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The throughput of macromolecular X-ray crystallography experiments has surged over the
last decade. This remarkable gain in efficiency has been facilitated by increases in the
availability of high-intensity X-ray beams, (ultra)fast detectors and high degrees of
automation. These developments have in turn spurred the development of several
dedicated centers for crystal-based fragment screening which enable the preparation
and collection of hundreds of single-crystal diffraction datasets per day. Crystal structures
of target proteins in complex with small-molecule ligands are of immense importance for
structure-based drug design (SBDD) and their rapid turnover is a prerequisite for
accelerated development cycles. While the experimental part of the process is well
defined and has by now been established at several synchrotron sites, it is noticeable
that software and algorithmic aspects have received far less attention, as well as the
implications of new methodologies on established paradigms for structure determination,
analysis, and visualization. We will review three key areas of development of large-scale
protein-ligand studies. First, we will look into new software developments for batch data
processing, followed by a discussion of the methodological changes in the analysis,
modeling, refinement and deposition of structures for SBDD, and the changes in mindset
that these new methods require, both on the side of depositors and users of
macromolecular models. Finally, we will highlight key new developments for the
presentation and analysis of the collections of structures that these experiments
produce, and provide an outlook for future developments.
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INTRODUCTION

Modern drug development is an intensely multi-disciplinary exercise that relies on expertise ranging
from fundamental biophysics to clinical trials (Kiriiri et al., 2020). Especially in the early stages of
small molecule development, structural biology has been instrumental in guiding the rational
development of numerous novel small molecule drugs (Maveyraud and Mourey, 2020). Structural
knowledge of the interaction of a protein with varied small molecule ligands is used to inform the
design process of compounds with improved binding affinities (Hughes et al., 2011). Determination
of protein-ligand structures is done by X-ray crystallography (Maveyraud and Mourey, 2020), NMR

Edited by:
Pietro Roversi,

Italian National Research Council, Italy

Reviewed by:
David Ryan Koes,

University of Pittsburgh, United States
Marius Schmidt,

University of Wisconsin–Milwaukee,
United States

*Correspondence:
Nicholas M. Pearce
n.m.pearce@vu.nl

Specialty section:
This article was submitted to

Structural Biology,
a section of the journal

Frontiers in Molecular Biosciences

Received: 24 January 2022
Accepted: 14 March 2022
Published: 11 April 2022

Citation:
Pearce NM, Skyner R and Krojer T

(2022) Experiences From Developing
Software for Large X-Ray

Crystallography-Driven Protein-
Ligand Studies.

Front. Mol. Biosci. 9:861491.
doi: 10.3389/fmolb.2022.861491

Frontiers in Molecular Biosciences | www.frontiersin.org April 2022 | Volume 9 | Article 8614911

PERSPECTIVE
published: 11 April 2022

doi: 10.3389/fmolb.2022.861491

http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2022.861491&domain=pdf&date_stamp=2022-04-11
https://www.frontiersin.org/articles/10.3389/fmolb.2022.861491/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.861491/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.861491/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.861491/full
http://creativecommons.org/licenses/by/4.0/
mailto:n.m.pearce@vu.nl
https://doi.org/10.3389/fmolb.2022.861491
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2022.861491


(Nitsche and Otting, 2018), Cryo-EM (Renaud et al., 2018), and
even recently with MicroED (Clabbers et al., 2020). However,
despite recent breakthroughs in other methodologies (most
notably cryoEM), X-ray crystallography remains the
workhorse for structure-based drug design (SBDD), at least for
the time being.

The prevalence of crystallography in these efforts is a
testament to the platform methodologies that have been
developed to enable routine crystal structure determination.
Over the last decade, macromolecular crystallography has seen
a remarkable gain in efficiency and throughput driven by
improvements in beam intensity and X-ray detectors, the
availability of fast and reliable sample changers, and advances
in software for data acquisition and analysis (Owen et al., 2016;
Förster and Schulze-Briese, 2019). This has culminated in the
development of fully automated beamlines that reduce
interaction of the scientist with the diffraction experiment to
the barest minimum (Svensson et al., 2019). Moreover, so-called
“unattended” data collection in combination with automated data
processing (Winter, 2010; Vonrhein et al., 2011; Sparta et al.,
2016) and refinement pipelines (Sharff et al., 2011; Wojdyr et al.,
2013; Echols et al., 2014; Schiebel et al., 2016) running on high-
performance computing systems means that it only takes minutes
to get from data collection to high-quality electron density maps.
Often overlooked in enabling these achievements is the role and
importance of sophisticated and robust systems for managing
sample logistics, which are now available at most synchrotron
sites (Delagenière et al., 2011).When combined with the technical
experimental advances, it is these information management
systems which truly enable the establishment of routine high-
throughput crystallographic experiments (Zheng et al., 2014).

