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Macrocyclic compounds have been studied extensively as the host molecules in
supramolecular chemistry. Their structural characteristics make macrocycles desirable
in the field of molecular recognition, which is the key to high catalytic efficiencies of natural
enzymes. Therefore, macrocycles are ideal building blocks for the design of bioinspired
catalysts. This mini review highlights recent advances ranging from single-molecule to
metal-organic framework materials, exhibiting multilevel macrocycle catalysts with unique
catalytic centers and substrate-binding affinities.
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INTRODUCTION

Natural enzymes are innately endowed with substrate-binding sites, which are essential for the
formation of enzyme-substrate complex and crossing the activation energy barrier of catalytic
reactions. These binding sites are generated by the elaborated folding of peptides into cavity-like
conformations that are spatially complementary to the substrates. From the perspective of
supramolecular chemistry, many synthetic macrocycles provide the structural feature of
substate-binding sites, which leads to a broad application of macrocyclic compounds in the
areas of ion recognition (Ding et al., 2017), gas storage (Zhou et al., 2020), stimuli-responsive
materials (Lei et al., 2020), drug delivery (Webber and Langer, 2017), and catalysis (Pairault et al.,
2020). Most of all, the nanosized confined spaces in the macrocycles are excellent platforms for
highly efficient and selective catalytic reactions. With the development of host-guest chemistry,
cyclodextrins (Breslow, 1982), calixarenes (Li et al., 2020a; Li et al., 2020b), pillararenes (Xiao et al.,
2018; Xiao et al., 2019), cucurbiturils (Wagner et al., 2020), and many other macrocyclic compounds
with enzyme-like substrate affinity and selectivity, have been studied for specific molecular
recognition, binding, and bioinspired catalysis. The rising hotspot of porphyrins-based polymers
and crystalline organic materials has produced tremendous achievements with high guest uptake
performance and structural stability (Farha et al., 2011). Inspired by the natural enzymes,
macrocycle-based systems, including single molecules (Dong et al., 2012), supramolecular
macrocycle systems (Lewandowski et al., 2013), covalently linked porphyrins (Cheung et al.,
2019), and metal-organic framework materials (Shultz et al., 2009), become an indispensable
role as bioinspired catalysts.

Except for the cavity-like structure, the convenient modification of macrocycles provides
unlimited possibilities to mimic the active sites of natural enzymes. The functionalization of
supramolecular macrocyclic structures brought dynamic control of the activity and
enantioselectivity into organic catalysis. For instance, the selenium-incorporated cyclodextrins
(CDs) were used as a glutathione peroxidase mimic for their antioxidant activity (Huang et al.,
2011). Moreover, macrocycles functionalized with transition metals showed specific activity for
asymmetric catalytic reactions (Li et al., 2015a; Li et al., 2015b). Various catalytic groups have
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expanded the application scope of macrocycles in both enzyme
catalysis and organocatalysis. Also, the supramolecular assembly
and covalent crosslinking of macrocycles further take advantage
of the cluster effect to enhance their structural stability, material
performance, and catalytic activity. This review covers the recent
work of macrocycle-based catalysts ranging from the synthetic
macrocycles, self-assembled supramolecular scaffolds, to
nanoscale materials. These works have facilitated both the
academic study and industrial applications of macrocyclic
catalysts.

SINGLE-MOLECULE MACROCYCLES AS
BIOINSPIRED CATALYSTS

Supramolecular chemistry has brought a great opportunity to the
development of macrocycle catalysis. To mimic the cavity of
natural enzymes, many single-molecule macrocycles, including
CDs, cyclophanes, cavitands, calixarenes have been developed
(Ikeda and Shinkai, 1997; Diederich et al., 2008; Brotin and
Dutasta, 2009; Hooley and Rebek, 2009; Klöck et al., 2009;
Schühle et al., 2011). These macrocycles could promote the
reactions in a confined hydrophobic space and carry the
reactions in a specific path in a bioinspired manner with
specificity and selectivity. Following the pioneering work
contributed by Breslow (Breslow, 1982), Tabushi (Tabushi,
1982), Saenger (Saenger, 1980), and D’Souza and Bender
(D’Souza and Bender, 1987), many CD-based artificial enzymes
have been extensively developed. In addition, CD derivatives are

