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Abstract: Plant association with microorganisms elicits dramatic effects on the local phytobiome and
often causes systemic and transgenerational modulation on plant immunity against insect pests and
microbial pathogens. Previously, we introduced the concept of the plant social networking system
(pSNS) to highlight the active involvement of plants in the recruitment of potentially beneficial mi-
crobiota upon exposure to insects and pathogens. Microbial association stimulates the physiological
responses of plants and induces the development of their immune mechanisms while interacting
with multiple enemies. Thus, beneficial microbes serve as important mediators of interactions among
multiple members of the multitrophic, microscopic and macroscopic communities. In this review, we
classify the steps of pSNS such as elicitation, signaling, secreting root exudates, and plant protection;
summarize, with evidence, how plants and beneficial microbes communicate with each other; and
also discuss how the molecular mechanisms underlying this communication are induced in plants
exposed to natural enemies. Collectively, the pSNS modulates robustness of plant physiology and
immunity and promotes survival potential by helping plants to overcome the environmental and
biological challenges.

Keywords: beneficial microbiota; communication; multitrophic interaction; plant growth-promoting
rhizobacteria; plant social networking system

1. Introduction

Phytobiome refers to the ecosystem within and surrounding a plant, which comprises
diverse organisms including viruses, bacteria, archaea, fungi, oomycetes, other plants and
even animals. Since their first appearance in the ecosystem, plants have evolved alongside
a variety of beneficial organisms, pathogens and insects. In other words, being sessile
organisms, plants have evolved strategies to survive under biotic- and abiotic stresses [1].
The physiology of aboveground plant organs such as leaf and stem differs from that of
belowground structures such as the root system, and the difference between two types of
plant structures facilitates interaction and communication between biotic stresses [2]. In
response to external stimuli such as pathogen and insect attacks, plants have developed a
systemic translocational signaling system, in addition to local modulation on immunity.
Depending on the types of interactions between biotic communities, the biochemical
and physiological fitness of plants has been modified synergistically, antagonistically or
neutrally [1].

Interaction with a certain biotic stimulus stimulates the development of defense
strategies at a local (infection site) area in plants [3]. Subsequently, defense signals derived
from a local region of infected plants are transferred to systemic sites [3]. In addition to
the intracellular signals and molecules, the plant-derived signals and molecules act as
inter-compartment or inter-plant regulators [4]. To compromise the stress factors, plants
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orchestrate sophisticated machineries to cooperate with the soil microbiome [5–7]. In the
rhizosphere, a number of microbes interact with plant roots, which can stimulate plant
growth and immunity but also acquire some key nutrients in return [5,8]. Thus, plants and
mutualistic microbes communicate with each other, and beneficial interactions between
these partners can facilitate defense against invading enemies [9,10].

Multitrophic interactions between plants and microbes (i.e., detrimental insect–plant
interactions and beneficial microbe–plant interactions) can be utilized to attenuate plant dis-
ease occurrence. For instance, in pepper (Capsicum annuum), foliar aphid feeding recruited
rhizosphere bacteria and stimulated plant immunity against the leaf spot pathogen, Xan-
thomonas axonopodis [11]. In tobacco (Nicotiana benthamiana), whitefly infestation modulated
plant immunity to produce endogenous salicylic acid (SA), resulting in the attenuation of
Agrobacterium tumefaciens-induced gall formation [12]. More recently, activation of plant
immunity in tomato (Solanum lycopersicum) by four Gram-positive bacteria controlled
the incidence of bacterial wilt disease caused by Ralstonia solanacearum [13]. In addition,
root-associated bacteria triggered the release of plant volatile organic compounds (VOCs),
referred to as microbe-induced plant volatiles, and affected the rhizosphere microbiota of
neighboring plants [14]. These results indicate that plants interact with beneficial microbes
under certain stress conditions to control the response to third-party organisms. In this
review, we describe the steps that constitute the plant social networking system (pSNS),
show how plants and beneficial microbes communicate with each other, and highlight the
strategies and underlying mechanisms of the pSNS. With field applications in mind, we
also summarize the technological limitations of pSNS and how these could be surmounted.

2. The Plant SNS Hypothesis

Recently, the role of plant-associated microbial community has been reviewed
in plant–plant communications as wired- and wireless components [15]. In current
review, we have focused on the role of plant in modulating SNS against multitrophic
stimuli. Therefore, the definition of plant SNS should be clarified first as compared
to indirect defense and induced systemic resistance (ISR). Plant defense mechanisms
can be classified into two categories: preformed defense and induced defense [16].
Induced defense is normally when they have turned off their defensive strategies to
regulate the fitness cost of plants under natural conditions, but plant immunity can
be induced by the perception of invading pathogens and insects [16]. Subsequently,
during plant–insect interaction, plant defense mechanisms can be similarly divided
into two categories: direct defense and indirect defense. In direct defense, plants pro-
duce toxic compounds to directly control the population of invading insects. However,
in indirect defense, plants attract carnivores that feed on the invading insects, thus
indirectly controlling the insect population (Figure 1A [17,18]). The feeding of insects
on plant leaves activates the indirect defense of plants, resulting in the activation of
elicitors (fatty-acid conjugates, enzymes, cell wall fragments, peptides and esters),
plant hormones (SA, jasmonic acid [JA] and ethylene [ET]) and plant volatiles (ter-
penes, aldehydes, ketones, esters, alcohols and nitrogen compounds) (Figure 1A [19]).
These serial events attract natural enemies (predators, parasitic wasps and omnivores),
which suppress the insect population.

