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Abstract: A corneal ulcer is an open sore that forms on the cornea; it is usually caused by an infection
or injury and can result in ocular morbidity. Early detection and discrimination between different
ulcer diseases reduces the chances of visual disability. Traditional clinical methods that use slit-
lamp images can be tiresome, expensive, and time-consuming. Instead, this paper proposes a deep
learning approach to diagnose corneal ulcers, enabling better, improved treatment. This paper
suggests two modes to classify corneal images using manual and automatic deep learning feature
extraction. Different dimensionality reduction techniques are utilized to uncover the most significant
features that give the best results. Experimental results show that manual and automatic feature
extraction techniques succeeded in discriminating ulcers from a general grading perspective, with
~93% accuracy using the 30 most significant features extracted using various dimensionality reduction
techniques. On the other hand, automatic deep learning feature extraction discriminated severity
grading with a higher accuracy than type grading regardless of the number of features used. To the
best of our knowledge, this is the first report to ever attempt to distinguish corneal ulcers based on
their grade grading, type grading, ulcer shape, and distribution. Identifying corneal ulcers at an
early stage is a preventive measure that reduces aggravation and helps track the efficacy of adapted
medical treatment, improving the general public health in remote, underserved areas.

Keywords: corneal ulcer; deep learning; ResNet101; PCA

1. Introduction

Corneal ulcer (CU), also known as keratitis, is an infection or inflammation that
affects the transparent anterior portion of the eye that covers the iris, which is known as
the cornea [1]. Corneal ulcer is a major cause of sight loss and might be responsible for
1.5–2.0 million blindness cases every year [2]. The source of corneal ulcer can be viral,
bacterial, fungal, or parasitic. The symptoms include pain, ache, redness, blurry vision,
and sensitivity to bright light. Traditional methods that use slit-lamp images and slit-lamp
microscopy for diagnosing corneal ulcers are subjective and time-consuming, and they
are highly dependent on the ophthalmologist expertise. It is a preventable and treatable
disease, as early and timely recognition of corneal ulcer can stop the deterioration and help
maintain a patient’s visual integrity.

Developments in staining techniques help investigators numerically detect and di-
agnose ulcers. Fluorescein is a widely used dye in ophthalmology for the diagnosis and
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evaluation of the corneal integrity and the optical exterior. Many ophthalmologists use
fluorescein corneal staining technique together with slit-lamp microscopy to successfully
diagnose and analyze corneal ulcers. Several methods for corneal ulcer segmentation and
classification are found in the literature [3–7]. Both automatic and manual segmentation
techniques help identify the severity of the ulcer. Automatic and semiautomatic segmenta-
tion algorithms that use artificial intelligence require large training datasets [8], whereas
manual segmentation is a highly subjective and time-consuming technique. Finally, the
region containing the ulcer is distinguished by applying a glowing green dye against the
rest of the cornea, which appears brown or blue [8–11].

The aim of this study is to propose an automated system to distinguish different
corneal ulcers types and to compare hand and automatic features extraction using the
publicly available SUSTech-SYSU dataset. The suggested approach distinguishes between
different corneal ulcer images using handcraft and automatic features extracted from
gray-level and colored images. The colored features are extracted from three color spaces:
red green blue (RGB), luminance chroma-blue chroma-red (YCbCr), and hue saturation
value (HSV). In addition, this work analyzed the performance of various feature selection
methods, such as principal component analysis (PCA), infinite latent feature selection
(ILFS) [12], ensemble-based classifier feature selection (ECFS) [13], and Fisher [13], to
determine whether a comparable performance can be obtained with fewer features. To
the best of our knowledge, this is the first study to ever attempt to distinguish corneal
ulcers based on their type grading, grade grading, and general pattern (ulcer shape and
distribution) using fluorescein staining images. Early and timely diagnosis of corneal
ulcers can help provide clinically adapted therapy and can assist track the therapeutic
treatment efficiently.

