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Abstract

Since its discovery in the Hubei province of China, the global spread of the novel coronavi-

rus SARS-CoV-2 has resulted in millions of COVID-19 cases and hundreds of thousands of

deaths. The spread throughout Asia, Europe, and the Americas has presented one of the

greatest infectious disease threats in recent history and has tested the capacity of global

health infrastructures. Since no effective vaccine is available, isolation techniques to prevent

infection such as home quarantine and social distancing while in public have remained the

cornerstone of public health interventions. While government and health officials were

charged with implementing stay-at-home strategies, many of which had little guidance as to

the consequences of how quickly to begin them. Moreover, as the local epidemic curves

have been flattened, the same officials must wrestle with when to ease or cease such

restrictions as to not impose economic turmoil. To evaluate the effects of quarantine strate-

gies during the initial epidemic, an agent based modeling framework was created to take

into account local spread based on geographic and population data with a corresponding

interactive desktop and web-based application. Using the state of Massachusetts in the

United States of America, we have illustrated the consequences of implementing quaran-

tines at different time points after the initial seeding of the state with COVID-19 cases. Fur-

thermore, we suggest that this application can be adapted to other states, small countries,

or regions within a country to provide decision makers with critical information necessary to

best protect human health.
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Introduction

The epidemic of a novel coronavirus was first detected in the city of Wuhan in the Chinese

province Hubei on December of 2019 [1–4]. Despite the unprecedented efforts from Chinese

authorities including the complete lockdown of the entire city of Wuhan on January 22, 2020

the virus has rapidly spread to all continents except Antarctica. The World Health Organiza-

tion (WHO) officially declared the coronavirus a global pandemic on March 11, 2020 [5], only

three months after the first case was detected. The novel coronavirus is now officially named

SARS-CoV-2 and the disease caused by it has been called COVID-19 [6] to distinguish from

SARS-CoV and the corresponding severe acute respiratory syndrome (SARS) pandemic from

2003 [7, 8]. Despite the much lower case-fatality rate, SARS-CoV-2 has caused morbidity and

mortality orders of magnitude higher than severe acute respiratory syndrome (SARS) and

Middle East respiratory syndrome (MERS) combined [9]. As of May 13, 2020, more than 4.1

million infections have been reported worldwide, with more than 287, 000 deaths due to com-

plications of COVID-19 [10]. As of May, 2020 there is neither an effective virus-specific treat-

ment, nor Food and Drug Administration (FDA) approved vaccine available for SARS-CoV-2

[11–18]. As such, social distancing and quarantine are the only available measures to reduce

the transmission and prevent overwhelming the capacity of existing healthcare systems. Social

distancing in this context means practice of physical distancing between individuals to prevent

transmissions. Quarantine involves more targeted actions and restrictions for those individual

who are or are suspected to be infected with the goal of keeping them away from the others.

Starting at the epicenter of Hubei province [19] in January, 2020, governments around the

world have implemented society lockdown measures of varying degrees [20–24]. Since such

measures remain the only available tools to control the spread of the pandemic, it is critical to

understand the transmission dynamics of SARS-CoV-2 in the population. This would allow

for the prediction of COVID-19 cases and deaths over time under different mitigation strate-

gies, which could be implemented to reduce morbidity and mortality; as well as the allocation

of limited resources to medical providers.

To achieve this goal, multiple approaches can be implemented that are typically driven by

the quality and precision of the available data. The most commonly reported data for epidem-

ics are the incidence of new cases and deaths represented as a time series over the fixed inter-

vals (e.g. days or weeks) aggregated across multiple regions and reporting sources [25–27].

