean arterial pressure; MND: mean noradrenaline dosage; PaO2: arterial partial
pressure of oxygen; Hb: hemoglobin; SaO2: arterial oxygen saturation; Lac: lactate.
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Figure 1: Pulsatility improves the microcirculatory parameters in on-ECMO animal models with cardiac arrest. (a) Animals were exposed to
nonpulsatile or pulsatile circuits, and PVD were measured at different time points; (b) animals were exposed to nonpulsatile or pulsatile
circuits, and MFI were measured at different time points. ∗Significantly different between groups, p < 0:05; ∗∗significantly different between
groups, p < 0:01. Abbreviations: ECMO: extracorporeal membrane oxygenation; PVD: perfused vessel density; MFI: microvascular flow index.
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PMVECs were transfected with scrambled siRNA or siRNA
targeting hsa_circ_0007367, followed by 6-hour exposure to
nonpulsatile flow or pulsatile flow. After silencing the expres-
sion of hsa_circ_0007367, the distribution of ZO-1 and occlu-
din became abnormal in PMVECs exposed to pulsatile flow

(Figures 5(a) and 5(b)). Consistent with the findings of immu-
nofluorescent analyses, upregulation of ZO-1 and occludin
mediated by pulsatile flow was abolished by knockdown of
hsa_circ_0007367. PMVECs that were treated with control
siRNA and were exposed to pulsatility had the highest ZO-1
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Figure 2: Pulsatility attenuates lung injury and upregulates the expression of hsa_circ_0007367 (circUBAP2), which is a microcirculation-
related circRNA. (a) Representative images of lung tissues with hematoxylin and eosin staining in nonpulsatile group animals after 6 hours
of ECMO; (b) representative images of lung tissues with hematoxylin and eosin staining in pulsatile group animals after 6 hours of ECMO;
(c) comparison of the circUBAP2 expressions in lung tissues between these two groups; (d) correlation analysis between the expression of
circUBAP2 and the PVD value; (e) correlation analysis between the expression of circUBAP2 and the MFI value. ∗∗Significantly different
between groups, p < 0:01. Abbreviations: PVD: perfused vessel density; MFI: microvascular flow index.
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Figure 3: Pulsatility maintains the expressions of ZO-1 and occludin. (a) Immunofluorescent analysis of the ZO-1 distribution in PMVECs
exposed to nonpulsatile or pulsatile flow for 6 hours; (b) immunofluorescent analysis of the occludin distribution in PMVECs exposed to
nonpulsatile or pulsatile flow for 6 hours; (c) the expression of ZO-1 in PMVECs exposed to nonpulsatile or pulsatile flow for 6 hours
using qPCR; (d) the expression of occludin in PMVECs exposed to nonpulsatile or pulsatile flow for 6 hours using qPCR; (e) the
expressions of ZO-1 and occludin in PMVECs exposed to nonpulsatile or pulsatile flow for 6 hours using western blot assay. ∗∗

Significantly different between groups, p < 0:01. Abbreviations: ZO-1: zonula occludens-1; DAPI: 4′,6-diamidino-2-phenylindole;
PMVEC: pulmonary microvascular endothelial cell.
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Figure 5: Continued.
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and occludin expressions (Figures 5(c)–5(e)). These results
suggest that hsa_circ_0007367 is an essential element for the
upregulation of ZO-1 and occludin induced by pulsatility.

3.5. Pulsatility Suppresses Adhesion Molecules and Endothelial
Inflammatory Pathways in a hsa_circ_0007367-Dependent
Manner. There is a possible interaction between microcircula-
tion and inflammation. To examine how pulsatility attenuates
endothelial inflammation, the expressions of adhesionmolecules
and inflammatory pathways were measured (Figures 6(a)–6(c)).
The pulsatile flow significantly reduced the levels of adhesion
molecules including VCAM-1 and ICAM-1, while the reduc-
tion could be abolished by hsa_circ_0007367 silencing. The
NF-κB, a known inflammatory molecule, was downregulated
under pulsatile flow on the premise of hsa_circ_0007367
expression. Similarly, pulsatility exhibited downregulation of
eNOS, which could be reversed by hsa_circ_0007367 silencing
as well. These results suggest that pulsatile flow suppresses
endothelial adhesion and inflammation in a hsa_circ_
0007367-dependent fashion.