Induced systemic resistance (ISR) is a form of induced plant defense initiated by bene-
ficial microbes (endophytes, mycorrhizal fungi and plant growth-promoting rhizobacteria)
against invading pathogens and insects (Figure 1B). The majority of beneficial microbes are
localized in the plant rhizosphere, and several of these microbes promote plant growth and
stimulate biotic and abiotic stress resistance [20]. The beneficial microbe-triggered ISR in
plants generally suppresses a variety of pathogens and insects [21–23].

The induced and indirect defense mechanisms have been thoroughly investigated in
plants, both ecologically and biochemically. The most well-established area of research
is the role of phytohormones in plant immune signaling. SA, JA and ET function as the
main regulators of plant defense responses against pathogens and insects. SA-dependent
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pathways are activated by biotrophic pathogens and sucking insects, whereas JA- and ET-
dependent pathways are induced by necrotrophic pathogens and chewing insects [24,25].
In addition, JA- and ET-related pathways show extensive crosstalk during plant defense
responses [24]. In the ISR pathway, while increasing evidence suggests that JA and ET play
a pivotal role in suppressing diseases and insects [23,26], more recent studies show that
antagonism between SA and JA/ET has been broken down in some cases [27,28].
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Figure 1. Schematic representation of the plant defense response. (A) Indirect defense. Whitefly infestation elicits the
plant defense response, which indirectly suppresses the performance of insects attracted by natural volatiles. (B) Induced
systemic resistance (ISR). Beneficial microbes in the rhizosphere induce systemic signals and systemic-acquired resistance
against pathogens and insects. (C) Plant social networking system (pSNS). Insect infestation and pathogen infection of
aboveground tissues induces the secretion of root exudates into the rhizosphere, which leads to the recruitment of beneficial
microbes, thus activating systemic resistance against pathogens and insects.

Here, we propose the plant SNS hypothesis, which is unlike plant indirect defense
and ISR (Figure 1C). When plants are attacked by insects or infected by pathogens, certain
signals or molecules released by aboveground tissues are transmitted to the rhizosphere,
resulting in recruitment of beneficial microbes. These microbes then activate plant defense
responses against spatially separated and systemically localized pathogens and insects. The
major difference of plant SNS compared with ISR is plant self-modulation against enemy’s
attacks through recruiting beneficial microbe-mediated systemic signaling. Indirect defense
is not stimulated against plant microbial pathogens, but it can be operated against insect
pests. Hereafter, we focus on how plants build the SNS in a step-by-step manner, including
the elicitation in a local area, activation and transduction of systemic signals, secretion
of bioactive root exudates and chemicals into the rhizosphere, the establishment of a
favorable environment (by recruiting beneficial microbes and avoiding plant pathogens),
and molecular mechanisms underlying the plant SNS.

3. Building Blocks and Molecular Mechanisms of the Plant SNS

A stepwise procedure for building the plant SNS (Figure 2) is described below. Here,
we describe the steps that constitute the plant social networking system (pSNS); summarize,
with evidence, how plants and beneficial microbes communicate with each other in each
step; and finally, highlight the strategies and underlying mechanisms of the pSNS.
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3.1. Elicitation: Plant Incuction in a Local Area by Insect and Pathogen Attacks

Plants are constantly exposed to diverse pathogens and insects, and unlike animals,
plants have developed effective immune strategies to defend themselves against these
biotic stressors by recognizing common and species-specific determinants on pathogens
and insects. Interestingly, plants have developed an innate immune response that re-
sembles the animal immune system. Plants can detect common foreign signals such as
pathogen/microbe/herbivore-associated molecular patterns (PAMPs/MAMPs/HAMPs)
via pattern-recognizing receptors (PRRs) [29,30]. The well-characterized plant PAMPs
include flg22 (the N-terminus of bacterial flagellin), elf18/elf26 (the N-terminus of bacterial
elongation factor Tu), peptidoglycans (a component of bacterial cell walls), and chitin (a
component of fungal cell walls) [29–33]. In addition, plants can also perceive herbivore-
derived precursors to form fatty acid–amino acid conjugates as HAMPs including volicitin,
inceptins, caeliferin and bruchin [34–37].

The perception of MAMPs and HAMPs by plant cells induces an influx of extracellular
calcium ions (Ca2+), production of reactive oxygen species (ROS) [38,39] and activation
of mitogen-activated protein kinase (MAPK) cascades that play an important role in the
regulation of downstream signaling [40–42]. Phytohormone signaling pathways represent
a critical component of plant defense responses against pathogens and insects, as discussed
above. Among various plant hormones, SA, JA and ET are the key regulators of plant
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defense [24,25]. These plant hormones are also utilized as signaling molecules to activate
plant systemic immune responses.