This aggregated data can be used for incidence curve reconstruction, modeling, and prediction

when more detailed information about each infected individual is not available [28–32]. Such

models are called compartmental models [33] where the study population is divided into

groups while individuals within each group are assumed to have the same characteristics of

interest (e.g. susceptible, infected, vaccinated, or immune). The compartmental models are

formulated via a defined system of differential equations that allows for both deterministic and

stochastic formulations to quantify the uncertainty of the model fit. Those models provide

insight into the underlying epidemic dynamics and allow for the prediction of future trends in

incidence under different transmission scenarios, including interventions such as social dis-

tancing, quarantines, and vaccinations. Another approach are the agent-based models [34–

39], which utilize a synthetic population, that attempts to realistically represent the social inter-

actions in time and space between individuals with different characteristics and infection sta-

tus [36]. Compared to compartment models, agent-based models rely on detailed data about

the study population, making them more computationally intensive while allowing for more

realistic simulations of human transmission pathways.

An example of an agent-based model that has been developed to study influenza but has

been successfully applied to study other respiratory diseases, including the efficacy of
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quarantine measures for containment of SARS-CoV-2 is the FluTE model [35, 40] which was

specifically adopted with the name Corvid [38]. The FluTE model is based on the assumption

that the synthetic study population is parsed in social subgroups and the interactions between

them are modeled at different community levels (household, neighborhood, work), age

groups, time of the day, and other characteristics. In this work, we propose an agent based

model that can be applied by regional governments to local epidemiological settings, using

incidence data from Massachusetts, USA. The proposed model incorporates the infected indi-

viduals that are reported in the beginning of an epidemic for a given area and their personal

characteristics such as the date the infection was confirmation, geographic location, and demo-

graphic characteristics. Thus, by using a limited amount of information, such as the popula-

tions of each zip code and number of reported cases, a robust simulation is generated with

time series data of predicted disease morbidity and mortality. Furthermore, by incorporating

different quarantine strategies, the reduction in the number of new cases and deaths can be

estimated for each locale depending on their unique characteristics. Since this model uses lim-

ited input data that are publicly available and is implemented in the form of an interactive web

application, we believe that this tool could represent a widely adaptable format for state and

local governments and health officials to make informed decisions as they consider easing or

ceasing mandatory quarantines. Once effective treatments and vaccines become available, this

framework could also be used to allocate treatment resources and plan vaccination campaigns

tailored to fit different geographic regions. The reported demographics data can also be deper-

sonalized in accordance to HIPAA regulations [41] to make the use of the model versatile and

not to violate the privacy of individuals.

Materials and methods

The model structure

The model stochastic simulations are generating the infected individuals at different times and

stages. Those individuals are indexed by k and have individual characteristics presented below:

Qk ¼
�
ðxk; ykÞ; tinfk; detk; stgk; agek; radk; pcontðkÞ; contk;R0ðkÞ; severk; durk; stkðtÞ

�
: ð1Þ

The characteristics of each individual Qk are determined and updated within the simulation

process and have the following details:

• (xk, yk)—the Cartesian coordinates (in pixels) of the individual Qk that do not change within

the simulation process after they are introduced;

• tinfk—the time of infection onset for the individual Qk which is measured in relation to the

simulation baseline time denoted as 0;

• detk—the detection time variable measured in days that corresponds to a period from an

infection acquisition until the proper diagnosis and reporting of individual Qk;

• stgk = (stg1(k), stg2(k), stg3(k))—the vector of durations of three disease infection stages mea-

sured in days that characterize the infectivity of the given individual during those stages. It is

assumed that stg1(k) + stg2(k) + stg3(k) = detk;

• agek—the age of the individual Qk at the time of the infection onset;

• radk—the distance (in meters) up to which the individual Qk is able to infect the nearby

individuals;
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• pcont(k)—the probability that during each day the individual Qk has any contacts which lead

to new infections;

• contk ¼ ðmcontðkÞ; s
2
contðkÞÞ—the individual-specific parameters that define the distribution of

the number of successful infection transmissions to other individuals within a given day.

This number is generated randomly for each day t, provided that the individual has any

transmissions on the given day (according to the contact probability pcont(k)).