widely used as scaffolds for the construction of artificial glutathione
peroxidase (GPx), an efficient antioxidant enzyme with the
selenium catalytic center (Figure 1A). Numerous CD-based
GPx models have been designed via incorporating selenium/
tellurium functional groups on macrocyclic building blocks
(Huang et al., 2011). By modification of CD and with
ditelluride moiety, 2,2′-ditellurobis (2-deoxy-β-CD) showed
excellent GPx-like activity in the presence of substrate thiols
(Figure 1B) (Liu et al., 1998; Liu et al., 2000; Liu et al., 2002;
Dong et al., 2004; McNaughton et al., 2004; Dong et al., 2006a;
Dong et al., 2006b; Dong et al., 2007). When an aromatic substrate
was used instead of natural substrate glutathione, the activity could
be 200,000-fold more efficiently than the common GPx mimic
PhSeSePh (Dong et al., 2004). The kinetic constant was similar to
that of natural GPx (107 M−1min−1). These single-molecule
macrocyclic catalysts broke the traditional design strategy
focusing on organocatalytic mechanisms, paying more attention
to the molecular binding affinity to the substrate.

Besides CDs, more kinds of macrocyclic compounds have
been developed to push the boundary of macrocycle catalysis to
heterogeneous catalysis and asymmetric catalysis. Reisner,
Scherman, and coworkers presented the surface-adsorbed
host-guest interactions (Wagner et al., 2020). In this work,
the reduction of CO2 to CO was highly corelated to the
complexation behaviors of cucurbit (6)uril [CB (6)]. It was
proved that the reaction site located inside the cavity of CB
(6) just like the binding between enzymes and their substrates.
The experiment results indicated that differences between this
CB (6)-based electrocatalytic reaction and traditional CO2

reduction existed, but not reflected in the H2 production of
the reaction process. Therefore the unique CO2-hosting ability
of CB (6) played the critical role in the catalysis. Also, an
efficient enantioselective reaction was reported by Wang’s
group, showing that chiral macrocyclic compounds with
delicate hydrogen-bonding network could conduct an
artificial dimerization (Guo et al., 2020). The catalytic cavity
based on the macrocyclic compounds was achieved by
dimerization for the catalytic reaction (Figure 2). Inside the
catalytic cavity, the Mannich reaction of cyclic aldimine
substrates was promoted by this assembly system. The imine
substrate was activated by the H-bond network that generated
through the dimerization. Besides, Wang’s group developed a
counteranion trapping strategy with macrocyclic compounds
for enantioselective catalysis. The macrocycles contained
cooperative moieties to construct a chiral catalytic cavity
(Ning et al., 2020). Their catalytic microenvironment was
further optimized with functionalization for the regulation of
substrate-binding. These catalytic macrocycles exhibited high
yield and stereoselectivity in the Friedel-Crafts reaction using
ethanedisulfonic acid as substrates. The high activity was
attributed to the catalytic cavity of macrocycles that
enhanced the acidity and ion-pairing. These works above
showed that the different properties of macrocyclic
compounds, such as hosting ability, cavity size, structural
symmetry, and electrostatic distribution, could largely enrich
the variety of potential catalytic reactions for macrocyclic
catalysts.

FIGURE 1 | (A) The catalytic mechanism of GPx. GPxs catalyze the
reduction of peroxides at the expense of glutathione molecules, involving the
formation and breaking of Se-S covalent bond. (B) Chemical structures of the
substrates of GPx (left) and the tellurium-containing CD (right). A and B
Reproduced from Dong et al. (2004) with permission. Copyright 2004
American Chemical Society.
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SUPRAMOLECULAR MACROCYCLE
SYSTEMS AS BIOINSPIRED CATALYSTS