3.2. Signaling: Activation and Transduction of Systemic Signaling Molecules

After recognizing a microbial pathogen or an insect pest’s determinants, plants gen-
erate signal molecules that translocate from the attack site (local site) to systemic organs.
Here we summarize the signaling molecules that play an important role in this system. The
signaling molecules include SA, MeSA, JA, JA derivatives, volatile organic compounds,
and lipid-derived molecules.

3.2.1. SA and Methyl Salicylate

SA and its volatile derivative, methyl salicylate (MeSA), are strong systemic signal
candidates. The first reports strongly support that SA is normally required for activating
systemic resistance in tobacco and cucumber (Cucumis sativus) [43–45]. Because the first
several reports supported the potential role of SA as a systemic signal, subsequent studies
revealed its role in systemic signal transduction using mutant lines [46–51]. Further
investigation showed that glycosylated SA compounds, such as SA-glycosyd (SAG), and
MeSA are accumulated by plant cells upon pathogen infection [52–54]. An early study
showed that MeSA is transmitted from Tobacco mosaic virus (TMV)-infected donor (emitter)
plants to healthy (receiver) plants, resulting in a 30% decrease in TMV lesion size [55].
Several grafting experiments revealed that SA is converted into MeSA in infected leaves,
which is subsequently translocated to distal systemic leaves, where it is converted back to
SA to activate systemic resistance against biotrophic pathogens and sucking insects [56–61].
SA-dependent systemic signaling is mainly activated by sucking (phloem-feeding) aphids
and spider mites [62].

3.2.2. JA and Its Derivatives

Unlike SA, JA and its derivatives, methyl jasmonate (MeJA) and jasmonoyl isoleucine
(JA-Ile), function as signaling molecules in plant defense against necrotrophic pathogens
and chewing insects [24,63,64]. JA is synthesized in vascular bundles, which also host
prosystemin biosynthesis, and JA, systemin and prosystemin are related to each other in a
double feedback manner [65,66]. Upon the attack of insect herbivores, polyunsaturated
fatty acids (PUFAs) are released from the plant membrane lipids by lipases such as defective
in anther dehiscence 1 (DAD1) and dongle (DGL), while PUFAs such as linolenic acid
(C18:3) and linoleic acid (C18:2) are oxygenated by lipoxygenases (LOXs), which catalyze
the synthesis of a large variety of oxylipins, including JA and green leafy volatiles (GLVs),
through 6–7 independent pathways [67–70]. In addition to JA, conjugates of JA also act
as systemic signals [71]. For example, JA-Ile acts as an active signal for the regulation of
defense responses rather than JA itself [72,73], and MeJA is critically involved in diverse
interactions as a key signal [74].

3.2.3. Gaseous Signals VOCs

Besides the volatile forms of SA and JA, other VOCs are also released by plants in
response to attack by a variety of insect herbivores [75–78]. More than 1000 VOCs have
been identified in plant tissues including flowers, and vegetative organs [79,80]. Plant-
derived VOCs are the main signals involved in multitrophic interactions. Among these
VOCs, the main volatiles (C6-alcohols and C6-aldehydes) are derived from GLVs by the
action of hydroperoxide lyase (HPL) through the octadecanoic-derived LOX pathway, and
some of the GLVs are required for direct defense, which explains why the deletion of the
HPL gene in transgenic potato (Solanum tuberosum) decreased the resistance to aphids [81].
Cis-3-hexen-1-ol is emitted upon herbivore attack to attract a generalist predator under field
conditions [76]. Trans-2-hexenal is also released upon herbivore-induced wounding, and
its emission influences the accumulation of sesquiterpenes in wounded Arabidopsis thaliana
and cotton (Gossypium hirsutum) plants, suggesting that GLVs are involved in intra- and
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inter-plant defense signaling pathways in response to diverse insects [82,83]. VOCs emitted
upon insect infestation are referred to as herbivore-induced plant volatiles (HIPVs). Other
groups of VOCs, including monoterpenes (limonene, linalool and ocimene), sesquiterpenes
(bergamotene, carphyllene and farnesene), MeSA and MeJA, are released from the wound
site within 24 h of herbivore attack [79,80,84,85].

3.2.4. Lipid-Derived Signals

Unlike the plant VOCs induced by herbivore attack, plants generate lipid-based signal
molecules that translocate from one tissue to another. The defective in induced resistance 1
(DIR1) gene encodes a 7 kDa lipid transfer protein, which is localized in petiole exudates of
pathogen-infected leaves either as an oligomer or in a complex with other proteins [86,87].
DIR1 interacts with other lipid-derived signaling compounds such as azelaic acid (AzA),
dehydroabietic acid (DA), glycerol-3-phosphate (G3P) and MeSA [86,88–90].

G3P functions as an important signaling molecule in systemic resistance, and localizes
to the cytosol and chloroplast. Several mutant-based studies have proven the function of
G3P as a systemic signal. In Arabidopsis, disruption of the suppressor of fatty acid deficiency
1 (SFD1) gene, which encodes dihydroxy acetone phosphate (DHAP), elucidated the role of
G3P as a systemic signal [91]. The sfd1 mutant showed low levels of SA accumulation and
pathogenesis-related 1 (PR1) expression in distal tissues [91,92]. In other studies, mutation
of SFD2, fatty acid desaturase 7 (FAD7), monogalactosyl synthase 1 (MGD1) and glycerol
insensitive 1/nonhost 1 (GLI1/NHO1) abolished systemic responses [88,93].