• R0(k)—the individual’s reproduction number. This variable stores the number of individuals

that is infected by Qk during the infection period detk. The average of those reproduction

numbers across individuals and simulations are used to estimate the basic reproduction

number R0 [42] which is a characteristic of the entire epidemic;

• severk—the disease severity variable for the individual Qk that takes three values, where 1 cor-

responds to lethal, 2 corresponds to severe, and 3 corresponds to mild; the disease severity

does not change for a given individual after it is determined randomly from a trinomial

distribution;

• durk—the disease duration from the infection onset to cure (or death) in days, which is gen-

erated randomly based on the severk parameter;

• stk(t)—the status of the individual Qk at a given day t. The status of the individuals within the

simulation is expected to change over time and is expected to take the following values:

• stk(t) = 0—the individual is detected based on the external information i.e. from the

reported data that are used as the model input;

• stk(t) = 1—the individual is infected but has not been identified as such yet;

• stk(t) = 2—the individual has been infected and detected as such, which has also implied

the individual’s isolation (quarantine).

• stk(t) = 3—the individual has recovered and is immune;

• stk(t) = 4—the individual has deceased.

The asymptomatic infections are incorporated inside the model via three severities

that are generated for each infected individual. This incorporation of asymptomatic

infections into those with a “mild” severity status is made to improve the model computa-

tional tractability. Since the model parameters are calibrated based on the detected cases

and the output of the model presents the detected cases as well the prediction abilities for

detected and reported cases within the model are preserved. The severities are discussed in

details in the manuscript supplement S1 Appendix. In the beginning of the simulations the

model utilizes multiple local epidemic epicenters E ¼ fE1;E2; . . . ;EIg. Those epicenters

serve as the model initial conditions and represent the introductory geographic points for

the index cases that are introduced into the susceptible population. The epicenters can

either correspond to the actual address coordinates for those places where the initial out-

breaks were detected or to the centers of the corresponding aggregated geographic units.

The latter may be the case, if either the exact infection acquisition locations are not known,

or the privacy concerns prevent the inclusion of such data into the model. In the latter

case the centers of the aggregated geographic units are taken as epicenters Ei for each

i ¼ 1; 2; . . . ; I .

The local epicenters in the model are defined by a pair of geographic coordinates (Lat,
Long) and by an epicenter-specific region radius Ri which is defined in meters. Therefore, for
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i ¼ 1; 2; . . . ; I the epicenter region is defined by a triplet:

Ei ¼ ððLati; LongiÞ;RiÞ: ð2Þ

The epicenter regions are defined from the surveillance epidemiological data [43]. As the

initial conditions in addition to the local epicenters the model incorporates the areas of high

density P ¼ fP1; P2; . . . ; PJ g for j ¼ 1; 2; . . . ;J , where each Pj represents a large city or a

densely populated area and which is also defined by a triplet:

Pj ¼ ððLatj; LongjÞ;RjÞ: ð3Þ

In the model the reporting times (days) for the initial index cases for each epicenter i pre-

cede the modeled epidemic starting time which corresponds to the baseline time slot t = 0.

Therefore, the reported time slot indexes across the epicenters Ei are denoted as s ¼
1; 2; . . . ;S with the corresponding times ~t1;~t2; . . . ;~tS . The earliest reported cases and their

dates are used for the model input with indexes s ¼ 1; 2; . . . ; ~S such that ~S < S and the corre-

sponding times ~t1;~t2; . . . ;~t ~S . The corresponding number of confirmed and reported infec-

tions for each local epicenter Ei up to and including the time ~t ~S for s ¼ 1; 2; . . . ; ~S is denoted

as nið~t ~S Þ. The corresponding set of infected and reported (i.e. with the status stk(t) = 1) individ-

uals across all epicenter is denoted as:

D ¼ f~Q1;
~Q2; . . . ; ~QK~S

g; ð4Þ

where k ¼ 1; 2; . . . ;K~S is the global index for initial cases across all times ~t1;~t2; . . . ;~tS and K~S

is the total number of the initial index cases that is simulated within the model based on the

input data. The tilde notation for ~Qk-s in D emphasizes the link to the model input data. The

newly infected individuals are generated spatially in relation to the population area centers in

the beginning and later in relation to the previously infected individuals. The individual’s

coordinates are generated randomly using the distribution mechanism described in details in

the manuscript supplement S1 Appendix.

