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Abstract
1. Obtaining accurate estimates of disease prevalence is crucial for the monitoring 

and management of wildlife populations but can be difficult if different diagnostic 
tests yield conflicting results and if the accuracy of each diagnostic test is un-
known. Bayesian latent class analysis (BLCA) modeling offers a potential solution, 
providing estimates of prevalence levels and diagnostic test accuracy under the 
realistic assumption that no diagnostic test is perfect.

2. In typical applications of this approach, the specificity of one test is fixed at or 
close to 100%, allowing the model to simultaneously estimate the sensitivity and 
specificity of all other tests, in addition to infection prevalence. In wildlife sys-
tems, a test with near-perfect specificity is not always available, so we simulated 
data to investigate how decreasing this fixed specificity value affects the accuracy 
of model estimates.

3. We used simulations to explore how the trade-off between diagnostic test speci-
ficity and sensitivity impacts prevalence estimates and found that directional bi-
ases depend on pathogen prevalence. Both the precision and accuracy of results 
depend on the sample size, the diagnostic tests used, and the true infection preva-
lence, so these factors should be considered when applying BLCA to estimate 
disease prevalence and diagnostic test accuracy in wildlife systems. A wildlife dis-
ease case study, focusing on leptospirosis in California sea lions, demonstrated 
the potential for Bayesian latent class methods to provide reliable estimates under 
real-world conditions.

4. We delineate conditions under which BLCA improves upon the results from a sin-
gle diagnostic across a range of prevalence levels and sample sizes, demonstrating 
when this method is preferable for disease ecologists working in a wide variety of 
pathogen systems.
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1  | INTRODUC TION

Infection prevalence, or the fraction of individuals in a population 
that are infected with a pathogen at a given time, is a crucial met-
ric of pathogen dynamics within ecological systems (Buhnerkempe 
et al., 2015; Haydon, Cleaveland, Taylor, & Laurenson, 2002; Viana 
et al., 2014). Knowledge of infection prevalence can elucidate disease 
dynamics in a system, providing data to health professionals aiming 
to mitigate disease risk and to scientists seeking to understand key 
mechanisms. The true infection prevalence within an ecological sys-
tem is usually impossible to measure exactly but can be estimated 
by testing representative subsets of a population. However, it can 
be difficult to obtain large representative data sets to estimate dis-
ease prevalence in wildlife populations. Limitations including fund-
ing, personnel, regulatory restrictions, and the availability of tests 
appropriate to a specific study species typically determine which 
diagnostic tests can be used in a given wildlife system and how many 
individuals can be tested. Wildlife studies face additional challenges, 
as they are often restricted to the use of diagnostic tests whose ac-
curacy may not be known if the tests have been validated in domes-
tic animals, rather than the host species of interest (Moreno-Torres, 
Wolfe, Saville, & Garabed, 2016).

While diagnostic test accuracy is sometimes overlooked in favor 
of more immediate challenges such as obtaining representative 
samples, it can have substantial impacts on disease prevalence es-
timates. Diagnostic tests vary in their sensitivity (probability of de-
tecting true positives) and specificity (probability of detecting true 
negatives), so both individual diagnostic results and population-level 
prevalence estimates will vary depending on the tests used in a 
given system. Furthermore, a set of imperfect diagnostic tests may 
show conflicting results in the same individual (e.g., due to differ-
ences in test accuracy or what disease state the tests are measuring). 
Assessing the true infection status of individuals from imperfect in-
formation and using this information to estimate population prev-
alence is a challenge facing epidemiologists and disease ecologists 
worldwide.

To complicate matters further, when considering a test with 
continuous quantitative output, users must choose a diagnostic 
threshold that separates negative test results from positive re-
sults. A trade-off exists between sensitivity and specificity, such 
that this threshold can be lowered to make the test more sensitive 
(limiting the number of false-negative results) or raised to make the 
test more specific (limiting the number of false-positive results; 
Florkowski, 2008). Many tests that are conventionally viewed as bi-
nary, such as serology or even polymerase chain reaction (PCR), ac-
tually have underlying quantitative thresholds that could be tuned to 
maximize sensitivity or specificity, but not both. Disease ecologists 
and epidemiologists routinely use different thresholds for diagnostic 

assays, depending on their research aims and system characteristics 
(Almberg, Cross, Dobson, Smith, & Hudson, 2012).