4. Discussion

We present a pulsatile modification of the flow pattern, which
offers a feasible approach to improve microcirculatory perfu-
sion and stabilize endothelial integrity during ECMO. In par-
ticular, this protective effect is dependent on the expression of
hsa_circ_0007367 (UBAP2). We demonstrate that pulsatile
flow upregulates the expression of hsa_circ_0007367, leading
to the upregulation of endothelial tight junction markers
ZO-1 and occludin, followed bymodulating the eNOS activity,
endothelial adhesion, and the NF-κB pathway.

It has been well recognized that ECMO rescues macro-
hemodynamics promptly; however, recovery of the impaired
microcirculation is not guaranteed in critically ill patients.
The dearth of microcirculatory coherence, leading to the
inability of macro-hemodynamics to resuscitate microcircu-
lation, had been characterized in cardiogenic shock [12, 13]
and sepsis [14]. Recent studies have proved that endothelial
integrity breakdown with subsequent inflammation is the
crux of microcirculatory malperfusion [15]. Furthermore,
active cardiovascular disorders like postoperative low car-
diac output or cardiogenic shock may trigger cytokine storm
which further complicates the situation. Hence, preserving
microcirculatory function and endothelial integrity is essen-
tial for ECMO patients.

The nonpulsatile flow is relevant to diminished shear
stress and decreased production of nitric oxide during car-
diopulmonary bypass [16], while pulsatile flow offers biomi-
metic pulsatility on endothelial cells, therefore alleviating
endothelial inflammatory response [17, 18]. Preservation of
pulsatility also improves microcirculatory perfusion during
cardiopulmonary bypass and throughout the perioperative
course [19]. We previously confirmed the protective effects
of pulsatility on ECMO, which generates more hemody-
namic energy, reduces proinflammatory cytokines [7], and
inhibits endothelial-to-mesenchymal transformation in
endothelial cells as compared with the conventional ECMO
[8]. In this study, we further confirmed that pulsatility ben-
efits microcirculatory perfusion and endothelial integrity
during ECMO support. It is noteworthy that pulsatile
ECMO is a subtype of V-A ECMO but not veno-venous
(V-V) ECMO, in which the oxygenated blood is returned
to the venous system.
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Figure 5: hsa_circ_0007367 (UBAP2) is needed for the pulsatility-mediated ZO-1 and occludin upregulation. (a) The distribution of ZO-1
in PMVECs treated with control siRNA or siRNA targeting circUBAP2, followed by 6-hour exposure to pulsatile flow; (b) the distribution of
occludin in PMVECs treated with control siRNA or siRNA targeting circUBAP2, followed by 6-hour exposure to pulsatile flow; (c) the
expressions of ZO-1 and occludin detected with western blotting in PMVECs treated with control siRNA or si-circUBAP2, followed by
6-hour exposure to pulsatile flow or nonpulsatile flow; (d) the expression of ZO-1 mRNA in PMVECs treated with control siRNA or si-
circUBAP2, followed by 6-hour exposure to different flow patterns; (e) the expression of occludin mRNA in PMVECs treated with
control siRNA or si-circUBAP2, followed by 6-hour exposure to different flow patterns. ∗p < 0:05; ∗∗p < 0:01. Abbreviations: ZO-1:
zonula occludens-1; DAPI: 4′,6-diamidino-2-phenylindole; si: small interfering RNA; Ctrl: control; PMVEC: pulmonary microvascular
endothelial cell.
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Impaired endothelial integrity is a secondary event of
microcirculatory malperfusion. When blood flow is abnor-
mally disturbed, the distribution of wall shear stress on endo-
thelial cells becomes irregular [8, 20], subsequently resulting
in the endothelial barrier impairment. Vascular endothelial
cells are jointed together via intercellular junctions, which will
be disturbed when the endothelial barrier is disrupted [21].
Focusing on ZO-1 and occludin, two tight junction biomarkers,
we observed that these molecules were ill arranged and discon-
tinuously distributed in PMVECs under nonpulsatile flow.

