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Signatures of chronic pain in multiple sclerosis:
a machine learning approach to investigate
trigeminal neuralgia
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Abstract
Chronic pain is a pervasive, disabling, and understudied feature of multiple sclerosis (MS), a progressive demyelinating and
neurodegenerative disease. Current focus on motor components of MS disability combined with difficulties assessing pain
symptoms present a challenge for the evaluation and management of pain in MS, highlighting the need for novel methods of
assessment of neural signatures of chronic pain inMS.We investigate chronic pain inMS usingMS-related trigeminal neuralgia (MS-
TN) as amodel condition focusing on graymatter structures as predictors of chronic pain. T1 imaging data from people withMS (n5
75) andMS-TN (n5 77) usingmachine learning (ML) was analyzed to derive imaging predictors at the level of cortex and subcortical
gray matter. The ML classifier compared imaging metrics of patients with MS and MS-TN and distinguished between these
conditions with 93.4% individual average testing accuracy. Structures within default-mode, somatomotor, salience, and visual
networks (including hippocampus, primary somatosensory cortex, occipital cortex, and thalamic subnuclei) were identified as
significant imaging predictors of trigeminal neuralgia pain. Our results emphasize the multifaceted nature of chronic pain and
demonstrate the utility of imaging and ML in assessing and understanding MS-TN with greater objectivity.
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1. Introduction

Chronic pain is a leading cause of disability worldwide,17 exerting
a massive burden on both individuals and society. Experiencing
chronic pain can affect all aspects of a person’s life, putting

a major strain on their mental health and ability to perform daily
tasks.25 Specific populations may experience difficulty in self-
report of pain, such as those with motor or cognitive limitations or
advanced stages of neurological disorders.20

Among these disorders, multiple sclerosis (MS) is particularly
noteworthy as it has a high prevalence of chronic pain and affects
approximately 50% to 75% of MS population.15,44,51 Chronic
pain, however, has remained largely unaddressed in assess-
ments of disability in MS. Importantly, the expanded disability
status scale, the standard scale used to evaluate the magnitude
of neurological disability, does not explicitly include chronic
pain.28 This underscores the need for and importance of
investigating novel chronic pain markers for patient care,
advocacy, and improvement of patients’ quality of life.

Current literature in neuroimaging links chronic pain to
abnormalities in brain structure and function, particularly in gray
matter (GM) morphology.1,8,52 Multimodal imaging studies
suggest that these structures potentially can be used as the
objective signatures for chronic pain.1,8,31 However, the relation-
ship between GM abnormalities and pain was not studied in MS.
Although MS is a disease that primarily affects white matter,
diffuse neurodegeneration and the presence of myelin in GM
render patients with MS also susceptible to GM altera-
tions.18,29,54,55 Therefore, investigation of relationship between
pain in MS and GM is particularly relevant and may pave the way
towards clearer imaging biomarkers of pain.

The case of patientswith trigeminal neuralgia (TN) illustrates the
severe impact of such pain conditions. Trigeminal neuralgia is
characterized by intense, electric shock-like pain episodes that
usually occurs unilaterally.49 TN has been described as one of the
most severe types of pain human can experience.60 Moreover,
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TN has a high degree of comorbidity with MS; people with MS
develop TN at a 20-fold greater rate than the general popula-
tion.12 This trend has led to the classification of a unique subtype
of TN known as TN secondary to MS (MS-TN), emphasizing
complex relationship between MS and severe pain syndromes.19

Recent advances in machine learning (ML) present an
opportunity to investigate these relationships. Machine learning
is increasingly being used in neuroimaging, allowing for more
nuanced analyses data, compared to conventional univariate
statistical approaches.6 Previously, ML had been successfully
applied to various data modalities (structural/functional imaging,
positron emission tomography) and tasks for investigating
chronic pain, including identifying imaging predictors for tri-
geminal pain and its surgical treatment outcome.21,23,31,34,50

Notably, ML can consider the larger interactions between
variables rather than rely on univariate comparisons.3,6 This
advantage may be especially relevant to the study of the brain
because of the high numbers of biological variables and
prevalence of structural and functional connections between
regions or variability in magnetic resonance imaging (MRI)
acquisition protocols.3,13,46

In this study, we sought to identify GM signatures of chronic
pain in people with MS using ML and MS-TN as a model
condition. We hypothesise that GMmetrics drawn fromMRI data
can provide accurate individual-level insights about chronic pain
in MS.