These advancements have culminated in the establishment of
several publicly accessible centers for crystal-based fragment
screening (Lima et al., 2020; Cornaciu et al., 2021;
Douangamath et al., 2021; Wollenhaupt et al., 2021; Kaminski
et al., 2022). The extremes of these setups have now transformed
protein crystallography from a structure determination method
into another biophysical screening assay technique
(Douangamath et al., 2020; Schuller et al., 2021; Günther
et al., 2021). These facilities have developed several bespoke
software solutions for data capture, processing and deposition,
incorporating new software packages for restraints generation for
new small molecule compounds, model building and refinement
(Sparta et al., 2016; Krojer et al., 2017; Long et al., 2017; Pearce
et al., 2017c; Cornaciu et al., 2021; Lima et al., 2021), as well as
significant advancements in algorithms for detecting (weakly)
binding ligands (Pearce et al., 2017b) and analyzing the output
chemical information (Deane et al., 2017). Some of these
solutions are still confined to specialized screening setups and
are thus only used by a small number of protein
crystallographers—some because they are not generic enough
and some because they are simply unknown.

Here, we provide an overview of the recent history of software
tools for large-scale structure determination and data analysis.
Based on experiences from fragment screening, we identify a
subset of these approaches which we think deserve closer
attention and broader awareness within the structure

determination community, and ultimately should be
incorporated into the main-stream crystallographic toolbox.
Furthermore, we highlight recent developments for analyzing
protein-ligand structures that bring together structural biologists
and computational chemists.

BATCH DATA PROCESSING AND
REFINEMENT TOOLS

Currently, the majority of crystallographic structure
determination is done through the graphical interfaces of the
CCP4 and PHENIX packages (Echols et al., 2012; Potterton et al.,
2018). These offer user-friendly interfaces that guide newcomers
as well as experienced users through the structure determination
process, and both have large (and overlapping) user bases.
However, these fundamentally adhere to a “one structure per
project” paradigm, where one data set leads to one atomic model
which leads to one deposition in the Protein Data Bank (PDB)
(Berman et al., 2000). This is suitable for the determination of (a
small number of) novel crystal structures, where each chemically-
distinct structure becomes its own project, but far less so for the
determination of many related-but-distinct protein-ligand
complexes, which can now involve the simultaneous
determination of hundreds of structures (Schuller et al., 2021).
Moreover, the graphical user interfaces have historically lacked
adequate meta-data-tracking functionality and provide no direct
connections between the various experimental and
computational stages of the experiment—neither cloning,
expression, purification, crystallization nor data collection. In
reality, and in the absence of established, widely-used and
integrated solutions that remove the burden of record keeping,
many—if not most—practitioners still record and track their
experiments in ad-hoc electronic spreadsheets and physical
notebooks.

The lack of suitable large-scale (publicly-available) processing
tools became painfully apparent with the establishment of
dedicated synchrotron-based centers for crystallographic
fragment screening where hundreds of crystals of the same
protein are determined in complex with different compounds
(Collins et al., 2017; Lima et al., 2020; Cornaciu et al., 2021;
Douangamath et al., 2021; Sharpe and Wojdyla, 2021;
Wollenhaupt et al., 2021; Kaminski et al., 2022). As a result,
three novel programs—CRIMS, FragMAXapp, and
XChemExplorer—became available, which are able to process
hundreds of related datasets as part of a single session (Krojer
et al., 2017; Cornaciu et al., 2021; Lima et al., 2021; Wollenhaupt
et al., 2021). These software differ in design, layout, and scope, but
all facilitate batch data processing and record a large set of meta-
data in a dedicated database system which facilitates project
tracking, thereby enabling posterior analysis as well as
simplifying PDB deposition (Figure 1).