The time index that corresponds to individual day within the model is denoted as t and is

equal to 0 at the model baseline. The simulation baseline time t = 0 corresponds to the latest

reporting time ~t ~S of the earliest reported cases that are used for the model input. The actual

infection times for those index cases precede the selected baseline simulation time t = 0 due to

the infectivity periods generated for those index cases prior to their reporting. The actual simu-

lation starting time that accounts for the infectivity periods is denoted as t = Tmin and is smaller

than the baseline time t = 0. This simulation starting time t = Tmin is generated within the

model, while the baseline time t = 0 is defined by the data and is defined by the largest index

within the set of calibration indexes s ¼ 1; 2; . . . ; ~S . The largest simulation time t = Tmax is

determined by the model user based on the desired length of prediction. The initial set of

index cases D from (4) defines the model initial cases that are allocated across the local epicen-

ters (2) at times up to the baseline time t = 0.

Based on the model geographic characteristics (2) and (3) and the initial set of reported

individuals D from (4) the new lists LðtÞ of of modeled individuals are simulated for time slots

t 2 [Tmin;Tmax] where Tmax − Tmin + 1 is the total number of the simulated time slots. The sim-

ulated lists LðtÞ have the following format:

LðtÞ ¼ fQ1;Q2; . . . ;QKðtÞg ð5Þ

where the value of KðtÞ is defined by the simulation at every simulation time step t 2 [Tmin;
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Tmax]. During this procedure the input set individuals D defined in (4) is allocated between the

different epicenters and time slots within the lists LðtÞ defined by (5). The allocations of the set

D is performed during the time slots t 2 ½Tmin;~t ~S � where ~t ~S < Tmax.

The overall model flow

The entire modeling process can be summarized via the following steps:

• The model input time interval is determined by fixing the first ~S reporting indexes out of

the total S where ~S < S. Those indexes correspond to the reporting time slots ~t1;~t2; . . . ;~t ~S .

This completely defines the list of reported index cases D from (4) that are used as the model

initial conditions. The baseline time of the model t = 0 is assumed to correspond to ~t ~S .

• The individuals from the reported set D that are defined in (4) are assigned to the local epi-

centers of the future epidemic Ei for i ¼ 1; 2; . . . ; I based on the available (from the input

data) geographic distribution.

• The geographic data about the areas of high density Pj for j ¼ 1; 2; . . . ;J are incorporated

into the model.

• The model is initialized with the index cases from D. Based on those index cases that are

defined in (4) the initial infection time Tmin is determined. This step is necessary to incorpo-

rate the infection times that have been present before the first reporting time ~t1 into the

model.

• The final time point of the stochastic simulations Tmax is define by the user based on the

desired study and prediction goals.

• The initial list of infected individuals LðTminÞ is initialized at time Tmin only with the earliest

model input cases from the list D(Tmin).

• The infected list of individuals Lðt þ 1Þ for the time slot t + 1 is generated sequentially for all

t 2 [Tmin;Tmax − 1] based on the list of individuals LðtÞ from previous time slot t and the

individual’s characteristics within the list Lðt þ 1Þ are updated at this time step t + 1. The

details of the new infection generations are provided in S1 Appendix.