2. Materials and methods

2.1. Ethics

This retrospective study was reviewed and approved by the
research ethic boards of the University Health Network (UHN) and
Unity Health Toronto. As patient data included in the study was
collected retrospectively, additional informed consent was not
required according to the institutional Research Ethics Board
policy.

2.2. Participants

Patients withMS from the BarloMS clinic at St.Michael’s Hospital
and patients with TN from the Toronto Western Hospital (TWH)
(followed-up between 2010 and 2023) were screened for this
retrospective study. Patients with TN were considered for
inclusion if they met the diagnostic criteria for MS-TN as defined
by the International Classification of Headache Disorders third
Edition (13.1.1.2.1).19 For the purpose of the current study, we
restricted the pool of participants to those that have MS-TN and
sufficient cognitive ability to describe details about their pain
history and symptomatology. Patients with comorbidities such as
Alzheimer, Parkinson disease, brain tumours, other chronic pain
conditions or other neurodegenerative disorders were excluded.

We matched MS-TN group (TWH) participants with MS
identified from the Barlo MS Centre clinic registry by sex, age,
and the duration of their MS. Barlo MS Centre cohort included
patients with no history of chronic pain. Every participant had
retrospectively acquired T1-weighted (T1w) structural brain
imaging performed in a 3 T MRI scanner. Details on datasets
are outlined in Table 1.

2.3. Cortical and subcortical gray matter segmentation and
feature extraction

The T1w imaging data of each patient was processed using the
recon-all pipeline of FreeSurfer 7.2.16 Previously, this framework

was successfully used for predicting surgical outcome in TN and
distinguishing TN from healthy controls (HCs).23,31 In addition, this
pipeline shown to be agnostic for the MRI scanner difference.31,42

We ran data processing on Lenovo SD530 servers (Intel Xeon
SP Skylake, Linux CentOS 7.9). Using recon-all pipeline, we
obtained cortical surface area and thickness measures from 148
cortical regions defined by the Destrieux atlas in each subject.11

Regional subcortical volume of the hippocampus, amygdala, and
thalamus were also extracted, along with the estimated total
intracranial volume (Fig. 1A). Within the cortex, surface area and
thickness were extracted as individual metrics because doing so
has been shown to yield more precise results than extracting
cortical volume alone.58 If brain images could not be successfully
parcellated by FreeSurfer (because of error or inaccurate
segmentation), they were excluded from analysis. FreeSurfer
output was screened for artifacts and errors.

All extracted measures were corrected for individual variations
in head size in accordance with previous imaging studies23,31

using formula:

GMcor ¼ GMraw

eTIV

where GMraw—the uncorrected size (thickness/volume/area)
of GM region, eTIV—estimated total intracranial volume of subject
(computed by FreeSurfer), and GMcorr—corrected size (thick-
ness/volume/area) of GM region. In total, 410 metrics, including
148 cortical thickness, 148 cortical surface area (296 cortical
vertex-based measures), and 114 subcortical volume metrics
(voxel-based measures), were extracted and analysed using
a combination of unsupervised and supervised ML methods.

2.4. Unsupervised machine learning

We applied t-distributed stochastic neighbor embedding (t-SNE) to
the extracted GM metrics. This approach allows to reduce
dimensionality of data from 410 to 2 and easily visualize the
multidimensional imaging dataset structure and possible clusters.
t-SNE analysis was performed to inspect imaging data and assess
whether the data would get clustered based on factors such as
scanner differences, clinical, and demographic variables (sex, age,
diagnosis). Using this approach, we can disregard potential
skewness of entire dataset. We used t-SNE perplexity parameters
of 5 and Z-score normalization of the entire dataset. The t-SNE
algorithm from the Python library Scikit-learn 1.2.147 was used.