2. Literature Review

In this section, we examine the most pertinent literature that has attempted to cate-
gorize different types of corneal ulcers to prevent corneal blindness. Ashrafi Akram and
Rameswar Debnath proposed an automated system to detect the presence or absence of
corneal ulcer disease from a facial image taken by a digital camera. The eye part of the face
is segmented using Haar cascade classifiers, and the iris and sclera regions were segmented
by applying Hough gradient and active contour techniques to localize the ulcer area. The
model achieved an accuracy of 99.43%, a sensitivity of 98.78%, and a specificity of 98.6% [3].
Zhongwen Li et al. used three pretrained models, particularly DenseNet121, ResNet50, and
Inception, to discriminate between normal cornea, keratitis, and other abnormalities. The
models were trained using 6567 slit-lamp images from different sources, and DenseNet121
gave the best results and achieved an AUC > 0.96 [4].

Multiple researches were conducted using the SUSTech-SYSU dataset, which consists
of 712 fluorescein staining images to differentiate various corneal ulcers. In 2020, a modified
VGG network was proposed by Ningbiao Tang et al. for automatic classification of corneal
ulcers. The framework had fewer parameters and better performance compared with the
traditional convolutional neural network (CNN). It discriminated between point-like, flaky,
and point-flaky mixed ulcers. The performance of the modified architecture exceeded that
of VGG16 and AlexNet, as it achieved 88.89% accuracy, 71.93% sensitivity, and 71.39%
F1-score [5]. In 2020, Zhonghua Wang et al. suggested two binary models to classify three
types of corneal ulcers. The first model discriminates point-like against mixed and flaky
ulcers, and the second model distinguishes between mixed and flaky ulcers. The proposed
pipeline achieved an accuracy of 85.8% [6].

In 2021, Kasemsit Teeyapan et al. trained 15 different convolutional neural networks
(CNNs) using the SUSTech-SYSU dataset to discriminate between early and advanced
stages of corneal ulcer. The best results were obtained using ResNet50 with a 95.1%
accuracy, 94.37% sensitivity, and F1-score of 95.04% [7]. In 2021, Jan Gross et al. used
transfer learning to compare the performance of VGG16, VGG19, Xception, and ResNet50
pretrained models in distinguishing between different corneal ulcers. VGG16 discriminated
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between general ulcer patterns with 92.73% accuracy. Images were preprocessed using
thresholding and data augmentation, and the proposed method avoids errors resulting
from light reflection during diagnostic imaging [14].

3. Materials and Methods

Figure 1 illustrates the flowchart of the multistage method employed in this paper.
First, the SUSTech-SYSU dataset was resized and preprocessed, and next, the features were
extracted either by hand or automatically, and later, various feature selection methods were
employed to uncover the most relevant features; finally, machine learning techniques were
utilized to classify images into different categories. The following subsections describes
each step in detail.

Figure 1. Flow chart of the proposed methodology.

3.1. Dataset

This study utilized the labeled corneal ulcer images from the publicly available
SUSTech-SYSU database [15,16]. The dataset contains a total of 712 fluorescein-stained
images that captured the ocular surfaces and were collected from patients with various
corneal ulcer degrees. Images are 24-bit RGB colored with a 2592 × 1728 pixels’ spatial
resolution, and each picture contained only one corneal image. In general, there are three
ways to categorize the images and the details are shown in Table 1:

• General pattern: Separate the images according to the shape and distribution character-
istics of the corneal ulcer. They can be classified into three categories shown in Figure 2.

• Type grading: Separate the images according to the corneal ulcer’s specific pattern.
They can be classified into five categories: Type 0 (no ulcer of the corneal epithelium),
Type 1 (micro punctate), Type 2 (macro punctate), Type 3 (coalescent macro punctate),
and Type 4 (patch ≥ 1 mm).

• Grade grading: Separate the images according to the corneal ulcer’s severity degree
(grade grading). They can be classified into four categories: Grade 0, Grade 1, Grade 2,
Grade 3, and Grade 4, where Grade 0 indicates that there is no ulcer, and Grade 4
indicates that the ulcer involves the central optical zone.