In situations where careful choice of diagnostic threshold is 
not itself sufficient to improve prevalence estimates, a statistical 
method called Bayesian latent class analysis (BLCA) has been applied 
to facilitate estimates of infection prevalence and diagnostic test ac-
curacy (Gonçalves et al., 2012; Limmathurotsakul et al., 2012; Muma 
et al., 2007; Pan-ngum et al., 2013). When applying this technique, 
an individual's true clinical infection status is assumed to be a latent 
unobserved process. BLCA does not explicitly categorize each indi-
vidual as infected or uninfected. Rather, each tested individual has 
a probability of being infected or uninfected, given their observed 
combination of test outcomes and the accuracy of each test. The 
model integrates probabilistic information about the true infection 
status of all tested individuals to simultaneously estimate overall in-
fection prevalence, along with the sensitivity and specificity of each 
test, under the realistic assumption that no diagnostic test is perfect 
(Rindskopf & Rindskopf, 1986). Traditionally, BLCA methods assume 
conditional independence of test results, given the disease status 
of a tested individual. Recent research has addressed the issue of 
identifiability and potential for biases due to the underlying depen-
dence structure among test results, as well as approaches to mod-
eling conditional dependence and adding random effects to address 
these challenges (Albert & Dodd, 2004; Dendukuri & Joseph, 2001; 
Hadgu & Qu, 1998; Jones, Johnson, Hanson, & Christensen, 2010; 
Pepe & Janes, 2006; Qu, Tan, & Kutner, 1996). Since higher-order 
information (e.g., longitudinal sampling) is unlikely to be available for 
diagnostic tests in wildlife hosts, here we analyze the performance 
of BLCA under the assumption of conditional independence (Wang 
& Hanson, 2019). This assumption is reasonable when diagnostic 
tests measure distinct biological processes that are not expected 
to be substantially correlated (e.g., the presence of a pathogen in 
urine vs the antibody response to a pathogen in the bloodstream; 
Kostoulas et al., 2017), and this study assesses the application of 
BLCA in systems where this assumption is valid.

Bayesian latent class analysis has been used primarily to es-
timate disease prevalence and test accuracy in domestic animals 
(Basso et al., 2013; Boelaert, Aoun, Liinev, Goetghebeur, & Van der 
Stuyft, 1999; Hartnack et al., 2013; Mathevon, Foucras, Falguières, 
& Corbiere, 2017; Muma et al., 2007; Nielsen, Toft, & Ersbøll, 2004) 
or humans (Gonçalves et al., 2012; Limmathurotsakul et al., 2012; 
Pan-ngum et al., 2013; Schumacher et al., 2016), but it has also 
been applied sparsely in wildlife systems (Bronsvoort et al., 2008; 
Moreno-Torres et al., 2016; Verma-Kumar et al., 2012). The limita-
tions and biases from test sensitivity and specificity, and situations 
where BLCA improves upon single test estimates, have not previ-
ously been explored in the context of wildlife. Our study assesses 
the accuracy and potential for bias across a range of biologically 
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realistic sample sizes and prevalence levels by applying BLCA to 
simulated data. When using BLCA models, the specificity of the 
most accurate test is typically fixed at or close to 100% (Hartnack 
et al., 2013; Limmathurotsakul et al., 2012; Mathevon et al., 2017; 
Pan-ngum et al., 2013; Schumacher et al., 2016), which is often not 
the case in real-world conditions, particularly when dealing with 
wildlife. Our analysis relaxes this assumption, simulating diagnos-
tic test data using multiple diagnostic test ensembles to investigate 
BLCA efficacy as fixed test specificity decreases from 100% to 80%. 
In doing so, we also provide actionable guidance for situations where 
the investigators can choose the diagnostic threshold to tune the 
specificity of their fixed test.