Compare to single-molecule macrocycles, supramolecular
macrocycle systems consist of not only one macrocycle, but
also other components that non-covalently bound to the host
molecule (e.g., the axle and guest molecules), allowing multiple
catalytic behaviors and functionalization possibilities. Leigh’s
group developed a rotaxane structure that showed ribosome-
like activity to synthesize peptides in a successive manner.
(Lewandowski et al., 2013). The substrate amino acids were
linked sequentially to a strand, and a tethered thiol-
functionalized macrocycle transported the amino acids on to
another end of the strand to form a new peptide oligomer. The
catalytic system represents a significant step to mimic the
function of ribosomes chemically. The dynamic feature of
supramolecular structures provides “smart control” over the
catalytic reaction. Inspired by the rotaxane catalysis and the
trigger-induced effects that regulate enzymatic syntheses, a
pH-responsive pseudorotaxane switch was constructed with a
CB (6) macrocycle and an organoselenium molecular strand (Li

et al., 2015). The organoselenium strand contains an antioxidant
selenium center for catalysis and two regulation imino groups to
position the CB (6) macrocycle along the strand. When pH < 6,

FIGURE 2 | (A) The decarboxylative Mannich reaction ‘promoted by chiral macrocycle catalysts for asymmetric catalysis. (B) The effects of different macrocyclic
conformations and chiral microenvironments on catalytic efficiency and enantioselectivity were studied by evaluating the catalytic behaviors of macrocycle M1-M4. M4
achieved a 99% yield and 94:6 enantiomeric ratio (er) under optimal conditions, while M1-M3 gave a relatively lower. A and B Reproduced from Guo et al. (2020) with
permission. Copyright 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

FIGURE 3 | The processive catalytic system containing a linear polymer
and a macrocycle. The macrocycle is modified with catalytic center and
restrained to the polymer, which acts as axle molecule in the rotaxane system.
As the macrocycle moves from one end to the other, the axle is
functionalized (e.g., oxidation) sequentially by the catalyst. Reproduced from
Deutman et al. (2014) with permission. Copyright 2014 American Chemical
Society.
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no enzyme activity was observed as the active site was concealed
by CB (6). When pH > 7, the active site was exposed as CB (6)
bound to the imino groups. Therefore, the enzyme activity of the
complex was turned on. Although these supramolecular
macrocycle systems do not focus on the substrate binding
ability, they could mimic the activity-regulation mechanism of
natural enzymes to control the catalytic reaction process.

The supramolecular macrocycle systems were also applied in
the study of processive catalysis (Figure 3). Inspired by the DNA
polymerase that operates by allowing multiple catalysis rounds to
occur, artificial catalytic supramolecular structures acting in this
processive manner were constructed. A porphyrin-containing
rotaxane system with a manganese macrocycle was developed
for polybutadiene epoxidation (Thordarson et al., 2003; Coumans
et al., 2006; Monnereau et al., 2010; Deutman et al., 2014). The
macrocycle could act as a catalytic site and catalyze polybutadiene
into 80% trans- and 20% cis-epoxide polybutadieneepoxide. This
stereoselectivity difference indicated the steric mechanism of the
reaction. Takata’s group synthesized a macrocyclic rotaxane
containing Pd moiety for hydroamination (Miyagawa et al.,
2010). The processive catalysis took place inside the cavity of
the macrocycle, like enzyme catalysis. Also, Harada’s group
introduced a molecular clamp that polymerized
δ-valerolactone (δ-VL) (Takashima et al., 2011). It consists of
a- and ß-CD dimer connected with terephthalamide. The system
afforded poly (δ-VL) with a number-average molecular Weight
(Mn) � 11,000 and that a mixture of a- and ß-CDs without
dimerization afforded Mn � 2,300. The processive catalysis was
hardly achieved by traditional catalysts, and it also requires plenty
of protein components and complicated mechanism in nature.
However, this special catalytic behavior based on supramolecular
macrocycle systems could play a critical role in the modification
of polymers, peptides, and other macromolecules in future.

COVALENTLY LINKED PORPHYRINS AS
BIOINSPIRED CATALYSTS

Porphyrin is a heteroatom-containing macrocyclic compound
constructed by four pyrrole units which are connected by four
methines as the bridge and are in a planar conformation to form
18π electrons conjugation system, and porphyrin can coordinate
with many metals to form metallated porphyrins with extensive
applications in many scientific fields, such as catalytic reaction
and chemosensors (Ding et al., 2017; To and Chan, 2017; Zhang
et al., 2017). Covalent organic frameworks (COFs) are crystalline
porous organic polymers linked by covalent bonds with porous
and ordered structures, attracting considerable attention due to
their porosity, stability, and versatility. The chemical and
structural tunability makes them have great potential
applications in catalysis, separation, gas storage (Geng et al.,
2020; Lee et al., 2020; Li et al., 2020). Moreover, many examples of
COFs-based metalloporphyrin building blocks have been
fabricated to apply in different catalytic fields (Singh et al.,
2018; Cheung et al., 2019; Hao et al., 2019; Gong et al., 2020).