Figure 2. (A) point-like, (B) point-flaky, (C) and flaky corneal.
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Table 1. The distribution of the images used in the system.

General Pattern Point-Like Point-Flaky
Mixed Flaky

Number of images 358 263 91
Type grading

(specific pattern) Type 0 Type 1 Type 2 Type 3 Type 4

Number of images 36 98 203 273 102
Grade grading

(severity degree) Grade 0 Grade 1 Grade 2 Grade 3 Grade 4

Number of images 36 78 50 50 548

Different classification problems used different datasets. The corneal ulcer’s general
pattern used a dataset consisting of 802 images after augmentation, 712 images were used
in Model 1, and 381 images were used in Model 2. The corneal ulcer’s specific pattern
(type grading) used a dataset consisting of 2179 images after augmentation. Finally, for the
corneal ulcer’s severity degree (grade grading) problem, a dataset consisting of 1239 images
after augmentation was used. All datasets were divided into training and testing sets, each
consisting of 70% and 30% of the dataset, respectively.

Figure 3 describes the grade grading category.

Figure 3. (A) Grade 0, (B) Grade 1, (C) Grade 2, and (D) Grade 4.

Figure 4 represents the classes of type grade.

Figure 4. (A) Type 0, (B) Type 1, (C) Type 2, (D) Type 4, and (E) Type 4.

3.2. Image Augmentation

The image augmentation technique enlarges the existing data to create more data
for the model training process. To build a balanced dataset, several image augmentation
techniques were applied, such as image rotation in different angles by 0◦, 45◦, 60◦, 180◦,
and 360◦ degrees; isotropic scaling by factors of 0.1, 0.2, 0.5, and 0.9; and reflection in both
left-right and top-bottom directions [17]. These techniques were applied on the datasets
to enlarge the number of images The augmentation process considered the number of
original images in each class for all three datasets. Some classes do not need augmentation
because the number of images is sufficient to carry out the classification task. Therefore,
no augmentation techniques were applied. On the other hand, images in other classes
are not sufficient to build a robust classifier model. Therefore, various augmentation
techniques were applied, and the augmentation multiplier varied between 1 to 15 based on
the original number of images to expand these classes. The augmentation process is started
by augmenting the original images with specific angle, scale, direction, and reflection. The
resultant augmented images are then saved. After one augmentation round, if the number
of images is sufficient, the resultant augmented images are then used for distinguishing



Diagnostics 2022, 12, 1344 5 of 23

between different ulcers. However, if the augmented images are still not sufficient to build
a reliable model, the augmentation procedure is repeated on the original images using
different augmentation parameters. The process is repeated until the data are large and
appropriate enough to guarantee successful discrimination. The number of images for each
class before and after augmentation in addition to the augmentation multiplier used are
illustrated in Tables 2–4 for each dataset.

Table 2. Augmentation Process for General Grading Dataset.

General Grading Class Point Like Flaky Point-Flaky Mixed

Before Augmentation 358 91 263
After Augmentation 358 182 263

Augmentation Multiplier 0 2 0

Table 3. Augmentation Process for Type Grading Classes.

Type Grading Classes Type 0 Type 1 Type 2 Type 3 Type 4

Before Augmentation 36 98 203 273 102
After Augmentation 288 294 203 273 306

Augmentation
Multiplier 8 3 0 0 3

Table 4. Augmentation Process for Grade Grading Classes.

Grade Grading Classes Grade 0 Grade 1 Grade 2 and 3 Grade 4

Before Augmentation 36 78 50 548
After Augmentation 540 624 550 548

Augmentation
Multiplier 15 8 11 0

3.3. Image Preprocessing

The purpose of the pretreatment stage is to focus on the corneal surface instead of the
conjunctival areas, as it is the most commonly and highly stained area in corneal epithelial
injuries [15]. To better the computational efficiency, all images were resized to a fixed
input size of 256 × 256 pixels. The corneal region image is enhanced using the colorized
image enhancement method. Initially, the images are converted into gray-scale level, then
morphological opening operation was applied to remove the non-uniform illuminated
background, and next, the contrast is adjusted using histogram equalization. Finally, the
RGB image is converted to the HSV color space, and the V channel is replaced with an
enhanced gray image. Figure 5 displays the output after each preprocessing stage.