AzA, a nine-carbon dicarboxylic acid, is the final product of lipid peroxidation under
biotic stress [94]. The notion that AzA functions as a signaling molecule in systemic
resistance was first verified by Jung and colleagues [89]; the authors showed that AzA
acts as a priming molecule, and SA levels are elevated in distal leaves after infection by
Pseudomonas syringae pv. maculicola strain PmaDG3 or upon the application of exogenous
AzA, loss of systemic resistance of AZI1 induced by AzA is observed by gene disruption
analysis [89]. In contrast to the results of Jung and colleagues [89], other studies could
not elucidate the priming effect of AzA on SA accumulation in systemic leaves [95]. The
possible routes of AzA biosynthesis in plants under biotic stress conditions are complex and
controversial, indicating that the bacteria-derived nine-carbon product (i.e., AzA) of plants
is potentially synthesized by non-enzymatic pathways, although LOXs are mainly required
for the accumulation of lipid derivatives [94]. Recent studies show that galactolipids
produce AzA via the ROS-mediated pathway [94,96]. The aboveground elicitation by
pathogen and insect attacks leads to the activation of plant signaling transduction pathways,
resulting in the secretion of root exudates that modulate rhizosphere microbiota and
plant immunity.

3.3. Secreting Root Exudates: Plant Secretion of Bioactive Root Exudates and Chemicals into
the Rhizosphere

The chemical signals of plants infected with pathogens and insects can be translo-
cated to the root and affect compositions and contents of root exudates in the rhizosphere.
The concept of plant–microbe interactions in the rhizosphere is not novel; however, the
exact roles and composition of plant-derived root exudates remain unclear. Rhizodeposits
released into the rhizosphere by plant roots include root exudates, mucilage, lysates re-
leased from wound sites and senescing cells that contain mono-, polysaccharides, organic
acids, phenolic compounds, amino acids, and proteins [97,98]. Root exudates generated
from the meristematic zone of root tips are the major components of rhizodeposits, and
contain sugars, amino acids, organic acids, phenolics, alcohols, polypeptides and pro-
teins [97,99]. Chemical compounds in root exudates play a pivotal role in acquiring mineral
nutrients, attracting beneficial microbes and suppressing deleterious pathogens in the rhi-
zosphere [5,100–103]. Here, we highlight the diverse compounds in root exudates released
in response to nutrient limitations, pathogen infection and insect infestation, thus attracting
microbes and other biotic stimuli.



Int. J. Mol. Sci. 2021, 22, 3319 7 of 20

3.3.1. Secretion of Strigolactones (SLs), Flavonoids and Coumarins under Nutrient
Limitation Conditions

Under nutrient-deficient conditions, plants secrete large amounts of SLs, flavonoids
and coumarins into the rhizosphere. The recently discovered plant hormone, SL, is syn-
thesized from a carotenoid precursor and is secreted by plants under phosphate-deficient
conditions to recruit arbuscular mycorrhizal (AM) fungi, resulting in phosphate up-
take [104,105]. SLs affect the interactions between the host plant and AM fungi; abolishing
SL biosynthesis decreases the colonization efficiency of Gigaspora rosea [106]. Flavonoids
are a group of secondary metabolites secreted into the rhizosphere under phosphate- and
nitrogen-limiting conditions. Flavonoids participate in the interaction between legumes
and Rhizobium spp. and between actinorhizal plants and Frankia spp.; plants utilize nitro-
gen fixed by the bacteria, and in turn bacteria obtain carbon sources from the plant [107].
Coumarins are low-molecular-weight (LMW) secondary metabolites similar to flavonoids
and are involved in plant–pathogen interactions as antimicrobial compounds [108]. How-
ever, recent studies revealed the function of coumarins as components of root exudates
released by plants under nutrient-deficient conditions. Arabidopsis roots secrete diverse
coumarins, including scopoletin, esculetin, fraxetin and sideretin, under iron limitation
conditions. Additionally, genetic analyses revealed that Arabidopsis mutant lines grown
in iron-deficient soils lack the ability to secrete or synthesize coumarins [109–112]. Roots
of the annual grass Avena barbata secrete tryptophan and sucrose into the rhizosphere,
and the tryptophan residue located close to the lateral roots potentially interacts with
indole-3-acetic acid (IAA) to modulate lateral root initiation [113].