XChemExplorer is a standalone program developed at the
XChem facility at Diamond Light Source for use with fragment
screening experiments (Krojer et al., 2017). It enables the
selection of auto-processing results, initial refinement, dataset
annotation, interactive model building with Coot (Emsley et al.,
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2010) and refinement with Refmac (Murshudov et al., 2011) or
BUSTER (Bricogne et al., 2017). FragMAXapp was jointly
developed between the FragMAX facility at the MAX IV
synchrotron and the fragment screening facility at Helmholtz-
Zentrum Berlin (HZB) and the BESSY synchrotron (Lima et al.,
2021; Wollenhaupt et al., 2021); FragMAXapp offers a web-based
platform with similar functionalities to XChemExplorer, but with
more customization options for diffraction data processing and
initial refinement. Both of these software solutions allow a series
of data sets to be consolidated and organized into a single project,
and provide launchpads for additional processing with programs
such as PanDDA (Pearce et al., 2017b). Finally, CRIMS is a web-
based platform developed at the European Synchrotron Radiation
Facility (ESRF) and is probably the most comprehensive of the
three in terms of meta-data tracking and database integration
(Cornaciu et al., 2021); this takes advantage of the extensive
database infrastructure at the ESRF High-Throughput
Crystallization (HTX) facility and can also directly
communicate with the ISPYB laboratory information
management system that is widely used at synchrotron
beamlines (Delagenière et al., 2011). As a demonstration of
the importance of these tools, and their future development,
they were instrumental in facilitating the rapid solution and
availability of numerous protein-ligand structures of several
proteins from Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2) in the wake of the coronavirus
disease (COVID-19) pandemic (Douangamath et al., 2020;
Günther et al., 2021; Newman et al., 2021; Schuller et al.,

2021; Kozielski et al., 2022). However, availability of these
programs is currently restricted to certain synchrotron sites
and they do not allow for customized workflow configuration
or provide interfaces for definition of new experiments (Moreno-
Chicano et al., 2019; Brändén and Neutze, 2021; Schulz et al.,
2022).

IDENTIFICATION, MODELING AND
REFINEMENT OF BINDING MOLECULES

The second problem that is encountered during crystallographic
fragment screening experiments—after the processing of the
crystallographic data—is the identification of binding
molecules. In a non-focussed fragment screen, only a small
percentage of fragments are expected to bind at a particular
location on the protein surface, but since fragments may bind at
any location on the protein surface, manual inspection of the data
quickly becomes infeasible, meaning that automated methods are
required (Pearce et al., 2017b).

The most popular crystallographic methods for identifying
and validating the presence of bound ligands revolve around
internal consistency metrics, i.e., metrics which compare the
atomic model and the experimental electron density (Echols
et al., 2014; Liebschner et al., 2017). These are used both to
identify interesting areas of the electron density map, and to
validate the atomic models produced: First, “blobs” are identified
by calculating one of a variety of difference maps, and then,

FIGURE 1 | Outline of a generic data processing workbench. Future workbenches will likely be hosted in the cloud [e.g., European Open Science Cloud (EOSC)]
and take in various (meta-) data through customizable entry points. Users can then define the sample/data relationship and connect pre-defined tasks as needed for their
workflow, such as in KNIME workflows. Workflows could be saved and shared with any other interested party. All results and workflows would be stored in an internal
database for each project and local programs or web-services can gain access through a dedicated “Results” node.
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constructed ligand models are validated by comparing the model
to the experimental electron density. For the purposes of
modeling, most methods seek to generate an electron density
map that is minimally biased towards the refined atomic model,
and which is quantified in terms of a robust signal-to-noise ratio
to indicate the importance of an electron density feature. Most
approaches therefore utilize different flavors of OMIT maps—in
particular OMIT difference maps—which provide a measure of
the electron density in a region in terms of the global model error
(in units of the rmsd-value of the difference map). This is typically
done at the 3-rmsd level (also called the 3-sigma level). Atoms in a
selected region must be removed to calculate the difference map,
and are either replaced by bulk solvent (Bhat and Cohen, 1984;
Terwilliger et al., 2008; Pražnikar et al., 2009) or by vacuum (e.g.,
polder maps) (Vonrhein and Bricogne, 2005; Liebschner et al.,
2017).

It is vitally important, and perhaps underappreciated, to
understand exactly what the hereby-identified features in
difference maps represent. For the interrogated region, these
difference maps measure the density at a particular site
relative to either vacuum (polder maps) or bulk solvent (other
OMIT maps) in units of the error in your model: significant
differences (typically those above 3-rmsd) therefore indicate
electron density features that very likely are not experimental
noise. However, this indication is different to a measure of signal
(such as the presence of an unmodelled bound ligand), since
density from any molecule(s), e.g., semi-ordered water molecules,
may also produce electron density above this noise level—i.e., it is
not only ligand binding that produces electron density in these
maps. We should generally expect a map such as a polder map to
show a significant amount of density for most sites on the protein
surface (except in very poorly refined models or at lower
resolution), since even semi-ordered solvent is likely more
than three noise units higher than vacuum for high resolution
data. Care must therefore be taken when using OMIT methods so
as not to overinterpret the maps, whose purpose is only to
quantify and show clear unbiased density for a region.