Based on the lists LðtÞ at every time slot t 2 [Tmin;Tmax] the infected modeled population

summaries can be computed and summarized. In particular, the total number of currently

infected but not identified individuals (i.e. those with the status st(t) = 1) is saved into Inf(t)
variable for every t. The total number of treated or quarantined individuals (i.e. with the status

st(t) = 2) is saved into Treat(t) variable for every t. The total number of recovered individuals

(i.e. with the status st(t) = 2) is saved into Recov(t) variable for every t. The total number of

deceased individuals (i.e. with the status st(t) = 4) is saved into Dead(t) variable for every t.
Those numbers are used in the model calibration procedures, epidemiological summaries and

in the model predictions. The model input utilizes only the first ~S reported indexes with the

corresponding reported times ~t s for s ¼ 1; 2; . . . ; ~S with the total number of reported indexes

equal to S and ~S < S. The remaining reported indexes ~S þ t; ~S þ tþ 1; . . . ;S for some inte-

ger τ are divided into the two groups:

f~S þ t; ~S þ tþ 1; . . . ; _Sg and f _S þ 1; _S þ 2; . . . ;Sg: ð6Þ

The first group of the reported indexes from (6) is used for the model calibration and esti-

mation of the unknown parameters. The second group of the reported indexes from (6) is
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used to evaluate the quality of the model predictions. The Massachusetts surveillance data that

are used for the model calibration, validation and predictions are freely available at the Massa-

chusetts Department of Public Health web site [43]. The first reported date which corresponds

to the time index ~t1 in the model is March 13, 2020. The latest reported date that is used for the

model input is March 26, 2020 which corresponds to the time index ~t ~S in the model. The time

indexes that correspond to ~t ~Sþt and ~t _S are April 14, 2020 and April 22, 2020 respectively. The

parameter optimization is performed by minimizing the sum of squared differences between

the model-produced outputs and the calibration data by using the Nelder–Mead numerical

minimization method [44]. The additional details about the model formulation, parameteriza-

tion, and calibration are summarized in the S1 Appendix.

After the model calibration is performed various quarantine and transmission intervention

strategies are investigated within the calibrated model. Those intervention strategies are based

on the assumption that the probability of contacts between the individuals decreases after the

quarantine measures are enforced. Within the model this is implemented by an immediate

change in the contact probability parameter starting from a certain calendar date. The earlier

implementation of the quarantine in the model is represented by an earlier calendar date when

the change in parameter value occurs. Those earlier quarantine dates result in the smaller

transmission probability and fewer infected individuals in comparison to the later quarantine

dates. The quarantine date in the end of the simulation period corresponds to no quarantine

scenario. As an example, three scenarios with different quarantine start dates are presented

and the corresponding reduction in the number of cases is discussed. There is also an option

to consider other quarantine enforcement dates interactively within the current model

implementation.

The model availability

The model has been implemented in multiple environments which include the application

tool for Microsoft Windows [45] and the web prediction tool [46, 47] (summaries only). The

model application tool for Microsoft Windows is freely available under the terms of the MIT

license [48]. The tool source code, the application, and the relevant documentation are avail-

able on GitHub [45]. The current model tool has been calibrated based on the state of Massa-

chusetts (United States) incidence data [43]. In addition to that the user has an option to

adjust interactively the tool parameters which include, in particular, the transmission parame-

ters and the quarantine implementation dates(s). Overall, the proposed framework and the

code are fairly general and can be adopted for other areas and territories where the demo-

graphics of the incidence cases and population characteristics are known with at least some

geographic precision, and where the rapid evaluations of social distancing measures have to be

quantified.