One important reaction for the fabrication of COFs is Shiff-
base condensation between aldehyde and amine. It is an

important strategy to introduce different amino groups and
aldehyde groups to porphyrin building blocks, design linkers
of porphyrin building blocks, and change metallic ions to
construct COFs based on metalloporphyrin. Some examples
have achieved recyclability with high catalytic activity.
Banerjee group reported a COF (2,3-DhaTph) incorporating
bifunctional (acid/base) catalytic sites based on porphyrin
(Shinde et al., 2015). By reversible Schiff-base reaction using
2,3-dihydroxyterephthalaldehyde (2,3-Dha, Figure 4A) and a
5,10,15,20-tetrakis (4-amino phenyl)-21H, 23H-porphine unit
(Tph, Figure 4B), The COF 2,3-DhaTph (Figure 4C) was
synthesized. This COF has high thermal stability up to 300°C
and could keep well aqueous stability for more than 7 days. The
COF with weak acidic and basic sites could most significantly
catalyze the cascade reaction with high product yield (∼90%) and
possess recyclability over five cycles. According to similar
strategies, Dai’s group successfully introduced Fe2+ to COF-
366 and detected the oxidation using the Fe-COF as
peroxidase Mimics (Wang et al., 2018). The Fe-COF can
catalyze the H2O2 oxidation to show that Fe-COF has an
inner peroxidase-like catalytic activity. Additionally, the kinetic
studies demonstrated that the Fe-COF structure has a higher
affinity toward the substrates than the natural enzyme,
horseradish peroxidase. Furthermore, the Fe-COF could be
applied in a colorimetric sensor for the sensitive detection of
H2O2 and measure glucose. As a peroxidase mimic, the Fe-COF
exhibits the advantages of easy preparation and ultrahigh catalytic
efficiency. In addition, the covalent bonds linking macrocycle
monomers largely enhanced the stability of catalysts, allowing
more practical applications in industry than those of macrocycle
systems constructed by weak interactions.

METAL−ORGANIC FRAMEWORK
MATERIALS AS BIOINSPIRED CATALYSTS

Metal-organic frameworks (MOFs) are a class of porous
crystalline materials based on the coordination of metal ions/
clusters and organic linkers. Unlike other materials, a significant
MOF feature is that their structure can be facilely designed,
functionalized, and offer a high surface area. They have
attracted considerable attention in these years and have many
potential applications in storage, catalysis, and separation (Cui
et al., 2016; Yang et al., 2017; Wei et al., 2020). In recent years,
multilevel MOFs using porphyrin as building blocks have been
developed to mimic catalyst. As a pioneering example of using
metalloporphyrin as a building block to design MOF, in 2009
Nguyen’s group reported a mixed-ligand strategy that combines
1,2,4,5-tetrakis-(4-carboxyphenyl)benzene 1) (5,15-dipyridyl-
10,20-bis[pentafluorophenyl])porphyrin 2) and
Zn(NO3)2·6H2O under solvothermal conditions (Figure 5)
obtained purple block crystals of Zn-MOF with large pores
(surface area of ∼500 m2/g), and further studies demonstrated
that the Zn-MOF is available for a catalytic acyl-transfer reaction
between a N-acetylimidazole and 3-pyridinemethanol with huge
rate enhancement (Shultz et al., 2009). For the catalytic reaction,
Zn serves as a catalytic site, and the size of the cavity plays an
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essential role in enhancing the reaction rate. Based on this work,
Nguyen group introduced different metallic ion (Al3+, Zn2+, Pd2+,
Fe3+, and Mn3+) to coordinate with porphyrin in this system to
obtain different COFs materials, which can serve as effective
catalysts for the oxidation of alkenes and alkanes (Farha et al.,
2011). The work offered a strategy to incorporate macrocyclic
metalloporphyrin with catalytic property into nanomaterials to
develop heterogeneous catalysts. So, many MOFs based on
metalloporphyrin with catalytic activity have been developed,