However it is common for the presence of any difference
density in an OMIT map to be presented as (incontrovertible)
evidence for the presence of a ligand, with even clear cases of
mismodeling being difficult to refute (Stanfield et al., 2016a;
Stanfield et al., 2016b). The presence of difference density in a
particular map—of the appropriate shape and size—may even be
misconstrued as evidence for binding by even an experienced
user, especially when solving multiple structures with a set of
small molecules, since at least one molecule is likely to match a
putative blob in a binding site purely by chance, due to the
molecules’ small sizes and simple shapes.

The reason for disagreement about interpretation stems from
the nature of OMITmaps. For large strongly-binding ligands, and
given medium- to high-resolution data, difference map methods
will work well for accurately identifying binding poses, since the
correct solution will be well-defined and unambiguous. However,
for weakly-binding or smaller compounds, in part due to the
reasons described above, these methods are worryingly
vulnerable to false positives (incorrectly modeling a ligand
which did not bind and is not present in the electron density),

as there is no objective approach for determining whether a blob
is due to a bound ligand, or due to (semi-) ordered solvent or
other molecules in the binding site (Stanfield et al., 2016a;
Stanfield et al., 2016b), even when the difference OMIT map
shows electron density above a certain threshold. Without robust
metrics, what constitutes unambiguity becomes a subjective
measure. Opportunities for map misinterpretation are further
exacerbated by partial-occupancy ligands, as will be discussed in
detail below (Figure 2). Conversely, because the noise level of
difference maps is related to the quality of the model, and typical
macromolecular atomic models are still generally rather poor
(R-values of greater than 20% are still the norm), difference maps
are not able to identify more weakly binding ligands, since these
will fall below the “noise level” of a difference map, leading to false
negatives (failing to identify a ligand which did bind).

The large-scale availability of related crystallographic datasets
from fragment screening experiments enabled the development
of a data-driven multi-dataset ligand identification method:
PanDDA (Pearce et al., 2017b). This approach aligns and
compares electron density maps from different datasets and
identifies local outliers in datasets which deviate from the
population of electron density maps; this can be thought of as
the multi-dataset generalization of isomorphous-difference (Fo-
Fo) maps (Rould and Carter, 2003). For this to work, a number of
datasets must not contain binders (i.e., be APO or “ground-state”
datasets) against which putative binding datasets can be
contrasted. For unfocussed fragment screening experiments,
most datasets do not contain a binding fragment, which then
constitute APO datasets. Alternately, when performing a
fragment screen, a series of true APO datasets can also be
collected and used, as is regularly performed at the XChem
facility (Douangamath et al., 2021). For datasets with
identified outliers, these outliers indicate an “event” at that
location in that dataset, which gives strong evidence that a
change has occurred in this dataset, and can—in contrast to
OMIT maps—be used as a measure of signal. In fragment
screening data, events are generally binding ligands, though
some random structural changes and processing artifacts can
also occur.

An additional insight while developing the PanDDA approach
was that the majority of the identified binding events were partial-
occupancy features, meaning that the fragment was only bound to
a fraction of the protein molecules in the crystal—this is to be
routinely expected for fragments, which have low binding
affinities. In these cases, which constitute the large majority of
identified fragments (Pearce et al., 2017b), the observed electron
density is a weighted summation of the electron density for the
fragment and also the “apo” or “ground-state” of the crystal, e.g.,
(dis)ordered water or other solvent molecules. Interpreting the
raw experimental electron density map (or any kind of OMIT
map) is not feasible in these cases, and indeed should be actively
avoided, for fear of misinterpreting the superposed solvent
density as part of the ligand density (Figure 2); this could
cause mismodelling of the ligand, and would thereby mislead
downstream medicinal chemists.

The real power of the PanDDA approach is the overcoming of
the partial-occupancy obstacle by estimating the occupancy of the
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superposed ground state, and subsequently subtracting the
appropriate fraction of the ground-state density, which is
derived from the analysis of the ground-state (APO) datasets.