3.4. Feature Extraction

Feature extraction captures the visual content of an image for the purpose of indexing
and retrieval. An image can be expressed by a set of low-level and high-level descriptors;
low-level features can be either general features or domain-specific features [18].
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Figure 5. (A) Original image, (B) cornea area, (C) enhanced gray image, and (D) final enhanced image.

3.4.1. Hand Crafted Feature Extraction

Textured features are extracted from gray-level images, and colored features are
extracted from the three different color spaces: red green blue (RGB), luminance chroma-
blue chroma-red (YCbCr), and hue saturation value (HSV). The three-color spaces are
divided into nine distinct channels, namely R, G, B, H, S, V, Y, Cb, and Cr [19]. Each color
space looks at the image from a different angle and provides a different way to identify
features in an image.

Overall, a total of 60 features were manually extracted from the enhanced image
as well as 24 textured features and 36 colored features. The 24 gray-level co-occurrence
two-dimensional matrix (GLCM) features were extracted after the image was transformed
to gray-level images. GLCM is a technique that allows extraction of statistical information
from the image regarding the pixel distributions. It is an effective method for texture
analysis, especially in biomedical images [20]. The extracted textured features, including
contrast (CON), correlation (CORR), dissimilarity (DISS), angular second moment (ASM),
entropy (ENT), and finally, the inverse different moment (IDM) of each feature, were
extracted in 0◦, 45◦, 90◦, and 135◦ directions [21]. The 36 colored features were extracted
from the color-converted, enhanced image via a color moment approach. Color moment
is a simple feature extraction technique with four features: mean (MEAN), standard
deviation (STD), entropy (ENT), and skewness (SKE) extracted from each of the nine
color channels [22].

3.4.2. Automatic Feature Extraction

A deep learning structure is an artificial neural network with unbounded number
of layers [23]. In a deep architecture, low-level layers extract simple attributes from the
raw input, where higher-level layers identify more complex features. Recurrent neural
networks (RNN) and convolutional neural networks (CNN) are the most prominent deep
learning (DL) algorithms. In this paper, ResNet101 was exploited to extract 1000 features
automatically [24,25].

3.5. Feature Selection

Feature selection is the process of choosing the most important features that contribute
to model learning [26] Most feature selection methods are wrapper methods, which evaluate
the features using the learning algorithm. Algorithms based on the filter model examine
the intrinsic properties of the data to evaluate the features before the learning tasks. Filter-
based approaches almost always rely on class labels, commonly assessing correlations
between features and class label [27]. Some typical filter methods include data variance,
Pearson correlation coefficients, Fisher score, and the Kolmogorov–Smirnov test. Ensemble
based feature selection methods are designed to generate an optimum subset of features
by combining multiple feature selectors based on the 20 intuitions behind the ensemble
learning. The general idea of ensemble feature selection is to aggregate the decisions of
diverse feature selection algorithms to improve representation ability.

This work analyzed other feature selection methods such as Relief (Kira and Ren-
dell) [13], infinite latent feature selection (ILFS), and [28] principal component analysis
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(PCA) [29,30]. Infinite latent feature selection (ILFS) technique consists of three main steps.
The first one is the preprocessing step, then weighting the graph, and the last one is ranking.
The goal of the pre-processing stage is to quantify the distribution of features xi in the
matrix format. Then, calculate the value for a specific token so that each feature xi can
be represented by the token t; this process is called discriminative quantization [12]. The
Fisher criterion method is used to calculate vectors from a feature. The next step is graph
weighting. The purpose of the weighting process is to create a fully connected graph in
each node that is connecting each feature with the other features [13].