3.3.2. Secretion of Malic Acid and Phenolic/Organic Acid Compounds upon
Pathogen Infection

The infection of Arabidopsis leaves by P. syringae pv. tomato (Pto) DC3000 facilitates
the secretion of malic acid into the rhizosphere, which attracts Bacillus subtilis FB17 [5]. In
addition, Pto infection increases the secretion of long-chain organic acids (pentadecanoic
acid, hexadecanoic acid, palmitoleic acid, octadecanoic acid and arachidic acid) and amino
acids (isoleucine, leucine, methionine, proline, tryptophan and ornithine) [114]. Infection
by soil-borne pathogens modifies the root exudates of host plants and alters the microbial
composition of the rhizosphere [20,115]. Infection of soybean (Glycine max) roots by Pythium
ultimum increased the concentrations of phenolic and organic acids such as vanillic acid,
p-coumaric acid and fumaric acid by 4-fold [116]. Additionally, antimicrobial compounds
such as caffeic acid ester and rosmarinic acid are released by sweet basil (Ocimum basilicum)
in response to infection by Pythium spp. [117]. Fusarium spp. induce the secretion of
antifungal phenolics from barley (Hordeum vulgare) roots [118]. Infection of tobacco roots
by the root-knot nematode Meloidogyne incognita leads to the accumulation of the defense-
related compound nicotine in aboveground tissues, which is effectively utilized to attenuate
foliar herbivores [119]. In potato, the powdery scab pathogen Spongospora subterranea
facilitates the secretion of root exudates containing 24 different kinds of LMW compounds
such as amino acids, sugars and organic acids, among others [120]. In tobacco, infection
by bacterial wilt and black shank pathogens increases the secretion of amines, alcohols,
lipids, sugars and esters in root exudates, and these compounds modulate the pathogen-
antagonizing microbes [121].

3.3.3. Secretion of Benzoxazinoids and SA upon Insect Infestation

Insect infestation of aboveground and belowground plant tissues stimulates the secre-
tion of root exudates into the rhizosphere to recruit microbes or suppress disease. Maize
(Zea mays) roots secrete benzoxazinoids (BXs) into the rhizosphere [122,123]. However, the
role of BXs in the context of exudates and their effect on soil microbial composition has not
yet been investigated. Infestation of maize leaves by Spodoptera frugiperda induces the secre-
tion of BXs into the rhizosphere, which affects the soil microbiota [124]. Insect infestation
also leads to the production of certain volatiles in root exudates. Western corn rootworm
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feeding induces the accumulation of (E)-β-caryophyllene in belowground tissues, which
attracts entomopathogenic nematodes [125]. In Citrus spp., four terpene volatiles were
detected in root exudates after infestation by root weevil (Diaprepes abbreviatus) [126].

Whitefly infestation of aboveground tissues elicits the SA-dependent pathway in
belowground tissues to suppress the soil-borne pathogen R. solanacearum in pepper [127]
and A. tumefaciens-induced crown gall formation in tobacco [12]. Similarly, the attack of
aboveground tissues by aphids modulates defense responses in belowground tissues via
SA- and JA-dependent pathways to control the population of foliar bacterial pathogens and
soil-borne pathogens [11]. Moreover, in potato, aphid (Myzus persicae) infestation of above-
ground tissues induces the secretion of root exudates into the rhizosphere, showing that
root exudates from aphid feeding on aboveground into the belowground and Neprilysin-1
of cyst nematode (Globodera pallida) are highly linked [128]. Moth-induced defoliation of
the aboveground plant parts of the subarctic mountain birch (Betula pubescens) results in
the release of carbon-rich compounds into the rhizosphere to modulate ectomycorrhizal
fungi [129].

3.4. Plant Protection

Since root exudates containing diverse compounds and molecules are secreted into
the rhizosphere, they can potentially generate signals that increase plant protection. In this
part, we introduce three scenarios: recruitment of beneficial microbes by root exudates,
antibiosis and antimicrobial compounds, and induced systemic resistance (ISR).

3.4.1. Recruitment of Beneficial Microbes by Root Exudates

One of the main functions of plant root exudates is the recruitment of beneficial
microbes, which will protect plants under biotic and abiotic stress conditions. The com-
position of root exudates generally varies with soil nutrient status, disease incidence and
abiotic stresses [130], and affects the soil microbial composition [99,131]. Studies show that
biotic stresses can cause the secretion of chemicals into root exudates, thus attracting other
microbes. For example, Fusarium oxysporum-infected tomato plants recruit Proteobacteria,
Actinobacteria and Firmicutes [132], and Botrytis cinerea infection induces the accumula-
tion of Trichoderma harzianum in the rhizosphere of tomato and cucumber plants [133].
In Arabidopsis, infection of leaves by the downy mildew pathogen Hyaloperonospora ara-
bidopsidis leads to the recruitment of beneficial microbes such as genus of Xanthomonas,
Stenotrophomonas, and Microbacterium [5,134–136], while infection by Pto DC3000 facilitates
the attraction of B. subtilis FB17 [5,136] and leads to the assembly of a beneficial rhizosphere
microbiome [114]. In sugar beet (Beta vulgaris), infection by Rhizoctonia solani alters the
microbiome composition and attracts bacteria belonging to the families Oxalobacteraceae,
Burkholderiaceae, Sphingobacteriaceae and Sphigomonadaceae [137].

In addition to pathogen infection, insect infestation has also been shown to attract
beneficial microbes. In pepper, aboveground aphid feeding recruits beneficial microbes
in the rhizosphere; thus, the population density of Bacillus subtilis GB03 was significantly
higher in aphid feeding plants than in control plants, but the population density of Pseu-
domonas protegens Pf-5 was not affected by aphid feeding [11]. Similarly, whitefly infestation
of pepper plants stimulates the recruitment of Gram-positive bacteria and fungi in the
rhizosphere [127]. In maize, chewing by S. frugiperda alters the soil microbiota [124]. In
Brassica napus, infestation of belowground tissues by cabbage root fly (Delia radicum) at-
tracts four bacterial genera (Bacillus, Paenibacillus, Psedomonas and Stenotrophomonas) in the
rhizosphere [138]. Root herbivory of bentgrass (Agrostis spp.) and clover (Trifolium spp.)
plants by Tipula paludosa can utilize Pseudomonas compared with non-infested plants [139].