To demonstrate the application of this method in a wildlife sys-
tem, we apply BLCA to Leptospira surveillance data from California 

sea lions (Zalophus californianus). The bacteria Leptospira interrogans 
serovar Pomona is one of the primary causes of strandings in this 
species, having caused cyclical outbreaks since the mid-1980s that 
are associated with high morbidity and mortality (Greig, Gulland, 
& Kreuder, 2005; Lloyd-Smith et al., 2007; Prager et al., 2013). 
Animals with the disease, known as leptospirosis, present with 
clinical signs associated with Leptospira-induced kidney dysfunc-
tion (Cameron et al., 2008). While detection of Leptospira DNA in 
the urinary tract (Polymerase Chain Reaction - PCR) is the defini-
tive diagnosis, obtaining samples to test via PCR is often impossi-
ble, so high antibody titers (Microscopic Agglutination Test - MAT) 
and serum chemistry markers indicative of Leptospira-induced 
kidney dysfunction are also utilized to detect clinical infections. 
We used BLCA to estimate the prevalence of clinical infections in 

F I G U R E  1   Infection status for a group of individuals relative to the sensitivity and specificity of test thresholds (top), and the 
values we chose for simulations relative to levels reported in the literature. (a) The true infection status (red circles = infected, blue 
triangles = uninfected) is plotted for hypothetical test results in a group of individuals. The x-axis represents a range of quantitative test 
results, with lower test results on the left and higher test results on the right. A threshold must be chosen, above which value a test 
result is considered positive. Thresholds that correspond to points A-E in b are shown as dashed black lines, demonstrating the trade-off 
between sensitivity (True Positives/(True Positives + False Negatives)) and specificity (True Negatives/(True Negatives + False Positives)). 
(b) Diagnostic test sensitivities and specificities previously reported in the literature (Alberg et al. 2004; Maxim et al. 2014), shown as black 
circles. For data simulations, the sensitivity/specificity values of test 1 and test 2 were set at 70%/70% and 80%/80%, respectively (shown 
as red squares). The fixed specificity provided to the Bayesian model was selected from points A-E (table on right)

(a)

(b)
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stranded California sea lions, along with test sensitivity and spec-
ificity, using results from these three diagnostic tests. We then 
simulated data using the parameter estimates from the sea lion 
data to assess BLCA estimates for prevalence and test accuracy 
under real-world sample sizes and testing conditions. Finally, we 
compared prevalence estimates from the BLCA model to what 
would be estimated from a single diagnostic test, to understand 
the circumstances under which the BLCA method is most worth-
while. In combination, analyses of the simulated data and results 
of the wildlife case study provide insights into the use and limita-
tions of BLCA in disease ecology.

2  | METHODS

The Bayesian latent class model used in this analysis requires binary 
test outcomes. Thus, tests that yield results on a continuous scale 
(e.g., serological titers or quantitative PCR Ct values) must be clas-
sified as positive or negative, based on whether the test result falls 
above or below a diagnostic threshold. This classification threshold 
can be selected to maximize sensitivity (Se) or specificity (Sp) and 
must be chosen carefully for each test (Figure 1a). We simulated 
results from three diagnostic tests, using a hypothetical diagnostic 
test ensemble by selecting pairs of sensitivities and specificities 
from a range of previously reported values for 193 medical tests 
in the literature (Alberg, Park, Hager, Brock, & Diener-West, 2004; 
Maxim, Niebo, & Utell, 2014; Figure 1b). Two of the tests (tests 1 
and 2) were assigned lower Se/Sp combinations (Figure S1b,c), rep-
resentative of more mediocre diagnostic tests reported in the lit-
erature. The remaining test (test 3) in the ensemble was assigned 
properties chosen across an arc of Se/Sp values from 100%/80% 
to 80%/100% (Figure 1b: points A-E), which corresponded to the 
highest Se/Sp combination of the three tests. This range was chosen 
because nearly one third of tests in the literature survey (n = 63/193) 
had both sensitivity and specificity > 80%, so we assumed biologists 
would usually have at least one diagnostic test that fell within this 
range. In each simulation, the specificity of test 3 (which was always 
the highest specificity of all three tests) was fixed in the BLCA model.

2.1 | Parameter selection

We chose a range of biologically realistic parameter sets, using each 
one to simulate diagnostic test data that were then analyzed using 
BLCA. Each parameter set included the sample size, sensitivity and 
specificity values for three hypothetical diagnostic tests and the “true” 
underlying infection prevalence in a hypothetical sample population. 
Tests 1 and 2 had Se/Sp fixed at 70%/70% and 80%/80%, respec-
tively (red squares in Figure 1b), and these values remained constant 
for all data simulations. Test 3 was selected sequentially from points 
A-E, such that the fixed specificity provided to the model decreased 
from 100% to 80% (A-E in Figure 1b). We simulated datasets using 
these five initial diagnostic test selections ((test1, test2) x (test A-E)), 