which were designed by changing substitutes in porphyrin,
metallic ion coordinating with porphyrin, metal nodes or
organic linkers (Feng et al., 2013; Beyzavi et al., 2015; Liu
et al., 2015; Lin et al., 2016; Jiang et al., 2017; Liang et al.,
2018; Pereira et al., 2019). For instance, Zhou’s group
prepared a series of isostructural zirconium-based MOFs,
which differ in porphyrin unit functionalized by ethyl, bromo,
chloro, and fluoro groups to study the electron effect of
substitutes on the catalytic activity of MOFs. These structures

FIGURE 4 | The chemical structures of 2,3-Dha (A), Tph (B), and 2,3-DhaTph (C). The hydroxy groups (green) act as acidic sites, whereas porphyrin and imine
bonds (black) act as basic sites for an acid-base catalyzed cascade reaction. Adapted from Shinde et al. (2015) with permission. Copyright 2015 the Royal Society of
Chemistry.

FIGURE 5 | The synthesis of ZnPO-MOF. The MOF (right) has multiple features for catalysis, such as large pores, permanent microporosity, and fully reactant-
accessible active sites. Reproduced from Shultz et al. (2009) with permission. Copyright 2009 American Chemical Society.
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showed excellent structural tunability and outstanding chemical
stability. The oxidation of 3-methylpentane to corresponding
alcohols and ketones was utilized as a model reaction to study
the catalytic activity and selectivity. Study results demonstrated
that the Br-containing MOF catalyst showed higher catalytic
efficiency and a remarkable 99% selectivity of the tertiary
alcohol over the five other possible byproducts (Huang et al., 2017).

The disadvantages of the traditional homogeneous catalysts,
including difficult recyclability and easy deactivation, limit
industry application. Some examples of porphyrin-MOFs have
realized high activity and recyclability of the heterogeneous
catalyst compared to the homogeneous analog catalysts (Feng
et al., 2013). Zhou group designed and prepared a
perfluorophenylene functionalized metalloporphyrins MOF
(PCN-624) which was constructed by 12-connected
[Ni8(OH)4(H2O)2Pz12] (Pz � pyrazolide) nodes and porphyrin
derivative linker. This MOF exhibits excellent stability under
different conditions, such as organic solvents, strong acid, and
aqueous-based solutions. Attractively, the MOF can be used as an
efficient heterogeneous catalyst for the selective synthesis of
fullerene−anthracene bisadduct and recycled over five times
without significant loss of its catalytic efficiency (Huang et al.,
2018). Additionally, many metalloporphyrin-MOFs have also
been developed to use as an electrochemical catalyst and
photochemical catalyst, which were designed through similar
strategies (Kornienko et al., 2015; Jin et al., 2020). These
porous crystalline materials could not only provide well-
defined molecular recognition sites (Tashiro and Shionoya,
2020), but also metal ions with catalytic activities, combining
the keys to making natural enzymes highly efficient.

OUTLOOK

From the single-molecular level to materials, macrocycles have
been developed for various functional building blocks. The
unique cavity-like structures of the macrocyclic compounds

could promote the catalytic reactions in a bioinspired way.
Not only novel macrocycles modified with catalytic functional
groups expanded the application scope of macrocycle catalysis,
but the supramolecular assembly of macrocycles brought
dynamic control and processive catalysis into this research
area. In addition, the covalent crosslinking further endowed
catalytic porphyrin macrocycles with stability and clustering
effects. The combination of macrocycles and catalysis is going
to prove its economic value and its academic potential.

However, there are still many challenges ahead in this field.
For instance, macrocycle catalysts’ substrate-recognition ability is
generally weak compared to natural enzymes, which is the main
reason for the relatively low catalytic activity. Also, the catalytic
selectivity of macrocycle catalysts is limited by the simplicity of
the substrate-binding cavity. Nevertheless, these macrocycles
provide novel scaffolds to construct advanced catalysts for
synthetic routes. We believe that elaborate structures and
practical activities are going to emerge.
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