This subtraction reveals an approximation to the experimental
density for the bound state only, i.e., what would be obtained if
the ligand was bound at full occupancy. This “event map” can

FIGURE 2 | Conventional OMIT maps do not generally produce clear unambiguous evidence of binding for low occupancy ligands, even at high resolution.
Examples for four binding fragments showing different levels of support for binding from OMIT maps, where clear evidence of binding is shown by PanDDA event maps.
Map coloring: 2mFo-DFc maps are shown as blue mesh and all difference maps are shown as green/red mesh; associated PanDDA event maps are shown as purple
surfaces. Map type and contour are as indicated. Both types of OMIT maps are produced by phenix.polder. Maps are truncated (carved) at 3Å around relevant
residues and ligands for clarity; PanDDA maps are carved at 2Å. Model coloring: To distinguish alternate conformations, carbon atoms for ligand-associated
conformations are coloured orange and non-ligand-associated conformations are coloured blue; main-conformation (full-occupancy) atoms are coloured light gray; all
other atoms are colored by element except waters, which are coloured as per carbon atoms. Resolutions: (A) 1.40Å, (B) 1.60Å, (C) 1.29Å, (D) 1.34Å. Refined ligand
occupancies: (A) 0.41, (B) 0.50, (C) 0.38, (D) 0.22. PanDDA event map pseudo-occupancies (1-BDC): (A) 0.15, (B) 0.17, (C) 0.10, (D) 0.11. (A) Binding is not evident in
the 2mFo-DFc maps at a moderate contour level, but is clearly supported by both types of OMIT map, especially when considered in combination with the extra density
from the superposed water molecules from non-ligand-associated conformations, as modeled. It is debatable whether the OMIT maps alone would provide strong
enough evidence to support modeling of the ligand, but the single ligand conformation is clearly evidenced in the PanDDA event map, preventing potential
misinterpretation of the OMIT map as multiple conformations of the ligand. (B) Similar to (A), but with less evidence in the simple OMIT map. The polder OMIT map
provides an envelope which fits well with the envelope provided by the ligand and the superposed water molecules, as modeled. It is unlikely either OMIT map would be
accepted as evidence of binding, but oncemore, the ligand conformation is clearly identified in the event map. (C)OMITmaps showmostly features which correspond to
superposed (not-ligand-associated) waters, and do not present evidence for the bound ligand, unlike the event map. (D) Ligand binding coincides with an alternate
conformation of an arginine residue, which dominates the refined maps and OMIT maps.
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then be used for ligand modeling (Figure 2). Several examples in
the original PanDDA manuscript show examples of where
interpreting the standard electron density maps lead to
misinterpretation, as the standard experimental maps shows
diffuse density that could be interpreted as the ligand in
multiple conformations; however after application of the
PanDDA approach, the ligand is clearly in one conformation,
with a superposed solvent state (Pearce et al., 2017a; Pearce et al.,
2017b; Pearce et al., 2017c).

In the original PanDDA implementation, no assumptions are
made about whether datasets are comparable, and it has since
been shown that pre-processing with methods such as cluster4x
can dramatically increase the sensitivity of the method even
further (Ginn, 2020). Combined, these approaches enable the
identification and modeling of very low-affinity compounds
which would not have been identified previously, and in doing
so have greatly increased the amount of chemical matter available
for ligand binding studies. However, the identification of weaker-
and weaker-binding ligands have revealed significant weaknesses
in currently available approaches for structure determination
and usage.

In light of the experiences in fragment screening, it is clear that
there is a large and underappreciated potential for
misinterpreting electron density when modeling ligands, either
because the ligand is not there at all (Stanfield et al., 2016b), or
because the ligand binds at subunitary occupancy. Since we
cannot know the occupancy of the ligand a priori, we may
unwittingly be misinterpreting density for another molecule as
density for the ligand, resulting in the wrong pose for (parts of)
the ligand (Pearce et al., 2017b). Ligands in the PDB are routinely
modeled at full occupancy (Pearce et al., 2017c), showing that
partial occupancy is rarely considered. Our experiences with
fragment screening have provided numerous cases where the
outcome of a PanDDA analysis is very different to what might
have been created using traditional approaches (Pearce et al.,
2017a; Pearce et al., 2017b; Pearce et al., 2017c), including cases
where the ligand was initially perceived to be in multiple
conformations, but was in fact in one conformation, and vice
versa. The exact prevalence of such mismodelling in the PDB is
unknown, and though errors may be minor, inaccurate binding
poses of important functional groups could seriously mislead
downstream applications such as structure-based drug design.