seven sample sizes (n = 20, 40, 80, 160, 320, 640 and 1,280) and 
three prevalence levels spanning a broad range of ecological scenar-
ios (10%, 50%, 90%), resulting in 105 unique parameter sets. To as-
sess whether observed patterns were influenced by the initial choices 
for tests 1 and 2 (which had Se:Sp ratios of 1:1), the following two 
alternate selections for these tests were used: Se/Sp for tests 1 and 
2 set to 90%/70% and 70%/90%, respectively (Figure S1b), and the 
Se/Sp for tests 1 and 2 set to 80%/60% and 50%/90%, respectively 
(Figure S1c). These alternative scenarios explore different Se:Sp ra-
tios as well as different overall quality of tests 1 and 2.

2.2 | Data simulation

For each parameter set (i.e., sample size, prevalence, and hypo-
thetical test combination), a number of individuals (equal to sample 
size*prevalence) were assigned the status infected, and all remaining 
individuals in the population were assigned the status uninfected 
(Figure 2a). Once infection status was set, a series of Bernoulli trials 
was used to simulate the outcome of each hypothetical diagnostic 
test. Among infected individuals, the probability of a positive result 
was equal to test sensitivity, and the probability of a negative result 
was equal to (1-Se). Among uninfected individuals, the probability of 
a positive result was equal to (1-Sp), and the probability of a negative 
result was equal to test specificity. These simulations generated a 
set of three binary test outcomes for each individual, assuming inde-
pendence among tests, with eight possible combinations of positive 
and negative test results (ranging from all negative to all positive). 
The number of individuals that fell into each of the eight possible 
test result combinations was counted (test profiles a-h; Figure 2b), 
and this vector was saved to input in the BLCA model. Test results 
were simulated 1,000 times for each set of parameters.

2.3 | Bayesian latent class analysis

Bayesian latent class analysis is a likelihood-based statistical method 
that estimates the prevalence of particular class types within a 
population sample. Here, individuals fall into one of eight observed 
classes (a-h), based on the profile of their diagnostic test outcomes 
(Limmathurotsakul et al., 2012; Figure 2b). Our model assumes the 
outcome of each diagnostic test is independent of the others, con-
ditional on the individual's underlying (and unknown) state with 
respect to pathogen infection and disease. Thus, the probability of 
obtaining a given diagnostic profile depends on the probability that 
an individual was truly infected (equal to population prevalence) and 
on the outcome of each diagnostic test given the underlying infec-
tion status. As sensitivity is defined as the probability of detecting 
true positives and specificity is defined as the probability of detect-
ing true negatives, the probability of three negative test outcomes 
(diagnostic profile a), is:
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1−Se3
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where π denotes prevalence, Se1 denotes the sensitivity of test 
1, Sp1 denotes the specificity of test 1, and so on. The first term 
in this expression represents the probability of being infected 
and having a false-negative result for all three tests, while the 
second term represents the probability of being uninfected and 
having a true-negative result for all three tests. Similar logic 
can be used to find the probability of each diagnostic profile 
(b-h, Figure S2), and the observed distribution of diagnostic 
profiles can be modeled by a multinomial likelihood, with prob-
abilities for each class given by {p(a),p(b),…p(h)} (Rindskopf & 
Rindskopf, 1986).

2.4 | Parameter estimation

We estimated parameters in a Bayesian framework using Markov 
chain Monte Carlo (MCMC). We ran three chains for 10,000 it-
erations each, with the first 5,000 steps discarded as burn-in. 
Uninformative priors (uniform distributions on [0,1]) were assumed 
for the prevalence, sensitivity of tests 1–3, and specificity of tests 
1 and 2 (Figure S2). The fixed specificity for test 3 (one value from 
points A-E; Figure 1b) and the frequency of each test profile type (fre-
quency of observations) were used as model inputs (Figure 2b). We 
modified Bayesian inference code (WinBUGS (Lunn, Thomas, Best, 

F I G U R E  2   Possible infection categories and test results for a sample population (a), and the workflow for assessment in Bayesian latent 
class analysis (b). (a) The relationship between sample size, prevalence, and the probability of a positive or negative result for three different 
diagnostic tests. For infected individuals, the probability of a given test result is proportional to the sensitivity (Se) of that test (top right). 
For uninfected individuals, the probability of a given test result is proportional to the specificity (Sp) of that test (bottom right). (b) Workflow 
diagram for Bayesian latent class analysis, taking results from data along with the fixed specificity of one test to obtain posterior probability 
estimates for all unknown (latent) parameters