After pulsatile modification of the flow pattern, the arrange-
ment of tight junctional molecules looks more well organized.

Compared to the nonpulsatile flow, the pulsatile flow may
offer mechanical force which is mechanically transducted into
endothelial cells, followed by the mechanical-to-biological
transformation with changes in downstream signaling [22].
We provide evidence confirming that pulsatile flow upregulates
the expression of hsa_circ_0007367, a microcirculation highly
related circRNA that positively regulates ZO-1 and occludin.
Moreover, we could demonstrate decreased expressions of
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Figure 6: hsa_circ_0007367 (UBAP2) is required for the suppression of endothelial adhesion and inflammation mediated by pulsatile flow.
(a) The expressions of endothelial adhesive molecules, NF-κB, and eNOS proteins using western blotting in PMVECs treated with control
siRNA or si-circUBAP2, followed by 6-hour exposure to pulsatile flow or nonpulsatile flow; (b) the expression of NF-κB mRNA in PMVECs
treated with different siRNAs and different flow patterns; (c) the expression of eNOS mRNA in PMVECs treated with different siRNAs and
different flow patterns. ∗p < 0:05; ∗∗p < 0:01. Abbreviations: ZO-1: zonula occludens-1; DAPI: 4′,6-diamidino-2-phenylindole; si: small
interfering RNA; Ctrl: control; eNOS: endothelial nitric oxide synthases; PMVEC: pulmonary microvascular endothelial cell.
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endothelial adhesive molecules and the NF-κB signaling. These
suppressive effects on inflammation are hsa_circ_0007367
dependent. Although immune-modulating effects of pulsatility
were confirmed previously [7], whether these anti-
inflammatory actions are the direct impacts of hsa_circ_
0007367 on immune cells or the secondary effects of microcir-
culatory improvement is still unclear. We believed that pulsati-
lity brings about immunomodulatory effects on the
inflammatory microenvironment under ECMO.

The ubiquitin-associated protein 2 (UBAP2) gene has a
domain for ubiquitination, which functions diversely in var-
ious biological processes, such as metabolism, cell apoptosis,
transcription, and inflammation responses [23, 24]. Until
recently, the biological function of the UBAP2 gene has been
studied mainly in cancers; UBAP2 is associated with the
metastasis of prostate carcinoma [25], while conversely,
UBAP2 is related to better prognosis in hepatic cellular
carcinoma [26]. Originating from the host gene UBAP2,
hsa_circ_0007367 is cyclized between the 11 and 13 exons,
with a sliced length of 472nt, while its biological function
is rarely documented. We herein, for the first time, demon-
strate that hsa_circ_0007367 highly correlates with microcir-
culation and regulates endothelial integrity during ECMO.

We are starkly aware of the limitations of this work.
Firstly, we are still not able to conclude how microcircula-
tion communicates with inflammation before completely
studying the effects of hsa_circ_0007367 and pulsatility on
immune cells. Secondly, the duration of the experimental
ECMO is relatively short. Patients with cardiopulmonary
failure usually receive ECMO support for weeks or even
months. Thirdly, the pulsatile flow was established through
the carotid artery cannulation in an antegrade manner.
The ECMO flow, however, is usually pumped retrograde
through the femoral artery and might compete with blood
flow from the heart. It is still unclear how sites of cannulat-
ion affect ECMO pulsatility. Finally, given the relatively
small body weight of the beagles to mimic the ECMO path-
ophysiology in pediatric patients, our results need further
validation in larger animal models with longer ECMO dura-
tion. Our findings, however, strengthen the evidence for the
benefits of pulsatility during ECMO support.

5. Conclusion

In conclusion, the pulsatile modification in ECMO enhances
microcirculatory perfusion and stabilizes the endothelial
integrity by upregulating the expression of hsa_circ_
0007367 (UBAP2), which exerts protective effects in micro-
circulation and attenuates endothelial inflammation. Future
studies are warranted to refresh these results.
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