3.6. Machine Learning Models
3.6.1. ResNet101

ResNet101, short for residual networks, is a 101-tier architecture designed by re-
searchers at Microsoft that won the 2015 ILSVRC classification challenge with a 3.57%
error rate. It is a neural network that stacks residual blocks with skip connections to solve
computer vision and image recognition tasks as shown in Figure 6 [31]. The backbone
of the ResNet101 is a convolutional neural network trained on more than one million
images from the ImageNet database. As a result, the network learned complex feature
representations for a wide range of images and is capable of distinguishing 1000 classes
with high performance [32]. Before ResNet101, shallower networks performance was better
than that of deeper networks. In other words, increasing the number of layers did not
necessarily improve performance; instead, it led to an increase in the training and testing
errors because of the exploding gradient problem [33]. ResNet101 allowed scholars to train
extremely deep networks without negatively affecting accuracy and performance.

Figure 6. Residual learning: a building block [31].

This paper used the pertained ResNet101 model already implemented in MATLAB®

version 2021. It consists of 101 layers, and Table 5 details the structure of the used model.

Table 5. The stricter of ResNet101 [31].

Layer Name Output Size ResNet101

Conv1 112 × 112 7 × 7, 64, stride 2

Conv2_x 56 × 56
3 × 3 max pool, stride 2 1 × 1, 64

3 × 3, 64
1 × 1, 256

× 3

Conv3_x 28 × 28
1 × 1, 128

3 × 3, 128
1 × 1, 512

× 4

Conv4_x 14 × 14
 1 × 1, 256

3 × 3, 256
1 × 1, 1024

× 23

Conv5_x 7 × 7
 1 × 1, 512

3 × 3, 512
1 × 1, 2048

× 3

1 × 1 Average pool, 1000-d FC, softmax
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The pretrained CNN utilized the following hyper parameters: the root mean square
propagation (RMSProp) optimizer, a patch size of 32, fifteen epochs, and 1 × 10−4 learning rate.

3.6.2. Principal Component Analysis (PCA)

Developed in 1933, principal component analysis (PCA) is a widely used data mining
technique that can be employed to reveal hidden trends within the data. PCA can help
simplify the problem by dramatically reducing the number of features [29,30]. It calculates
the principal vectors and uses them to change the basis of the data in an attempt to uncover
the concealed truth. The scree plot ranks the vectors according to their signal content,
and only the fundamental components that preserve most of the signal information are
considered, while the rest are ignored. Smaller datasets are simple and easier to explore and
visualize. Therefore, PCA transforms a large group of variables into a smaller set without
compromising accuracy. To summarize, dimensionality reduction techniques can help solve
problems fast with an acceptable accuracy, and they require less computing power [12,34].

3.6.3. Support Vector Machine (SVM)

A support vector machine (SVM) is a supervised machine learning algorithm devel-
oped by Vladimir N. Vapnik in 1963 and refined in the 1990s. It is a binary linear classifier
that can be cascaded to solve a multiclass problem. It attempts to find a decision bound-
ary, the maximum marginal hyperplane (MMH), that maximizes the separation region
between two categories. SVM converts a linear non-separable classification problem into a
separable one by utilizing the kernel trick that transforms a low-dimensional space into
a higher-dimensional space. This can be obtained by mapping the used features into a
higher-dimensional space using kernel functions such as linear, polynomial, and radial
basis function (RBF). In general, kernel selection is based on the type of the transformation
and the type of the data [35–37]. In this paper, a cascaded SVM classifier that uses Gaussian
kernel function is employed in general pattern classification. To improve the performance
of the SVM classifier, the dataset is divided into two main subsets: the first one is point-like,
and the other one is flaky corneal ulcers, which can be divided further into point-flaky
mixed and flaky corneal ulcers. Other image categories (type and grade grading) were
kept as is.

Figure 7 illustrates the structure of the two models; Model 1 uses an SVM to discrimi-
nate between point-like and flaky corneal ulcers. On the other hand, Model 2 is in charge
of classifying flaky corneal ulcers further into two other classes, namely flaky-point and
point-flaky mixed, using another cascaded SVM classifier.

Figure 7. SVM models for general pattern classification.