3.4.2. Antibiosis and Antimicrobial Compounds

Beneficial microbes recruited by the secretion of plant root exudates produce antibi-
otics, which can be utilized as biological control agents against harmful pathogens via
a phenomenon known as antibiosis [140]. The major antibiotics produced by bacteria
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include hydrogen cyanide (HCN) [141], phenazine-1-carboxylic acid [142], phenazine-1-
carboxyamide [142], 2,4-diacetyl phloroglucinol (Phl) [143], pyoluteorin [144] and pyrrol-
nitrin [145]. Phenazine-1-carboxylic acid produced by Pseudomonas fluorescens 2–79 in
the wheat rhizosphere attenuates the disease-causing fungus Gaeumannomyces graminis
var. tritici, and mutant analysis of phenazine-1-carboxylic acid showed that its mutation
partially contributes to the alleviation of disease symptoms [146]. HCN, a volatile antibiotic
produced by P. fluorescens CHA0, negatively regulates the fungal pathogen of black root
rot, Thielaviopsis basicola, in tobacco [147].

In addition, lipopeptides such as fengycin, surfactin and iturin are LMW compounds
produced by B. subtilis strains. These lipopeptides can directly suppress pathogenic fungi
under pre- and post-harvest conditions [148]. Iturin A derived from B. subtilis strains
PCL1608 and PCL1612 directly controls two fungal pathogens, Fusarium oxysporum and
Rosellinia necatrix [149]. Surfactin produced by B. subtilis strain 6051 acts as a biocontrol
agent in response to pathogenic bacteria [150].

Moreover, some studies have shown that root exudates secreted by plants exposed to
pathogens exhibit direct antimicrobial activity. Two types of LMW antimicrobial com-
pounds, phytoanticipins and phytoalexins, are involved in the direct suppression of
pathogens [151,152]. The distinction between these two types of compounds is, however,
difficult because pathogen infections sometimes induce the accumulation of phytoalexins
as well as phytoanticipins [151]. Root exudates of barley plants infected by Fusarium gramin-
earum contain aromatic compounds including five phenylpropanoids, such as t-cinnamic
acid, p-coumaric acid, ferulic acid, syringic acid and vanillic acid, which exhibit direct
antifungal activity and inhibit the germination of F. graminearum macroconidia [153]. In
addition, scopoletin, a coumarin from plants, directly inhibits F. oxysporum and Verticillium
dahliae [154]. Root exudates of pine tree (Pinus resinosa) associated with the ectomycor-
rhizal fungus Paxillus involutus contain ethanol-soluble compounds that act as antifungal
molecules, suppressing the sporulation of F. oxysporum by 80% [155].

3.4.3. Induced Systemic Resistance

Beneficial microbes, including bacteria and fungi, can activate ISR, and its initia-
tion signals translocate the whole plant to suppress the invading pathogens/insects
(Figure 1B). Pseudomonas spp., Bacillus spp., Trichoderma spp. and mycorrhizae have
been shown to enhance plant immunity [3,156–158]. Here, we describe how bene-
ficial microbes induce the plant defense response against pathogens and insects in
aboveground tissues. This phenomenon was first proven by some research groups in
1991: in carnation (Dianthus caryophyllus) plants, colonization by P. fluorescens WCS417r
elicited resistance, which led to the accumulation of antimicrobial phytoalexins in
response to the aboveground infection by the fungal pathogen F. oxysporum [159]; in
cucumber plants, root colonization of Pseudomonas putida and Serratia marcescens 90–166
suppressed the symptoms of anthracnose caused by the fungal pathogen Colletotrichum
orbiculare [160,161]. These two strains also stimulate ISR against several pathogens
including F. oxysporum (Fusarium wilt pathogen; [162]), P. syringae (bacterial angu-
lar leaf spot pathogen; [163]), Cucumber mosaic cucumovirus (CMV) [164] and Erwinia
tracheiphila (cucurbit wilt pathogen; [165]). The activation of ISR by rhizobacteria
suppresses the disease caused by P. syringae pv. tabaci [166]. Some bacteria activate
ISR in tobacco to suppress blue mold disease caused by Peronospora tabacina [167].