(a)

(b)
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& Spiegelhalter, 2000)) from a previous study (Limmathurotsakul 
et al., 2012), and JAGS (Plummer, 2003) model estimation was per-
formed using the package R2jags (R2jags, Su, & Yajima, 2015) in R 
(R Foundation for Statistical Computing, 2016; version 3.3.2). We 
checked that the Gelman and Rubin statistic was < 1.1 to verify con-
vergence of all MCMC chains (Gelman, Carlin, Stern, & Rubin, 2003) 
and reported the median and marginal composite 95% credible in-
terval (CrI) for all estimated parameters. Prevalence estimates and 
95% CrI were computed for all hypothetical test sets (left panels of 
Figure 3, S3 and S4), and residuals for all estimated parameters were 
computed for the fixed test assuming the sensitivity and specificity 
combination at arc point C (Se3 = 0.95/Sp3 = 0.95; right panels of 
Figure 3, S3 and S4). We ran additional simulations using informed 
priors to determine how an investigator's prior knowledge or suspi-
cion of low, medium or high prevalence levels in a system would af-
fect the estimates of prevalence obtained from BLCA (π ~ beta(2,9), 

beta(9,9) and beta(9,2) for low, medium, and high prevalence, respec-
tively; Figure S5). Results were compared to the original estimates 
obtained using uninformative priors (Figure S6).

2.5 | Wildlife case study

To assess BLCA in a wildlife dataset, we analyzed results of three 
different tests used to determine Leptospira infection status in 
California sea lions admitted to The Marine Mammal Center 
(TMMC). TMMC is a marine mammal rehabilitation center that main-
tains a detailed database of health and medical diagnostic records 
for individual marine mammals stranding along the California coast. 
Clinical Leptospira infections are diagnosed by clinicians at TMMC 
using the following diagnostic criteria: high serum MAT antibody ti-
ters (>1:3,200) against serovar Pomona, Leptospira DNA present in 

F I G U R E  3   Parameter estimates 
at three true prevalence levels (10%, 
50%, and 90%). Left: Median prevalence 
estimates and 95% credible intervals 
(CrI) are shown for points A-E at a true 
prevalence of 10% (a), 50% (b), and 90% 
(c), with true prevalence shown as dashed 
black lines (y-axes scaled equally). Right: 
Residuals for all parameter estimates 
(prevalence, sensitivities for tests 1–3, 
specificities for tests 1 and 2) using 
simulated samples (n = 1,000) generated 
with fixed arc point C (test 3 fixed 
Se = 95% and Sp = 95%), with zero shown 
as dashed red line
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urine or kidney samples (tested via PCR; Wu et al., 2014), or serum 
chemistry markers indicative of kidney dysfunction (BUN > 100 mg/
dl, creatinine > 2 mg/dl, sodium > 155 meq/L and phosphorus > cal-
cium; Colagross-Schouten, Mazet, Gulland, Miller, & Hietala, 2002; 
Greig et al., 2005). In this system, we judged that conditional inde-
pendence among tests was a reasonable assumption, due to the dif-
ferent biological systems targeted by these three diagnostic tests 
(humoral immune response, presence of pathogen DNA in the uri-
nary tract, and measures of renal function, respectively). To mini-
mize the effects of clinical treatment on test outcomes, we selected 

only California sea lions at TMMC that had test results for all three 
Leptospira diagnostics from samples collected within one week of 
admission (n = 290; years: 2006–2016). We summed the total num-
ber of animals with each test result profile (the frequency of ob-
servations) and fixed the specificity of test 3 (PCR) to 97.2% based 
on a recent estimate for Leptospira in humans (Limmathurotsakul 
et al., 2012). While the PCR method utilized here was previously re-
ported with 100% analytic specificity in CSL urine or kidney tissue 
(Wu et al., 2014), we chose this slightly more conservative specificity 
level to reflect the possibility that sample contamination could lead 

BLCA Estimates from 
California sea lion data

Values selected for 
CSL simulated data CSL simulated data

Prevalence (π) 20.2% (15.6−25.5%) 20% 20.6% (15.8−26.2%)