Results

Within the model multiple epidemic progression scenarios can be considered. In particular,

three different quarantine strategies are presented in this manuscript as an illustration of the

model. The alternative quarantine scenarios can be produced and customized interactively

within the model application tool if necessary. The difference between the presented scenarios

is in the quarantine date at which the transmission probability parameter changes to smaller

one. The smaller transmission parameter values result in fewer infections therefore the earlier

quarantine dates result in less infections overall in comparison to the later dates. The predicted

numbers of infections for each scenario are defined by the quarantine implementation date

and those number can be compared. The first scenario corresponds to the quarantine date on
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March 29, 2020 i.e. the early reduction in contact probabilities and social distancing between

individuals. The second scenario assumes the implementation of the quarantine measures on

April 6, 2020, and the third scenario assumes the implementation of the quarantine measures

on April 13, 2020. The point estimates and the prediction bands have been produced by repli-

cating each of the three scenarios and taking the median values across 500 model runs for the

point estimates and 5-th and 95-th percentiles for the 90% prediction intervals. The results are

summarized in Tables 1 and 2 for the model-predicted cases and deaths, respectively. For

example, the summaries from Table 1 can be compared after one month of the baseline date

i.e. on April 26, 2020. For the first scenario the model predicts 24, 039 cumulative cases (with

the 90% PI (20, 665;27, 296)), for the second scenario the model predicts 56, 587 cumulative

cases (with the 90% PI (46, 944;66, 401)), and for the thirds scenario the model predicts 123,

351 cumulative cases (with the 90% PI (100, 113;144, 018)). Compared to the quarantine start

date in the second scenario, the first scenario results in 58% reduction in cumulative cases on

April 26, 2020, in 63% reduction in cumulative cases on May 26, 2020, and in 65% reduction

in cumulative cases on June 26, 2020. Compared to the quarantine start date in the third sce-

nario, the first scenario results in 81% reduction in cumulative cases on April 26, 2020, in 87%

reduction in cumulative cases on May 26, 2020, and in 88% reduction in cumulative cases on

June 26, 2020. Based on the model outputs the earliest quarantine measures and the reduction

in contact probabilities can be extremely beneficial in mitigation of the outbreak conse-

quences. The analogues summaries for the model-predicted death across the three scenarios

are summarized in Table 2. Compared to the quarantine start date in the second scenario, the

first scenario results in 52% reduction in cumulative deaths on April 26, 2020, in 63% reduc-

tion in cumulative deaths on May 26, 2020, and in 65% reduction in cumulative deaths on

June 26, 2020. Compared to the quarantine start date in the third scenario, the first scenario

results in 70% reduction in cumulative deaths on April 26, 2020, in 86% reduction in cumula-

tive deaths on May 26, 2020, and in 88% reduction in cumulative deaths on June 26, 2020.

The model is presented via the graphic user interface (GUI) application for Microsoft Win-

dows as well as the as web prediction tool [46, 47] (summaries only) that can be used for the

geographic visualization of various epidemiological curves and geographic visualization of

cases in the state of Massachusetts. Users can work with the tool and utilize the available

model customizations. The appearance of the GUI for MS Windows application is presented

in Fig 1. The state of Massachusetts MassGIS data were used to produce the tool map. The data

Table 1. The predicted number of cumulative cases produced by the model over time for three different quarantine scenarios and three time periods together with

the corresponding 90% prediction intervals.

Scenario Quarantine Date April 26, 2020 May 26, 2020 June 26, 2020

First March 29, 2020 24, 039 (20, 665;27, 296) 32, 692 (27, 361;38, 221) 36, 767 (30, 288;43, 976)

Second April 06, 2020 56, 587 (46, 944;66, 401) 89, 727 (72, 843;106, 797) 105, 464 (84, 859;127, 796)

Third April 13, 2020 123, 351 (100, 113;144, 018) 245, 255 (197, 748;294, 750) 307, 128 (243, 184;362, 104)

https://doi.org/10.1371/journal.pone.0247182.t001

Table 2. The predicted number of cumulative death produced by the model over time for three different quarantine scenarios and three time periods together with

the corresponding 90% prediction intervals.