Since sub-unitary occupancy became an inherent feature of
the crystallographic data, this spurred the development of
methods for the generation and refinement of multi-state
models for superpositions of ligand-bound and ground-state
states (Pearce et al., 2017b; Pearce et al., 2017c). Combining
the ligand-bound model (derived from the event map) with the
ground-state model (derived from the APO data sets) generates a
multi-state model for refinement (Pearce et al., 2017c), and
combined with appropriate occupancy restraints, this can
produce relatively high-quality models for even low-occupancy
ligands (Pearce et al., 2017b), although of course these models are
lower quality than one would expect from stoichiometric binders.
Visual inspection of the refined electron density maps becomes
less useful for low-occupancy ligands, since all refined electron
density maps will continue to contain multi-state superpositions,

and somultiple validationmetrics are useful for identifying errant
parametric features of the models, such as inappropriate
occupancies or B-factors (Pearce et al., 2017b; Pearce et al.,
2017c). Iterative modeling using this multi-state approach
requires a new mindset for the crystallographer, since it
requires the different states of the model to be inspected
separately and modeled into different electron density maps
(i.e., the ground-state conformation into a ground-state map
and the bound-state conformation into an event map), before
being recombined for refinement against the original
experimental data. This is currently technically difficult, and
tools need to be further developed before this can be routinely
applied by non-experts. However, routinely ignoring the partial-
occupancy nature of ligands in crystallographic models is a
significant oversight within the field, the current extent and
effect of which is simply unknown.

STRUCTURE PRESENTATION AND
ANALYSIS

With the influx of large volumes of structural data, such as that
generated by synchrotron fragment-screening facilities,
application-specific platforms for exploring and exploiting this
data become a critical component in the context of fragment-
based lead design (FBLD) (Bradley et al., 2015). Popular desktop-
based software for the visualizing and analyzing crystal structures
(e.g., PyMOL) are only tractable for a handful of structures, and
are ineffective in identifying trends in data which could inform
further FBLD (Deane et al., 2017). Curating and understanding of
FBLD outputs is time-consuming due to the vast number of
structures, and often rely heavily on the expertise of the
researcher to keep track of interesting and potentially novel
features from their analysis (de Souza Neto et al., 2020).

The usage of multi-state models introduces an additional
difficulty when using these models in downstream
applications. Users of the PDB are mostly not trained
crystallographers, and can be confused by the presence of
multiple superposed conformations in an atomic model—in
the best case scenario, they are simply a nuisance artifact to be
removed. Therefore, it is preferable to remove the superposed
ground-state conformations from models, and present only the
scientifically-interesting bound state. However, the PDB
currently has no mechanism for presenting different states of
the model, and thus depositors are left with a choice: deposit the
full multi-state crystallographic model or deposit only the bound-
state model. While the second option—which is the one that has
been adopted by the XChem facility—is beneficial to the users of
the PDB (who are after all the intended audience), this practice
introduces problems for those that wish to reproduce model
refinements, since only part of the model has been deposited; this
has caused these models to be accurately identified as being poor
and unreliable by validation efforts (Wlodawer et al., 2020). Now
that hundreds of such models are being deposited in the PDB
every year, there is urgently-needed functionality in the PDB for
presenting the different components of multi-state models to end
users, so that the full crystallographic model can be deposited.
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The development of routines which further allow the
reproduction of PanDDA results are another critical area of
required development to ensure that refinements of these
models are reproducible and that the models can be validated.

The need for rapid access to 3D structural data necessary for
competitive design of lead series in FBLD was brought into sharp
focus by the coronavirus pandemic—even once the structures are
processed and aligned, annotation and interpretation of this vast
amount of information remains a formidable task. A plethora of
structural data concerning SARS-CoV-2 and related proteins has

been generated, but required a specialized data portal (PDBe-KB
Covid-19 portal; https://www.ebi.ac.uk/pdbe/covid-19) (PDBe-
KB consortium, 2022) to present data and findings in a
coordinated way, including such information as 1) biological
function, 2) display of a representative structure, 3) 3D
superposed views of the structures and ligands, and 4) lists of
relevant publications. Some generic online resources, for example
michelaNGLo (Ferla et al., 2020), allow scientists to
collaboratively annotate structural data with additional
scientific context through an open-source web-based
application that allows the creation and sharing of interactive
pages containing interactive 3D representations of
macromolecular data. Whilst this is extremely powerful,
visitors to such pages should be aware that the structural data
has often not been officially peer reviewed (though we must also
note that peer review of structures in the PDB is not universal).
However, since it is well-known that many structures in the PDB
are not well-refined or have other serious problems—and that
structures are often only made available to reviewers upon
request—in both cases it is ultimately still up to individual
users to appropriately interpret the data.