Sensitivity – MAT 
(Se1)

64.4% (52.0−78.1%) 65% 64.0% (50.5−76.6%)

Sensitivity – SC 
(Se2)

61.1% (48.2−74.3%) 61% 60.0% (46.7−72.7%)

Sensitivity – PCR 
(Se3)

96.0% (86.4−99.9%) 96% 93.9% (90.3−99.6%)

Specificity – MAT 
(Sp1)

98.1% (95.8−99.6%) 98% 98.0% (95.3−99.7%)

Specificity – SC 
(Sp2)

93.2% (89.6−96.3%) 93% 92.9% (89.0−99.7%)

Specificity – PCR 
(Sp3)

NA (fixed at 97.2%) Fixed at 97.2% NA (fixed at 97.2%)

Note: These estimated values were chosen as set values for a CSL data simulation (middle). BLCA 
parameter estimates were then calculated from this simulated CSL data to see how well the model 
performed (right).

TA B L E  1   BLCA median parameter 
estimates and 95% CrIs obtained from 
three Leptospira diagnostic test results in 
California sea lions (left)

TA B L E  2   Comparison of prevalence estimates from BLCA versus a single test (sample size, n = 320)

Note: Both BLCA and single test estimates within 5% of true prevalence. Only BLCA estimate within 5% of true prevalence. The BLCA estimates were 
obtained using the original test 1 (Se1 = 70%/Sp1 = 70%) and test 2 (Se2 = 80%/Sp2 = 80%) settings, along with point A (left; Se3 = 100%/Sp3 = 80%), 
point C (middle; Se3 = 95%/Sp3 = 95%), or point E (right; Se3 = 80%/Sp3 = 100%). Single test estimates and 95% CI were obtained using 1,000 
Bernoulli trials weighted by the test Se/Sp for test A, C, or E alone. Scenarios where both BLCA and single test estimates were within 5% of the true 
value are shown in yellow, while scenarios where BLCA alone was within 5% of the true prevalence are shown in green.
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to rare false positives. Parameter estimation was conducted as de-
scribed above using R2jags, yielding median estimates with 95% CrIs 
for all unknown parameters.

To test model performance under these estimated real-world 
conditions, we simulated CSL data (n = 300) using our best parame-
ter estimates as known parameter values (“Values Selected for CSL 
Simulated Data” in Table 1), then used BLCA on the simulated CSL 
data to see how accurate model estimates were across 1,000 simu-
lations (Table 1). To assess when BLCA prevalence estimates would 
be preferable to those obtained using the single best diagnostic 
test, we compared BLCA estimates from our initial hypothetical test 
set (Figure 1b) to results generated solely from the single best test 
(points A, C, and E), which were simulated by Bernoulli trials as de-
scribed above (Tables 2 and S2).

3  | RESULTS

3.1 | Simulation study

For all simulated scenarios (i.e., all prevalence levels and all hypotheti-
cal 3-test combinations), BLCA prevalence estimates converged on the 
correct value as the sample size grew (Figure 3). There was some di-
rectional bias in prevalence estimates, particularly at low sample sizes, 
that varied depending on the true infection prevalence. Prevalence 
of infection was consistently overestimated when infections were 
rare (true prevalence = 10%) and to a lesser degree when infections 
were moderately common (true prevalence = 50%). At these preva-
lence levels, when we varied the specificity of fixed test 3 according to 
arc points A-E (Figure 1b), tests with higher specificity returned more 
accurate estimates at lower sample sizes, although credible intervals 
across these tests largely overlapped (Figure 3, S3 and S4; Table S1). 
These patterns were reversed when infections were common (true 
prevalence = 90%), with prevalence being slightly underestimated and 
higher sensitivity tests returning more accurate estimates at lower 
sample sizes, although again credible intervals across these tests 
largely overlapped (Figure 3, S3 and S4; Table S1).

When infections were rare (true prevalence = 10%), the 95% CrIs 
for prevalence did not contain the true value until sample size was 
relatively large (n ≥ 160; 95% CrIs for points D & E). At the largest 
sample sizes (n > 320) the true value was contained within the 95% 
CrIs for all points, and median prevalence estimates were within 
3% of the true value (in absolute terms). When true prevalence was 
moderate (50%), the true value was contained in the 95% CrIs at all 
sample sizes, and median prevalence estimates were within 8% of 
the true value at all sample sizes and within 2% at the highest sample 
sizes (n = 640 & n = 1,280; Table S1B. In contrast, at higher true prev-
alence (90%) where prevalence was underestimated at lower sample 
sizes, the 95% CrIs always contained the true value and prevalence 
estimates converged quickly to the true prevalence value across all 
hypothetical test sets (Figure 3c, S3C and S4C; Table S1C).