2.5. Supervised machine learning pipeline

We constructed a supervisedMLmodel using Scikit-learn with the
goal of training it to distinguish between the MS and MS-TN GM
imaging metrics. We used a support vector machine (SVM)
classifier with linear kernel (Parameters: C-value 2 0.01, Gam-
ma—“scaled,” tol—0.001, “class_weight”—“balanced”). Parame-
ters were based on literature and previous reports.4,23,38,39 SVM
was chosen due to its ability to classify multidimensional data. We
used linear kernel for separating 2 classes as it allows to extract
coefficients of SVM and evaluate important features. “Tol” and
“gamma” parameters (tolerance for stopping the training and
kernel coefficient respectively) were using default values. C value of
0.01 (regularization parameter) was chosen to increase the margin
of decision boundary for SVM.4 Before training the model, we
applied Pearson Redundancy Based Filter (correlation threshold5
0.9) to remove highly correlated features.5

To train and test the model, we used sequential backwards
feature selection from the MLXtend Python package45 using
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stratified 10-fold nested cross-validation, to ensure generaliz-
ability on the unseen data (Supplementary material 1, http://links.
lww.com/PAIN/C188). The imaging dataset was divided into 10
folds, and themodel underwent training and testing 10 times: one
fold acted as the test fold, while the remaining 9 were used to
perform the feature selection and train the model. After selecting
optimal set of features on inner folds, we trained the final model
and assessed it using out-of-sample test subset of cross-
validation. This allowed us to use all the data to test the model,
optimize set of predictors on nested training folds, and avoid any
possible data leakage. Z-score normalization was applied to
training and testing subsets of data, with mean and standard
deviation values estimated based on training subset. Figure 1B
illustrates the data analysis framework.

Model accuracy (% correct predictions) and the area under the
receiver operating characteristic (ROC) curve, as well as the
confusion matrix, were reported. For each testing fold, we
extracted a set of predictive features and their corresponding
SVM feature weights. These features were used for subsequent
statistical analysis.

2.6. Univariate statistical analysis

We tested sets of important predictors derived from the SVM
model using an independent t test to identify the directionality of
changes between MS and MS-TN groups. To ensure consis-
tency and generalizability, only features that were selected at
least 5 out of 10 times during the cross-validation procedure were
chosen for the univariate analysis. x2 test was used to compare
proportions of males/females and types of MS in datasets. All
P-values were corrected for multiple comparisons using the false
discovery rate procedure (Benjamini–Hochberg).

We analyzed data from age- and sex-matched HCs to confirm
the directionality of regional structural changes between the MS/
MS-TN population. Cambridge Centre for Ageing Neuroscience

dataset was used as a source of HC data.53 Previous study
confirmed that this dataset is highly similar to the UHN cohort and
does not require harmonization (Table 1).31

3. Results

3.1. Participant demographics

A total of 916 patients with TN and 200 people with MS were
screened. Based on inclusion/exclusion criteria, we identified
80 MS-TN subjects for analysis. These subjects were matched by
age, sex, and duration of MSwith 80 subjects with MS but without
a diagnosis of TN from the Barlo MS Centre clinic registry
(Supplementary material 2, http://links.lww.com/PAIN/C188). We
excluded subjects who had a lack of T1w imaging or those with
failed data extraction (recon-all error) because of artifacts. A total of
152 patients were studied with a mean age of 54.376 9.10 years
(MS) and 55.38 6 9.88 years (MS-TN); mean duration of MS was
16.69 6 9.52 years (MS) and 16.44 6 9.98 years (MS-TN)
(Table 2). As 8 subjects (5 MS and 3 MS-TN subjects) were
excluded because of the failed recon-all pipeline, the final dataset
matching is not 1:1. However, no statistically significant difference
was found in the proportion of male/female subjects (x2 P. 0.05),
age (t testP.0.05), anddurationofMSbetweengroups (t testP.
0.05). Patients with relapsing–remitting, primary progressive, and
secondary progressive MS were included in both groups. Ten
subjects (8 from MS-TN group and 2 from MS group) had no
information about the type of the MS at the time of follow-up;
however, for the remaining subjects, no statistically significant
difference was found in the proportion of different types of MS (x2

P . 0.05). Participants from both groups used disease modifying
medications, including natalizumab, teriflunomide, and interferon-
beta agents. In addition to these, MS-TN participants were actively
using neuropathic pain medication, including gabapentin, carba-
mazepine, and pregabalin. Among the patients with MS-TN, the
mean duration of TN pain was 5.39 6 4.60 years. A total of 36 of

Table 1

Datasets and acquisition parameters.