Scenario Quarantine Date April 26, 2020 May 26, 2020 June 26, 2020

First March 29, 2020 1, 432 (1, 248;1, 614) 2, 236 (1, 879;2, 619) 2, 603 (2, 156;3, 066)

Second April 06, 2020 2, 959 (2, 473;3, 405) 5, 987 (4, 863;7, 118) 7, 397 (5, 947;8, 870)

Third April 13, 2020 4, 813 (3, 996;5, 591) 16, 046 (12, 859;19, 007) 21, 339 (16, 884;25, 086)

https://doi.org/10.1371/journal.pone.0247182.t002
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are available for download and are public records from the Bureau of Geographic Information

(MassGIS), Commonwealth of Massachusetts, Executive Office of Technology and Security

Services [49].

The presented application does not require installation and can be launched directly by

running the executable file. The tool allows the parameters optimizations and the visual ani-

mated simulations of the model outputs and their comparison with the reported data. The

user can interactively customize the most important simulation parameters, change the

duration of prediction, and adjust manually the locations of high population density. This

allows the user to consider multiple scenarios of the epidemic spread. In addition, the user

has flexibility to re-run the model multiple times either step by step or entirely for all time

slots. The user can scroll via each day of the recently completed simulation to see the visual-

ized results of that specific day and choose which epidemiological curves to include in the

summary graphs. The modeled cases and other summaries are saved into the comma-sepa-

rated values (csv) files after the end of each simulation. The tool also provides the estimate of

the population basic reproduction number R0 for each simulation run together with the cor-

responding 90% confidence intervals. The estimates for R0 are provided based on the quan-

tiles of the individual’s reproduction numbers R0(k) across multiple individuals k both before

and after the quarantine date that is defined by the user. The resulting distribution of the

individual’s reproduction numbers R0(k) from the tool before and after the quarantine are

summarized in Fig 2.

Fig 1. The tool graphic user interface. The visualization tool GUI for Microsoft Windows. The tool provides the geographic

visualizations of epidemic on the state of Massachusetts map and constructs the epidemiological summaries and curves. The tool

allows interactive model calibrations and step-by-step simulations.

https://doi.org/10.1371/journal.pone.0247182.g001
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The example of the summary graphs for the model-produced outputs for the second sce-

nario from Tables 1 and 2 are presented in Fig 3, which contains the four combined graphs

available in the “Statistics” tab in the top right corner of the tool. Those graphs within the tool

can be produced by setting the “Max Simulation Time” and “Forecast Day” fields to July 15,

2020 and by running the model 500 times by using the “Daily Forecast Evaluation” button.

The 500 runs are necessary to produce the median predictions and the corresponding 90%

uncertainty prediction bands across those runs by taking the 5-th and the 95-th percentiles

across those situations for each time slot. Those graphs include the cumulative numbers of

reported cases and deaths, together with the currently hospitalized patients and unreported

cases. The graphs also include the reported data in blue. The calibration time period is

highlighted in blue and is bounded by vertical bars.

Discussion

In this work the local agent-based modeling framework for respiratory diseases has been pre-

sented. This framework incorporates the reported geographic incidence data that are typically

available from surveillance, which include individual’s age, infection status, and the severity of

the disease. The model accounts for the latent period of the individual’s infection before detec-

tion and proper reporting as well as for different disease severity levels. The framework also

allows to incorporate the exact geographic addresses of individuals (if available) or the random

geographic distribution of individuals within those aggregated districts where they are

reported in case of privacy concerns. The model allows to perform predictions with different

levels of social isolation between individuals and quarantine measures. Those measures are

implemented at different times to compare different quarantine scenarios. As expected, there

Fig 2. The distribution of the individual’s reproduction numbers R0(k). The example of the tool output for the distribution of the

individual’s reproduction numbers R0(k). The output graph contains the estimated probability density function of the individual’s

reproduction numbers R0(k) together with the cumulative distribution functions both before and after the quarantine

implementation date.

https://doi.org/10.1371/journal.pone.0247182.g002
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was a decrease in the cumulative incidence and deaths inversely proportional to the date quar-

antine was implemented; which resulted in approximately 50-80% reduction in cases and

deaths depending on the scenario. This agrees with already published results that strict social

distancing combined with proper testing will keep the disease at level that does not overwhelm

the capacity of heath care system [18].