As with the prevalence estimate, the BLCA estimates of the sensi-
tivity and specificity of each test became more precise and accurate as 

sample sizes increased (right panels of Figure 3, S2 and S3). However, 
there were directional biases in these estimates, which exhibited more 
complex structure than the biases of prevalence estimates. Test sen-
sitivity tended to be underestimated when true prevalence was low, 
while specificity was underestimated at high prevalences (Figure 3, S2 
and S3). When infections were rare (true prevalence = 10%), specificity 
estimates were more accurate and precise across all sample sizes than 
sensitivity estimates, while sensitivity estimates were more accurate 
and precise than specificity estimates when infections were common 
(true prevalence = 90%; Figure 3, S2 and S3). The residuals of both sen-
sitivity and specificity estimates were generally symmetric, indicating 
little bias, when infection level was moderate (true prevalence = 50%; 
Figure 3, S2 and S3).

Considering the potential trade-off between sensitivity and 
specificity of a given test (i.e., from tuning the threshold value used 
to classify a result as positive; Figure 1), we found that the optimal 
parameters of the best test depend on infection prevalence. When 
true prevalence is low (10%) or moderate (50%), a fixed specificity 
of 1.0 of the best test (Point E) yields the most accurate estimate of 
prevalence (Figure 3a,b). However, when prevalence is high (90%), 
a fixed sensitivity of 1.0 of the best test (Point A) is preferable 
(Figure 3c). The influence of this trade-off is greatest at low preva-
lence (10%) and weakest at high prevalence (90%) where any Point 
(A-E) gives a reasonable prevalence estimate (Table 2).

These broad patterns remained the same regardless of the 
hypothetical test set used. That is, as the parameters of the two 
lower-quality tests change (Figure S1), the patterns of prevalence, 
sensitivity, and specificity estimation did not vary qualitatively 
(Figures S3 and S4). However, the quantitative results were notice-
ably worse (i.e., larger residuals and larger sample sizes needed for 
accuracy) when these two tests had lower sensitivity and specificity 
(Figure S4). When we used informative priors in the BLCA to rep-
resent investigator knowledge of the prevalence level, estimates of 
prevalence improved if the prior was close to the true prevalence 
level, but worsened if the prior was not close to the true prevalence 
value (Figure S6). Adjusting the prevalence prior did not qualitatively 
alter the estimates of other parameters.

3.2 | Wildlife case study

Results from the sea lion case study were concordant with our analy-
ses of the broader simulated data. Although disease prevalence was 
low in the sea lion system, our sample size was well within the range 
at which BLCA could produce accurate prevalence estimates using 
simulated CSL data. The estimated prevalence of clinical Leptospira 
infections in this sample of California sea lions was 20.2% (95% CrI, 
15.6%–25.5%; Table 1). Estimates of PCR, MAT and serum chemistry 
relative test accuracy were broadly consistent with expert knowl-
edge (Table 1). Marine mammal veterinarians consider PCR the best 
diagnostic test for leptospirosis in sea lions, whereas MAT and serum 
chemistry are known to be less sensitive and typically used as sec-
ond-line tests when urine samples cannot be obtained for PCR.
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We also simulated data to verify that BLCA was accurate when 
using parameters and sample sizes consistent with the best estimates 
returned by real CSL data. Using these simulated data, the median 
BLCA prevalence estimate was 20.6% (95% CrI, 15.8%–26.2%; Table 1; 
Figure S7B), and differed negligibly from the true input prevalence 
(20%). Sensitivity and specificity values were slightly underestimated, 
but always within 2.1% of the true value (Table 1). Although this test 
of simulated data returned very accurate estimates, the direction and 
magnitude of observed errors were consistent with the error struc-
tures reported above for data simulated using other parameters.