In addition to activating ISR against pathogens, mycorrhizal fungi also exert nega-
tive effects of herbivore performance [168,169]. In tomato, B. subtilis BEB-DN promotes
the activation of ISR in aboveground tissues against Bemisia tabaci infestation [170], and
pre-inoculation of tomato plants with B. subtilis triggers resistance against Bemisia tabaci
under greenhouse conditions [171]. A field study showed that the population size of
cucumber beetles is significantly decreased by several bacteria such as P. putida strain 89B-
61, S. marcescens strain 90–166, Flavimonas oryzihabitans strain INR-5 and Bacillus pumilus
strain INR-7 [172]. However, insect performance is positively regulated by P. fluorescens
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WCS417r in Arabidopsis [173]. The molecular mechanism of ISR has been well established
in Arabidopsis, for example, using P. fluorescens WCS417r; systemic resistance triggered by
P. fluorescens WCS417r activates the deposition of callose and up-regulates the expression
of JA/ET-related genes, PDF1.2 and VSP2 [174–176]. These data suggest that JA- and
ET-mediated pathways promote ISR, especially in Arabidopsis and tomato [177,178]. On the
other hand, some studies rely on the activation of SA-dependent pathways triggered by
certain rhizobacteria [179,180]. The summary of plant SNS steps is listed in Table 1.

3.5. Molecular Mechanisms Underlying the Plant SNS

In this part, the molecular mechanisms of plant SNS have been introduced in sev-
eral recent studies. In pepper, whitefly infestation of aboveground plant parts elicits SA
and JA signaling both in above- and below-ground tissues, and alters the microbiome
assembly, leading to the attenuation of Xanthomonas axonopodis pv. vesicatoria (Xav) and
R. solanacearum SL1931 [127]. Interestingly, although insect feeding does not cause any
physiological changes in aboveground tissues, the root biomass is augmented, indicating
that certain molecules and/or signals in aboveground organs are potentially transferred
to belowground tissues [127]. Increase in root biomass has been consistently observed in
several studies [12,181,182].

Whitefly infestation stimulates SA-mediated signaling attracting beneficial microbes,
which would reduce the incidence of A. tumefaciens-induced gall formation in both above-
and belowground tissues. Song and colleagues monitored the level of endogenous SA in
whitefly-infested tobacco plants, and genetic analysis supported the phytohormone assays
showing that the SA biosynthetic gene, ICS1, plays an important role in the accumulation
of SA [12]. SA directly suppresses the expression of pathogenicity and virulence-related
genes in Agrobacterium. Moreover, the content of IAA in whitefly-infested tobacco plants
increased upon Agrobacterium inoculation [12], suggesting that IAA plays a pivotal role
in the positive regulation of root biomass. This result was supported by the induction of
auxin response genes and nutrient transporter genes in whitely infested roots [181].

Similar to whitefly infestation, aboveground aphid feeding elicits SA and JA signal-
ing pathways, recruits B. subtilis GB03 and prevents the soil-borne bacterial pathogen
R. solanacearum SL1931, thus priming pepper immunity in response to the pathogenic
bacterium Xav and a non-pathogenic bacterium X. axonopodis pv. glycines (Xag). In a recent
study, the severity level of disease caused by Xav was reduced by approximately 4-fold in
aphid feeding plants compared with control plants, and the hypersensitive response index
against Xag was significantly delayed in aphid feeding plants [11].

In addition to insect-induced plant SNS, pathogen-triggered plant SNS has been
recently investigated. B. cinerea, a foliar fungal pathogen, secretes peroxidases and oxylipins
as chemoattractant molecules into the roots of tomato plants for attracting Trichoderma
harzianum T22 and inhibiting F. oxysporum [133]. Inoculation of Arabidopsis leaves with the
pathogenic bacterium Pto DC3000 stimulates intra-plant long-distance signaling, activates
the malate transporter AtALMT1 and leads to the secretion of malic acid. Malic acid in root
exudates attracts B. subtilis FB17, which colonizes plant roots. These sequential signaling
events enhance ISR to modulate defense responses against Pto DC3000 [136].

In sugar beet, inoculation of roots with the fungal pathogen R. solani induces the
plants to respond to oxalic acid. Ribosomal RNA-based analyses revealed that R. solani
infection significantly increased the population densities of Oxalobacteraceae, Burkholderi-
aceae, Sphingobacteriaceae and Sphingomonadaceae in the rhizosphere, and up-regulated the
expression of genes involved in the regulation of bacterial stress responses, resulting in
protection against R. solani [137].
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Table 1. Summary of plant SNS steps described in this review.

Steps of Plant SNS Triggers/Determinants Effect/Mechanisms on Plant References

1. Elicitation
PAMPs/MAMPs/HAMPs: flg22, elf18/elf26, peptidoglycans, chitin,

volicitin, inceptins, caeliferin, and bruchin Plant pattern receptors perceive PAMPs/MAMPs/HAMPs [29–37]

Ca2+, ROS, MAP Kinase cascades, and phytohormones Regulation of plant defense responses [38–42]

2. Signaling

SA and Me-SA Activating systemic resistance against biotrophic pathogens and
sucking insects [43–45,56–62]

JA, MeJA, and JA-Ile Defensive signal against necrotrophic pathogens and chewing
insects [63,71–74]

Volatile organic compounds (VOCs): C6-alcohol, C6-aldehydes,
cis-3-hexen-1-ol trans-2-hexenal, monoterpenes (limonene, linalool,

ocimene), and sesquiterpenes (bergamotene, carphyllene and farnesene)
Released by plants in response to a variety of insects [75–78,81–85]

Lipid-derived signals: DIR1, G3P, and AzA Signaling molecules to activate systemic defense responses to
pathogens [86,87,89,91–95]