For grade grading and type grading categories, the multi class SVM is employed to
classify grade grading into four classes, whereas type grading is classified into five classes
as well. The kernel that has been used is polynomial kernel with order 3.
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4. Results

This section discusses the detailed results using manual and automatic feature ex-
traction for the general pattern, type grading, and grade grading classification problems.
Figures 8–12 show the multiclass confusion matrix for all examined models, and the rows
represent the predicted category, while the columns represent the real category. It is clear
from the figures that all models successfully isolated the concealed features that are associ-
ated with each class group. On the other hand, Figures 13–16 show the ROC curve for all
tested models, and the x-axis describes the false-positive rate (specificity), while the y-axis
represents the true-positive rate (sensitivity).

Figure 8. The confusion matrix with ECFS-reduced features for Model 1.

Figure 9. The confusion matrix with ECFS-reduced features for Model 2.
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Figure 10. The confusion matrix with ECFS-reduced features for the whole cascading system.

Figure 11. The confusion matrix with ECFS-reduced features for type grading.
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Figure 12. The confusion matrix with PCA-reduced features for grade grading.

Figure 13. The AROC with ECFS-reduced features for Model 1.
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Figure 14. The AROC with ECFS-reduced features for Model 2.

Figure 15. The AROC with ECFS-reduced features for the whole cascading system.
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Figure 16. The AROC with ECFS-reduced features for type grading.

4.1. Manual Feature Extraction

The results in Table 6 show that 30 handcrafted features extracted using ECFS seem to
generate better class separability than 60 hand-selected features. Different feature selection
methods were employed in the classification process to discover the 30 most significant
features. Table 6 also shows that Model 1 using ECFS succeeded in discriminating between
flaky and point-like ulcers with 91.1% accuracy, while Figure 8 shows the correspond-
ing confusion matrix. Model 2 using ECFS distinguishes between point-flaky mixed and
flaky with an accuracy of 95.6%, and Figure 9 shows the corresponding confusion ma-
trix. Figure 10 shows the confusion matrix for the whole cascading system with features
selection ECFS.

Table 6. Testing accuracy results using 30 most significant hand-crafted features.

Image
Categorization

General Pattern Type Grading Grade Grading
Model 1 Model 2

60 features 84.5% 89% 60.9% 74.5%
PCA 85.2% 94% 64.5% 82.2%
ECFS 91.1% 95.6% 65.8% 77.7%
ILFS 88% 90% 62.3% 78.2%

Fisher 87% 93.6% 62.5% 76.3%
PCA, principal component analysis; ECFS, ensemble-based classifier feature selection; ILFS, infinite latent
feature selection.

Figures 8–12 describe the confusion matrix for all classification problems using 30 most
significant features extracted with ECFS. Figure 8 shows the confusion matrix for the first
model, a maximum accuracy of 91.1% was reached for discriminating flaky and point-
like ulcers. Figure 9 shows the confusion matrix for the second model, and a maximum
accuracy of 95.6% was reached for distinguishing between flaky and point-flaky mixed
ulcers. Figure 10 clarifies the overall accuracy for the cascading classifier. Its maximum
accuracy is 92.2%. For type grading, the model managed to discriminate between all five
types with a 65.8% accuracy as shown in Figure 11. For grade grading, the model succeeded
in distinguishing between all four grades with an 82.2% accuracy as shown in Figure 12.
Table 6 summarizes the results for different classification problems using different features
reduction methods (PCA, ECFS, ILFS, and Fisher).

However, Figures 13–17 show the receiver operating characteristics curve (ROC) for
each confusion matrix that has been mentioned above, respectively. Each one describes
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the specificity and sensitivity for each classifier beside the area of the receiver operating
characteristic curve (AROC).

Figure 17. The AROC with PCA-reduced features for grade grading.