Dataset Scanner Acquisition parameters

MS-TN (UHN) 3T GE Signa HDx T1w: matrix 5 256 3 256, flip angle 5 20˚, FOV

5 24 cm, voxel size 5 0.94 3 0.94 3 1 mm

3T Siemens Vida T1w: matrix5 2563 256, flip angle5 9˚, FOV5
25.6 cm, voxel size 5 1 3 1 3 1 mm

MS (Unity Health) 3T Siemens TIM trio T1w: matrix5 2563 240, flip angle59˚, FOV5
25.6 cm, voxel size 5 1 3 1 3 1 mm

HC (CamCAN) 3T Siemens TIM trio T1w: matrix5 2563 240, flip angle5 9˚, FOV5
25.6 cm, voxel size 5 1 3 1 3 1 mm

CamCAN, Cambridge Centre for Ageing Neuroscience; FOV, field of view; GE, general electric; HC, healthy control; MS, multiple sclerosis; T1w, T1-weighted; TIM, total imaging matrix; TN, trigeminal neuralgia; UHN, University

Health Network.

Table 2

Demographic information on study population.

Condition MS MS-TN HC

Age (y) 54.37 6 9.10 55.38 6 9.88 55.38 6 9.88

Sex F 5 47, M 5 28 F 5 45, M 5 32 F 5 45, M 5 32

Types of MS RR 5 47, PP 5 18, SP 5 8, N/A 5 2 RR 5 35, PP 5 23, SP 5 11, N/A 5 8 N/A

Duration of MS (y) 16.69 6 9.52 16.44 6 9.98 16.44 6 9.98

Duration of TN pain (y) (MS-TN only) N/A 5.39 6 4.60 N/A

Side of pain (MS-TN only) N/A L 5 36; R 5 37; Bilateral 5 4 N/A

HC, healthy control, MS, multiple sclerosis; PP, primary progressive; RR, relapsing–remitting; SP, secondary progressive; TN, trigeminal neuralgia.
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the patients with MS-TN were experiencing left-sided pain, 37
were experiencing right-sided pain, and 4 were experiencing
bilateral (both left and right-sided) pain.

3.2. Unsupervisedmachine learning illustrates data structure

The clustering algorithm was applied to all 410 features and
demonstrated the data structure with respect to diagnosis,
scanner model, duration of the patients’ MS, or age. We
confirmed that the imaging data are suitable for subsequent
analysis with supervised ML. Specific demographic, clinical, and
imaging covariates did not result in data clustering, or skewness.
Notably, scanner model does not result in clear clustering of data

points, which is consistent with previous observations on GM
metrics.31,42 We, therefore, expect that the subsequent ML
results are unlikely to be biased towards the above covariates.
The results of applying t-SNE to the data are shown in Figure 2.

3.3. Supervised machine learning accurately distinguishes
multiple sclerosis andmultiple sclerosis-trigeminal neuralgia

The binary classification model (SVM) was trained across all 10
folds of cross-validation with feature selection identifying the
optimal set of imaging predictors (min of 14 features, max of 35
features). Themodel had an average train accuracy of 99.560.5%
and average test accuracy of 93.465.9%over the 10 foldswith an

Figure 1.Data processing and analysis pipeline. Magnetic resonance imaging (MRI) data were processed using FreeSurfer (A), graymatter metrics were corrected
for the difference in head size and used for the ML-driven analysis. Machine learning pipeline (B) includes unsupervised (t-SNE) and supervised (SVM) ML
components and illustrates nested cross-validation scheme for training, optimising, and testing model. ML, machine learning; SVM, support vector machine;
t-SNE, t-distributed stochastic neighbor embedding.