The Fragalysis platform combines the collaborative nature of
an online discussion tool with the abilities to interrogate
hundreds of crystal structures simultaneously. Fragalysis
(https://fragalysis.diamond.ac.uk) is an open-source web-based
application which was designed for the dissemination, evaluation
and elaboration of fragment screening results from the XChem
screening facility (https://www.diamond.ac.uk/Instruments/Mx/
Fragment-Screening.html), and is aimed at the non-expert user to
facilitate the progression of initial fragment hits from the
beamline to more potent protein inhibitors. This is achieved
by providing context to crystallographic data: All ligands in each
crystal structure are treated as an individual entity, and for each
ligand, the protein and ligand can be inspected or analyzed in
isolation or together as part of an ensemble (Figure 3). This
overlay of structural information provides the user with a starting
point to consider how they might apply the existing data to the
elaboration and prioritization of new molecules that aim to bind
more potently.

In the recent development of Fragalysis, emphasis has been put
onto how crystallographers can best communicate the key features
and limitations of their crystallographic models to non-expert users,
including the presentation of electron density maps—PanDDa event
maps, refined 2mFo-DFcmaps andmFo-DFcmaps—for newer public
datasets (e.g., SARS-CoV-2 Main Protease: https://fragalysis.
diamond.ac.uk/viewer/react/preview/target/Mpro), and a new
paradigm whereby atoms and bonds in ligands can be
highlighlighted and commented upon. This both allows experts to
annotate the structures for non-expert users, but also allows users to
interrogate the experimental data themselves. These features will be
presented fully in future publications. However, it is important to
highlight that such developments are imminently necessary more
widely in macromolecular crystallography, and structural biology in
general. With such a massive amount of data available, and with so
many computational methods in FBLD starting from
crystallographic models, it is important that the structure-
determination community takes responsibility for properly

FIGURE 3 | Fragalysis aims to provide immediate access to ligand-
protein information without confounding crystallographic artifacts. To achieve
this, a given crystal structure (top left—Crystal A) is inspected to find all of the
individual ligands. These ligands are then separated into separate
bound-state entities (top right—Ligand 0A and Ligand 1A) using the Fragalysis
API. Ligands are subsequently separated from their respective protein (top-
right Ligand 0A and Protein 0A), and presented in Fragalysis as part of an
ensemble of all ligands and proteins in the same reference frame (bottom).
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communicating and annotating their data and aiding the wider
structural community in how to best interpret and make use of
the data beyond crystallographic modeling. Of particular importance
is the communication of quality considerations; here, several articles
and reviews describe valuable tools for evaluation of raw experimental
data and solved macromolecular structures (Kleywegt, 2000; Gore
et al., 2012; Adams et al., 2016; Wlodawer, 2017).

Of course, this accumulation and digestion of populations of
structures will likely be greatly affected in the near-term by the
rapid advances of deep-learning structure-prediction methods
such as AlphaFold (Jumper et al., 2021), and RoseTTAFold (Baek
et al., 2021). Neither Alphafold nor RoseTTAFold (in their
current released versions) incorporate the ability to add native
ligands/cofactors, although a cavity which could accommodate
one is often observed, nor allow the predicted binding poses of
arbitrary ligands, but the development of these functionalities is
inevitable and much anticipated.

DISCUSSION AND CONCLUSION

Despite the gains in efficiency in crystallographic experiments at
synchrotrons, driven in part by automated fragment-screening
beamlines, there has been no real corresponding increase of X-ray
crystal structures in the PDB. The number of yearly released
X-ray structures has remained largely the same since 2016 (with a
COVID-19-driven exception for 2020). The number of structures
that are deposited in the PDB is almost certainly significantly
smaller than the real number of datasets collected or structures
determined every year, especially since only a small fraction of the
vast number of structures determined by pharmaceutical
companies ends up in the public domain (Mullard, 2021).
Nevertheless, it still takes a remarkably long time to get
structures “deposition ready” and then into the PDB. There
are two main problems: 1) Structure refinement does not have
a clear endpoint and crystallographers often go through many
refinement and model rebuilding iterations before they are
comfortable depositing their data, and 2) there are hardly any
tools available that help with data organization, metadata capture
and large-scale PDB deposition. This leads to a situation where
crystallographers tend to spend a disproportionate amount of
time on finalizing what are usually considered “simple” protein-
ligand structures. Consequently, this time is not available for
actual structure analysis, which is further exacerbated by a lack of
tools for parallel and comparative analysis of related crystal
structures, combined with suitable graphical presentation.