4.2. Automatic Feature Extraction

One thousand features were automatically extracted using the ResNet101 pretrained
model; applying different dimensionality reduction techniques reduced the number of
features from 1000 to 30 and 50 features. Figures 18–22 describe the confusion matrix for all
classification problems using 1000 automatically extracted features. Figure 18 shows the
confusion matrix for the first model, and a maximum accuracy of 88.3% was reached for
discriminating flaky and point-like ulcers. Figure 19 shows the confusion matrix for the
second model, and a maximum accuracy of 93.9% was reached for distinguishing between
flaky and point-flaky mixed ulcers. For type grading, the model managed to discriminate
between all five types with a 72.2% accuracy as shown in Figure 21. Furthermore, the
overall accuracy for whole cascading system for three classes is presented in Figure 19; it
reaches to 90.2%. For grade grading, the model succeeded in distinguishing between all
four grades with an 83.9% accuracy as shown in Figure 22. Tables 7 and 8 summarize the
results for all classification problems using 30 and 50 features, respectively.

Figure 18. The confusion matrix for Model 1 using 1000 deep learning features.
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Figure 19. The confusion matrix for Model 2 using 1000 deep learning features.

Figure 20. The confusion matrix for whole cascading system using 1000 deep learning features.

Figure 21. The confusion matrix with for type grading using 1000 deep learning features.
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Figure 22. The confusion matrix with for grade grading using 1000 deep learning features.

Table 7. Testing accuracy results using 30 most significant automatic features.

Image
Categorization

General Pattern Type Grading Grade Grading
Model 1 Model 2

1000 features 88.3% 93.9% 72.2% 83.9%
PCA 72.3% 80.7% 60.3% 74.0%
ECFS 69.1% 75.1% 61.7% 72.3%
ILFS 69.5% 79.3% 55.2% 70.6%

Fisher 65.2% 72.9% 58.7% 65.2%
PCA, principal component analysis; ECFS, ensemble-based classifier feature selection; ILFS, infinite latent
feature selection.

Table 8. Testing accuracy results using 50 most significant automatic features.

Image
Categorization

General Pattern Type Grading Grade Grading
Model 1 Model 2

1000 features 88.3% 93.9% 72.2% 83.9%
PCA 86.4% 91.2% 72.2% 81.2%
ECFS 75.9% 86.5% 68.4% 80.0%
ILFS 70.6% 79.3% 66.1% 78.5%

Fisher 74.6% 84.2% 65.7% 75.6%
PCA, principal component analysis; ECFS, ensemble-based classifier feature selection; ILFS, infinite latent
feature selection.

The results in Tables 7 and 8 show that 1000 automatically extracted features seem to
generate better class separability than 30 or 50 selected features. Tables 7 and 8 also show
that Model 1 using 1000 features succeeded in discriminating between flaky and point-like
ulcers with 88.3% accuracy, while Figure 18 shows the corresponding confusion matrix.
Model 2 using 1000 features distinguished between point-flaky mixed and flaky with an
accuracy of 93.9%, and Figure 19 shows the corresponding confusion matrix. On the other
hand, the overall accuracy of the cascading system reaches a maximum accuracy of 90.2%,
and Figure 20 describes its result.

Figures 23–27 show the AROC curve for each of the above confusion matrix.
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Figure 23. The AROC for Model 1 using 1000 deep learning features.

Figure 24. The AROC for Model 2 using 1000 deep learning features.
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Figure 25. The AROC for cascading model using 1000 deep learning features.

Figure 26. The AROC for type grading using 1000 deep learning features.
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Figure 27. The AROC for grade grading using 1000 deep learning features.

5. Discussion

Table 6 shows that the results of the 30 most significant hand-crafted features (with
selection) are at least 5% better than those attained using 60 features (without selection).
Selecting features by hand extracts both related and unrelated attributes, while applying
various reduction techniques extracts the most significant features and eliminates noisy
unrelated features. The best results were obtained using the ECFS reduction technique,
but for the grade grading problem, PCA outperformed ECFS. One thousand features were
automatically extracted using the ResNet101 deep learning model, and the most significant
30 and 50 features were obtained utilizing different dimensionality reduction techniques.
It is clear from Tables 7 and 8 that the results attained using the 50 most significant features
are better than those obtained utilizing 30 most important features. In addition, the results
attained using 1000 features (without selection) are better than those obtained utilizing
feature reduction (30 and 50). Training using a higher number of features (nearly 200x)
includes more signal content and results in improved performance. Utilizing the 50 most
important features, PCA was the best reduction technique, and it gave comparable (nearly
2% off) performance to those attained using all 1000 features.