Figure 2. T-distributed stochastic neighbor embedding (t-SNE) clustering of the data (perplexity 5 5), where each point represents a different patient from the
dataset and the hue in each of the 4 subplots, corresponds to different variables that were tested because of their potential to be confounders. (A) Diagnosis, (B)
sex, (C) scanner, (D) duration of MS in years, and (E) age (decades). The axes on each subplot are arbitrary. MS, multiple sclerosis.
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area under the ROC curve of 0.98 6 0.6. The SVM classifier
accurately predicted bothMSandMS-TN at similar rates (0.95 and
0.92 for MS and MS-TN, respectively). A summary of the model’s
average performance is highlighted in Figures 3A and B.

Themodel consistently identified a set of 17 features across 16
cortical and subcortical GM regions as highly predictive of the
presence of TN pain in people with MS. This included metrics
from thalamic subnuclei (right ventral medial nucleus volume, left
ventral posterolateral nucleus volume, right medial mediodorsal
nucleus volume, left pulvinar inferior nucleus volume, right
limitans suprageniculate nucleus volume), hippocampal regions
(right CA3 body volume), the insula (left and right inferior circular
sulci thickness), frontal regions (left gyrus rectus [RG] thickness,
right superior frontal sulcus [SUPFS] area), parietal regions (right
postcentral gyrus area), temporal regions (right Heschl gyrus
area, right fusiform gyrus area), occipital regions (right cuneus
[CUN] thickness, left superior occipital sulcus and transverse

occipital sulcus [TOS] area), and other regions (left pericallosal
sulcus [PERCAS] area and thickness) (Fig. 3C).

Top imaging predictors derived by the model represent 5 brain
networks delineated in Uddin et al.’s56 functional atlas. Structures
from default-mode, somatomotor, visual, salience, and control
networks were shown as important for distinguishing between
MS and MS-TN. Six of the top features across 4 cortical regions
represent sulci of Destrieux atlas. These structures are forming
the boundaries across GM nodes; therefore, they were not
classified into functional networks.

3.4. Post-hoc statistics demonstrate differences in
gray matter

An independent t test was applied to the 17 features selected by the
supervised ML model during at least 5 of the 10 folds (Fig. 3C).
Analysis revealed that right hippocampal CA3 body volume, right

Figure 3. Average receiver operating characteristic (ROC) curve of individual point-wise predictions (A and B) confusion matrix visualizing the total performance of
themodel. The average area under the ROC curve is 0.98, indicating that the model is correctly categorizing the data significantly higher than random chance; the
dotted line illustrates a random sorting curve, and the gray curves show performance of individual folds. (C) Top features according to the weight attributed by the
SVM classifier. Y-axis represents unitless feature importance (coefficient), assigned to it by the SVMmodel. Features were included if selected by themodel during
at least 5 of the 10 cross-validation folds of training; the number in the circle above each feature represents the number of times out of 10 it was selected. Features
are coloured according to the specific brain network—default mode, somatomotor, salience, control, visual networks, and gyral structures (not classified). A, area;
CUN, cuneus; FUG, fusiform gyrus; HG, Heschl gyrus; INFCRINS, inferior circular sulci of the insula; L, left hemisphere; L-SG, limitans suprageniculate thalamic
nucleus; MDm, medial mediodorsal thalamic nucleus; PuI, pulvinar inferior thalamic nucleus; PERCAS, pericallosal sulcus; RG, gyrus rectus; R, right hemisphere;
S1, postcentral gyrus; SVM; support vector machine; SUPFS, superior frontal sulcus; T, thickness; TOS, superior occipital sulcus and transverse occipital sulcus;
V, volume; VM, ventral medial thalamic nucleus; VPL, ventral posterolateral thalamic nucleus.
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ventral medial thalamic nucleus volume, left ventral posterolateral
thalamic nucleus volume, and right medial mediodorsal thalamic
nucleus (MDm) showed significant relative reductions in the MS-TN
group compared to MS. Meanwhile, left PERCAS area and
thickness, right postcentral gyrus area (S1) right SUPFS area, left
superior occipital sulcus and TOS area, left RG thickness, and right
CUN thickness showed significant increases inMS-TN compared to
MS. Some of these structures were significantly reduced in bothMS
and MS-TN comparing to HC (R VM, R MDm, R Cun). Changes in
right CA3 and left ventral posterolateral thalamic nucleus volumes,
left TOS, and rightS1areawereobservedexclusively in subjectswith
MS-TN and were not significantly different in pain-free MS group
comparing to the HC. Figure 4 shows the univariate comparison of
important predictors derived by ML algorithm.