3. Secreting root
exudates

Stringolactones, flavonoids, and coumains Secretion under phosphate- and nitrogen-deficient conditions.
Effect on the interaction between plant and AM fungi [104–112]

Malic acid, phenolic compounds, and organic acids Secretion after infection with bacterial and fungal pathogens and
nematodes [5,114,116–121]

Benzoxazinoids and SA Secretion upon insect infestation [11,12,122–129]

4. Plant
protection

Beneficial microbes by root exudates Recruitment of beneficial microbes from plants infected with
pathogens and insects [5,11,114,124,127,132–139]

Antibiosis and antimicrobial compounds: hydrogen cyanide,
phenazine-1-carboxylic acid, phenazine-1-carboxyamide, 2,4-diacetyl

phloroglucinol, pyoluteorin, pyrrolnitrin, phenazine-1-carboxylic acid,
t-cinnamic acid, p-coumaric acid, ferulic acid, syringic acid, vanillic acid,

scopoletin, and ethanol-soluble compounds

Direct suppression of pathogens and insects by antibiotics,
lipopeptides, phenylpropanoids and ethanol-soluble compounds [140–155]

Microbes elicit induced systemic resistance Activation of broad spectrum plant immunity against pathogens
and insects [159–180]
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4. Technological Limitations, Fundamental Issues, and Potential
Troubleshooting Approaches

Although the proposed plant SNS represents a good strategy for stimulating plant
growth and immunity, certain technical and experimental limitations and unanswered
questions need to be addressed. Firstly, building multitrophic interactions is quite compli-
cated and therefore must be adapted for very narrow studies. To investigate the interactions
among host plants, microbes and pathogens/insects, a comprehensive analysis strategy
is needed. This requires multidisciplinary omics-based tools in diverse fields, such as
plant biochemistry, plant genetics, microbiology, genomics, transcriptomics, metabolomics,
metagenomics and bioinformatics, for the elucidation of specific compounds in root exu-
dates of pathogen-infected plants [114,124,183].

Secondly, to isolate and characterize composition of root exudates, artificially de-
signed experimental procedures based on well-established systems are needed under
laboratory and greenhouse conditions. For example, when whiteflies feed on plant leaves,
the collection of root exudates from the rhizosphere soil is not easy. To fill the gap in the
current situation, an in vitro bioassay has been alternatively invented [12,136]. Addition-
ally, root exudate profiles under each condition need to be evaluated for connecting the
plant phenotypes. Furthermore, after the isolation and characterization of compounds and
molecules in root exudates, the functions of these compounds must be validated under
natural conditions.

Thirdly, a single strain of a pathogen is sometimes not sufficient for manipulating
the potential pathogens and insects. Accumulating evidence suggests that a certain bacte-
rial strain, which has no effect on controlling plant defense responses, is effective when
inoculated with other bacteria [5,184]. This is supported by the finding that inoculation
of multiple strains is more effective in enhancing pathogen resistance than inoculation
of a single strain [5,185,186]. Moreover, a recent study showed that microbial synthetic
communities produce ISR-promoting substances that can be used as inoculants [186]. Di-
verse synthetic communities effectively suppress Fusarium wilt disease in tomato [186].
To extend the usage of synthetic community approaches, a variety of combinations of
microbes have been evaluated for resistance to pathogens and insects. The elucidation of
keystone taxa in complex synthetic microbial communities is very important for effective
control of pathogens and insects.

Finally, the proposed plant SNS is essential for conclusively understanding the benefi-
cial microbe-driven systemic resistance in plants exposed to pathogens and insects, as well
as for the isolation and characterization of specific genes, traits, compounds/chemicals and
microbial strains; however, whether studies on the plant SNS will generate reproducible
results under field conditions remains unclear. For example, a single bacterial strain as well
as synthetic communities of bacteria elicits negative effects on pathogen in vitro; however,
the results may be different under field conditions [187]. Therefore, the reproducibility
of plant SNS is a major issue for manipulating plant systemic defense responses against
pathogens and insects. This suggests that plant SNS-derived ISR should be sustainably
investigated and monitored in a variety of multitrophic interactions to improve agriculture
in the future.

5. Future Perspectives

Plants serve as the major food source for humans, and an increase in plant yield
is needed in the near future to meet the needs of the growing world population [188].
Plants are constantly exposed to diverse biotic and abiotic stresses, and therefore have
developed sophisticated strategies for overcoming unfavorable conditions. Although many
approaches have been used to maintain and produce more edible plants, increasing the
plant yield remains a challenge because of natural disasters and invasion by insects and
pathogens [189]. Approximately 10–16% of crop plants have been devastated by pathogens
and insects, and the usage of chemicals has also increased substantially in the last few
decades [190]. One of the proposed ecofriendly methods for increasing plant yield, despite
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the negative impact of pathogens and insects, is the plant SNS. To decrease the amount
of chemical agents needed to control pathogens and insects, it is important to isolate and
characterize certain genes, evaluate plant defense traits and beneficial microbe-related
traits, and investigate the microbial community in a variety of plant species. If the plant
SNS shows reproducible results in the field, this strategy will enhance our understanding
of the ecological, economical and industrial aspects of agriculture.
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