In discriminating between various classes of type grading, the performance of the
most significant 30 automated features are better than the 30 most important features by
manual feature extraction. This is clear in Figure 28, where the PCA gives the highest
accuracy, reaching 72%. However, the behavior of hand-crafted features for the 50 most
significant features is better than deep learning descriptors for distinguishing different
severity grading classes. The best feature reduction techniques in this scenario are achieved
by PCA, as is clear in Figure 29.
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Figure 28. Accuracy for the 30 most significant features for type grading in both automated and
hand-crafted features.

Figure 29. Accuracy for the 30 most significant features for severity grading in both automated and
hand-crafted features.

Tables 6–8 show that the results attained using features extracted automatically are
better than those extracted manually for type/grade grading classification problems. Those
are complex problems that utilizes multiclass classifiers; the higher the number of classes
to categorize, the higher the number of features needed to successfully perform the task,
which is also clear in Figures 30 and 31. Tables 6–8 also show that extracting features
manually is better than extracting them automatically for binary classification problems
(Models 1 and 2). Those are simple problems that utilize cascaded binary classifiers; the
lower the number of classes, the lower the number of features needed to successfully
perform the task. In addition, features extracted automatically are higher in number, and
they add more noise and might cause overfitting. In general, those mixed results can be
explained by the fact that features extracted automatically are higher in quantity but not
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necessarily better in quality, while not all automatically extracted features correlate with
different class categories.

Figure 30. Accuracy for the 30 most significant features for severity grading and type grading
employing automatic features.

Figure 31. Accuracy for the 50 most significant features for severity grading and type grading
employing automatic features.

Differences and commonalities between this study and other studies are that this
is the first report—based on our knowledge—to explore the classification of the corneal
ulcers in both the grade grading and type grading categories. Although the poor quality
of the images used in this study resembles real-life challenges, building a robust model
needs larger, more diverse, and higher-quality images, and this is a limitation of this study.
Moreover, treatment for corneal ulcers varies depending on the cause of ulcer. Corneal
ulcers can occur due to bacterial infection, viral infection, amoeba infection, or inflammatory
response. As a result, differential diagnosis is very important, for the treatment is different.
This research lacked consideration of this aspect, and this is considered another limitation.
Finally, the presented results can help build a robust and reliable deep learning-based
model that can assist doctors in rural areas or primary care units in performing clinical
diagnosis of keratitis early, correctly, and automatically.

6. Conclusions

Early and timely detection of corneal ulcers is crucial for preventing the progression of
the infection. This study presented an automated classification method for distinguishing
different corneal ulcer patterns, including general pattern, specific pattern (type grading),
and severity degree (grade grading). Data were augmented, and several image processing
techniques were applied, including morphological opening, adjusting, and histogram
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equalization to improve the performance of the suggested approach. The study also
attempted to obtain a comparable performance using a smaller number of features by
applying various feature selection methods, such as ILFS, ECFS, Fisher, and PCA. The
proposed system used the SVM classifier to discriminate between different ulcer patterns.

While classifying type grading, the automated features performance was better than
that of the hand-crafted approach using the 30 most important features, whereas in classify-
ing grade grading, the results were mixed, and there was no significant difference between
automatic and manual feature extraction using the 30 most relevant features. General
grading using the cascaded system achieved the best results either using automated fea-
tures or manual features. We attribute this result to the use of cascading SVM, which is
responsible for finding the most significant features in each stage and obtaining higher
accuracy and higher sensitivity for all three classes. The performance of the deep learning
model in classifying severity grading was better than classifying type grading using various
reduction techniques. This result holds regardless of the number of features used, whether
50 or 30 features.
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