4. Discussion

Understanding chronic pain is inherently challenging because of the
multifaceted biological, psychological, and social components it
encompasses. In this study, we investigated whether ML was
capable of uncovering signatures of chronic pain in MS, based
strictly on imaging data, by comparing 2 MS cohorts—one with TN
pain and one without pain. Our analyses revealed that MS-TN is
associated with GM alterations within default-mode, somatomotor,
salience, and visual network structures. These GM structures were
sufficiently different between the cohorts to allow our ML model to
predict painwith an individual accuracy of 93.4%. This is a significant
step towards the identification of pain biomarkers in MS, allowing for
possible new avenues of investigating pain in this group using MRI
signatures.Machine learningmodels are capable of processing data
with large sample sizes and vast amounts of variables with greater
efficiency, allowing for the comparison of many different subjects
and brain regions at once.

4.1. Gray matter signatures of chronic pain

Our ML model identified 17 GM structures important in
distinguishing subjects with and without chronic pain in MS and
contribute to the pain phenotype in MS-TN.

The CA3 region of the hippocampus, a structure important for
memory processing, exhibited volume reductions in the MS-TN
group compared to both MS and HC. These results align with
previously reported patterns in classical TN.40,57 Notably, past
research has highlighted the plasticity of the GM within the
hippocampus. In patients with TN, GM alterations were found to
be reversible; successful surgical interventions led to the
normalization of hippocampal volume.40 Moreover, abnormalities
of hippocampus were shown to be inhomogeneous across
subfields.40,57 When comparing the MS population with HC, we
did not observe hippocampal volumedifferences, suggesting that
the observed hippocampal abnormal volume is closely related to
the expression of pain in MS-TN subjects.

Thalamic nuclei have been implicated in pain processing and
modulation. The ventral medial thalamus has been described as
one of the “discriminators” in the control of nociception.59

Reduction of thalamic volume has previously been shown in
trigeminal neuropathic pain and chronic pain populations.9,31 The
reduction in volume and activity of the medial thalamic nuclei,
including the ventral medial and mediodorsal nuclei, has been
linked to the sensory discriminative and emotional-affective
dimensions of pain on both humans and animal models.7,22

Our finding suggests that these domains are affected in MS
subjects and more prominent in MS-TN group.

Our ML model also pointed to increased cortical areas and
thickness in regions such as the PERCAS, postcentral gyrus (S1),
and SUPFS. These areas may suggest a compensatory mech-
anism or maladaptive plasticity associated with chronic pain.
Abnormalities in structure and function of primary somatosensory
cortex were previously shown in neuropathic pain.32,33,48 In-
crease in thickness was attributed to the higher pain and
temperature sensitivity.14 Structural changes in prefrontal cortex
were reported in various chronic pain conditions, including TN,
temporomandibular joint disorder, and back pain.35,36,41 In-
terestingly, these abnormalities were shown to be associated
with neuroticism and affective components of pain
perception.35,36

In the examined cohort, no significant changes were observed
in the right Heschl gyrus area, right orbitofrontal cortex thickness,

Figure 4. Visualization of the univariate statistics of important predictive features, mapped according to the corrected size of the region in MS-TN (blue) vs MS
(orange) patients to assess directionality. Features are organized in terms of the dimension they were selected for, with (A) visualizing cortical surface area, (B)
visualizing cortical thickness, and (C) visualizing subcortical volume. The corrected P-values are listed above each feature in accordance with the legend on the
right, only significant features are displayed (***P , 0.001, **P , 0.01, *P , 0.05). Log scale is used for visualization. MS, multiple sclerosis; TN, trigeminal
neuralgia.
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left and right inferior circular sulci of the insula thickness, right
suprageniculate thalamic nucleus volume, and left pulvinar
thalamic nuclei volume across compared groups. However, the
lack of significant alterations in these regions does not preclude
their potential role as biomarkers, as ML models, in contrast to
traditional statistical methods, possess the capability to discern
complex interfeature interactions.38 For instance, the insula, with
its robust projections from the ventromedial thalamus, and
S1—identified as key predictors in the model59—this might
reflect intricate network dynamics. Moreover, previous studies
have noted orbitofrontal cortex alterations in chronic pain
patients, which are functionally associated with pain and
treatment expectations.2,36 Similarly, the CUN gyrus, integral for
multisensory integration, exhibits reduction in TN patients
compared to HC.43 This suggests that variations in regions such
as theRGandCUNcould be indicative ofmore extensive network
disruptions in MS-TN.