Compared to complex agent-based models, the compartmental models are based on the

assumptions of homogeneous mixing and can be parameterized by a relatively small set of

rates and initial conditions. The main challenges for the compartmental models [30, 31, 50]

are the determination of the compartment types that are used in the model, the assignment of

individuals between compartment i.e. the specifications of the set of rules that assign each par-

ticular individual to each type of compartments, and the determination of the parameters of

interest which can either be postulated from external sources or estimated from data.

The agent based models, due to their inherited complexity, incorporate separate individuals

with multiple different characteristics and parameters per individual. This adds another layer

of parameterization flexibility, but also introduces another layer of modeling challenges, since

the number of individual’s characteristics within the model is determined by the modeler [18,

34–36]. This typically implies some additional assumptions about the model behavior and the

overall model parametrization. Those assumptions are expected to be region-specific, since the

transmission times, patterns, and other characteristics typically wary from region to region.

The respiratory infections, which include SARS-CoV-2, add another level of complexity to any

model due to quality of reported data. The asymptomatic cases are typically neither identified

nor properly recorded and surveillance systems for symptomatic cases are never perfect either.

As a result a substantial (but unknown) amount of cases is not reported and the modeler has

Fig 3. The model-produced predictions. The median of the model-produced 500 runs together with the corresponding 90%

uncertainty prediction bands for different model outputs. The top left graph includes the cumulative numbers of reported cases. The

top-right graph summarizes the cumulative subset of the reported cases that have deceased. The bottom graphs summarize the

number of hospitalized and unreported patients in the given moment of time. The reported data are displayed in blue for visual

comparison.

https://doi.org/10.1371/journal.pone.0247182.g003
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to account for those asymptomatic and unreported symptomatic cases who still participate in

the disease transmission process.

Ideally, the model has to be: 1) flexible enough to incorporate the possible social and geo-

graphic characteristics of individuals and to provide the way to realistically represent the social

interactions and the disease transmission mechanisms; 2) simple enough to avoid the prob-

lems with parameterization, but able to capture the actual transmission patterns with the goal

of predictions and intervention studies; 3) utilize the available surveillance and public health

data in the best possible way. The best possible way in this context means, that all the informa-

tion from the data that can be used to answer the questions of interest are utilized, while the

number of assumptions within the model beyond the information available from the data is

the smallest possible that is necessary to implement the model.

In the case of COVID-19, an epidemic which has quickly evolved into a pandemic, the local

epidemic developments in every region are expected to have different dynamics influenced by

multiple region-specific factors. Thus, an agent based model which utilizes local settings is

likely superior to a global agent-based model in this setting and can be implemented with min-

imal inputs as long as local data are available. In this example, we chose regional data for the

state of Massachusetts, however we believe this framework and interactive tool could be

adopted and useful for small or middle size countries or other administrative districts within a

larger country, that have comparable reporting and data quality across different administrative

regions.

Conclusion

In this paper, we have presented a novel, localized agent-based model that can be used within

minimal input data, which is publicly available and tailored to the population distributions of

Massachusetts, USA. After calibration the model provided a good estimation of the actual inci-

dence, hospitalizations, and death rates, with the added benefit of estimating the number of

undetected infections in the population. Given the necessity for making decisions of easing or

ceasing quarantines that are specific to a state or county based on their reported case counts,

adaptation of this framework could prove to be very useful with efforts to reopen the economy,

while quantifying the disease burden posed by such decisions. In addition, this model could be

used for future outbreaks of other novel respiratory diseases to protect public health and possi-

bly designed tailored interventions of treatment and vaccination campaigns.

Supporting information

S1 Appendix. Model details. The details about the model formulation, parameterization, and

calibration.

(PDF)
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