Structural biology needs more dedicated and integrated tools
for batch data processing, otherwise the gains in experimental
efficiency will not result in a corresponding explosion of
structural information. CRIMS, FragMAXapp and
XChemExplorer begin to tackle these data-organization
problems, but they are specialized for the environment where
they have been developed, lack flexible workflow configuration,
and are restricted to the determination of protein-ligand
complexes by X-ray crystallography. While the details still
need to be worked out, we would like to outline what such a
novel and modular batch-processing workbench could look like.

Such a platform should allow flexible and abstract workflow
configuration with dedicated APIs for interaction with external
databases or processing tools (Figure 1). It should facilitate direct
usage of auto-processing results obtained at different
synchrotrons and the meta-data stored in databases like
ISPYB. This would significantly speed up the process, reduce
errors and unburden users from the tedious task of data capture
and management of vast amounts of raw diffraction data. Such a
tool would not only be useful for single crystal diffraction
experiments, but for any other multi-dataset experiment, e.g.,
serial synchrotron crystallography (SSX) data collections,
whether for protein-ligand or time-resolved studies.

Furthermore, there are several paradigmatic lessons for
routine macromolecular crystallography to adopt from
fragment screening experiments. Our models need to become
much more complex than they have been historically, and the
databases and visualization methods for presenting these models
need to develop quickly to account for this. In the short term,
there is still much to be done to convince the community that
more complex approaches—i.e., multi-state superpositions—are
necessary, but done correctly, more complex structure-
determination paradigms should allow for much more robust
validation protocols than the current self-consistency metric
paradigms. These problems in structure determination and
validation are further exacerbated by the sheer number of
structures that can be determined, and analytical and
visualization methods for identifying trends and common
features in these structures are due for an overhaul. Lastly,
arguably the greatest responsibility of the macromolecular
crystallographic community is to ensure that their data,
especially when not proprietary, are released to the public in a
timely fashion, and with clear and concise context that make
them interpretable to observers and users who may or may not
have the necessary expertise to analyze them critically themselves.

These changes will be a great challenge for the developers of
databases and software for the deposition, presentation,
interpretation and analysis of crystallographic data. These
changes should be seen as an opportunity for those developers
to redefine how we think about crystallographic data, and to treat
this challenge as an exciting new area of scientific research. It is
probable that the majority of applications will continue to move
towards being web-based, and that more remote computing
resources will need to be made available on a global level
through academic funding routes. It should also be (made)
apparent to funding bodies that disciplines like crystallography
don’t function without robust, scalable, and sustainable software
behind the scenes, and that more needs to be done to ensure
secure medium- and long-term funding for software so that it can
be developed and maintained appropriately. This must include
funding streams to support individual research software
development.

Conversely, it is the responsibility of computational scientists
who develop newmethods and algorithms to properly explain the
relevant applications of their methods, and to ensure that those
methods are made available where they are not proprietary. This
includes publishing them in a version-controlled environment
such as GitHub, and publishing links to these repositories within
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their manuscripts. It is our opinion that making data and
algorithms ‘available upon request’ is no longer good enough,
given the availability of a number of easy-to-use public
repositories such as Zenodo (European Organization For
Nuclear Research and OpenAIRE, 2013), where arbitrary files
can be uploaded; to this point, the data and scripts for
reproducing the OMIT maps for Figure 2 have been uploaded
to Zenodo (https://doi.org/10.5281/zenodo.6334726).

Though the experiences and methods highlighted in this
manuscript primarily arose from highly specialized
experiments in fragment-based discovery, we believe many of
the approaches should inspire developments in other areas of
macromolecular crystallography. For instance, the multi-dataset-
management approach to experimental crystallography is one
that might greatly smooth the process of determining a (set of)
typical crystallographic structure(s), and remove much of the
tedious meta-data tracking, whilst more technical model-building
aspects also have clear applications in more niche
crystallographic experiments such as time-resolved
crystallography, Laue crystallography, and X-ray Free Electron
Laser (XFEL) experiments.
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