These results further support the network-level alterations of
the human brain in pain, highlighting both the reciprocal
modulation of structures and the advantage of data-driven
investigation approaches over univariate analyses. There is
a great interest in exploring brain networks and their abnormalities
as predictors of pain,50 and our study demonstrates noninvasive
approach to analyzing these networks on a structural level. That is
especially relevant in the context of MS as a chronic disorder that
has both demyelinating and neurodegenerating components of
pathogenesis and may have complex imaging and clinical
manifestation, especially in combination with chronic pain.24,30,37

Unlike classical TN, which usually affects older individuals without
MS, TN in people with MS can occur at a younger age and may
have less successful surgical outcomes.12,26 These clinical and
therapeutic response observations underscore the relevance of
pain-specific biomarkers in MS, which would facilitate the ability
to provide optimal care for TN in people with MS.

4.2. Limitations

Wecompared 2 distinctMS-affected populations and usedHC to
characterise the directionality of changes. We acknowledge that
the cross-sectional and retrospective design may limit our ability
to fully interpret these changes over time. Longitudinal studies
focused on the MS population would be helpful for a greater
understanding of dynamic brain abnormalities.

We cannot completely rule out the influence of neuropathic
painmedication on the brainmorphology. Because of the severity
ofMS-TN, it is not feasible to investigatemedication-free patients;
therefore, our analysis reflects typical MS-TN population.

We opted against stratifying all clinical subtypes of MS to
maintain a substantial sample size for our ML-driven comparison
between MS and MS-TN groups. Moreover, there is accumulat-
ing recognition that the current MS disease subtypes are
insufficient, and MS is a disease continuum27—therefore, it is
likely to be of limited significant to stratify by disease subtype, and
more meaningful to match by age, sex, and disease duration,
which was done in our study. Our matching criteria between the 2
populations focused on the duration of MS, age, and sex. We
ruled out type of MS and possible scanner influence as potential
confounding factors influencing prediction. This allowed us to
collect a well-curated imaging dataset. Finding a comparable,
publicly available dataset that includes data about possible pain-
free patients with MS together with detailed clinical annotations
has proven to be challenging, particularly because chronic pain is
very common in MS (up to 75% affected), but often not
recognized. While external validation would be beneficial, the

strength of this work lies in the depth and detail of our unique
dataset.

We acknowledge that the usage of FreeSurfer, while offers
several advantages (such as automatic pipeline, consistency, and
MRI scanner agnostic metrics), might also be the subject to the
variation in terms of the segmentation accuracy. This might be
prominent in regions, like hippocampus and thalamus, making
them challenging to parcellate.10 We focused solely on imaging
metrics as this is the most accurate/reliable way to analyze
retrospective data. This approach allowed us to accurately
pinpoint structures predominantly affected in MS-TN compared
to a demographically similar MS population.

5. Conclusion

Our work highlights the potency of ML algorithms in investigating
chronic pain in MS as a multimorbid condition. Machine learning
model achieved high (.90%) accuracy in distinguishing MS-TN
and MS based on GM metrics alone. The accurate data-driven
comparison between pain and nonpain groups among people
with MS allows us to derive imaging-based signatures of chronic
pain, establishing potential objective GM markers of TN in MS.
This study sheds light on a distinct subset of trigeminal pain
disorders that is arising from central nervous system exclusively.
Investigating the relationship between MS and MS-TN will
facilitate a better assessment and treatment of chronic pain
conditions in MS, and this study is an important first step in that
direction.
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