3.3 | Comparing BLCA to results of a single 
diagnostic test

The BLCA prevalence estimate for the California sea lion sample 
(20.2%) was very similar to the crude estimate obtained from PCR 
alone (62/290 positive; 21.4%). This prompted us to consider the 
marginal value of BLCA and whether it was worth the additional ef-
fort. In particular, we explored the circumstances under which the 
3-test BLCA prevalence estimates would improve upon results from 
a single best test, exploring the influence of the trade-off between 
sensitivity and specificity of the best test by considering points A, 
C, and E from our simulation analysis. At a sample size similar to our 
CSL case study (n = 320), prevalence estimates obtained using BLCA 
and using the single best test (points A, C, or E alone) were compara-
ble in most cases, but in several scenarios BLCA was clearly superior 
(Table 2). A single test at point A (Se3 = 0.8/Sp3 = 1) alone overes-
timated prevalence at low and mid true prevalence levels, while a 
single test at point E (Se3 = 1/Sp3 = 0.8) alone underestimated preva-
lence at mid and high true prevalence levels; in contrast, BLCA was 
accurate in both these scenarios (Table 2). Thus, the BLCA method 
can yield stabilizing estimates that are more robust to fluctuations in 
prevalence than estimates produced by any single test with unbal-
anced sensitivity and specificity (Tables 2 and S2). These stabilizing 
effects of BLCA would be particularly useful in a system with cyclical 
outbreaks.

When comparing BLCA to single test estimates across all sample 
sizes, these broad patterns held for larger sample sizes, but differed 
at lower sample sizes (n < 320; Table S2). Regardless of sample size, 
a balanced high-quality test with very high sensitivity and specificity 
(test C) is comparable to BLCA. However, at high sample sizes BLCA 
converges on the true value at all prevalence levels whereas test C 
alone converges on over- or under-estimates of prevalence. At 50% 
prevalence, test C converges on the true estimate, but this is due 
to canceling of symmetric errors from its identical sensitivity and 
specificity values.

Bayesian latent class analysis also usually outperformed es-
timates from a single test when test specificity or sensitivity was 
low (closer to points A or E; Figure 1b), but neither method worked 
well when prevalence, test specificity, and sample size were all low. 
Thus, in circumstances when sample size and disease prevalence are 
both low, we recommend choosing a diagnostic test threshold that 

optimizes test specificity, as this can improve the performance of 
both BLCA and of the single-test method (Table S2).

4  | DISCUSSION

Estimating infection prevalence is challenging in wildlife disease sys-
tems, where researchers are often confronted with limited sample 
sizes and imperfect diagnostic tests that lack species-specific vali-
dation. Here, we have explored the utility of Bayesian latent class 
analysis (BLCA) as a technique to improve estimates of prevalence 
and of diagnostic test sensitivity and specificity. We have assumed 
conditional independence among test results, which is reasonable 
for the biological system we examined due to differences in the 
biological systems targeted by our diagnostic assays and our lack of 
longitudinal sampling (Kostoulas et al., 2017; Wang & Hanson, 2019), 
but in situations where this is not the case the conditional de-
pendence structure should be considered (Albert & Dodd, 2004; 
Dendukuri & Joseph, 2001; Hadgu & Qu, 1998; Jones et al., 2010; 
Pepe & Janes, 2006; Qu et al., 1996). Using simulated data and a 
case study to explore the utility of BLCA, we demonstrate that the 
accuracy of prevalence estimates depends on multiple factors: the 
sample size being tested, the true prevalence in the study system 
and the sensitivity/specificity of the diagnostic tests being used. 
We compare BLCA prevalence estimates to those from a single test, 
demonstrating the stabilizing effects of the BLCA method under dif-
ferent sample sizes and prevalences. In addition, recognizing that 
many diagnostic tests have an intrinsic trade-off between sensitivity 
and specificity (which can be tuned by altering the threshold value 
used to define a positive test result), we show how the accuracy of 
prevalence estimates can be optimized depending on the epidemio-
logical context.

The precision and accuracy of parameter estimates increased 
with sample size across all simulations, providing accurate estimates 
at large sample sizes regardless of the true infection prevalence 
(Figure 1, S2, S3, S7). The use of informed priors has the potential 
to further improve prevalence estimates, highlighting the potential 
for this Bayesian framework to incorporate expert knowledge from 
the field. However, in the absence of accurate prior information the 
use of uninformed priors provides more stable prevalence estimates 
(Figure S6). We observed directional biases in the prevalence, sen-
sitivity, and specificity estimates depending on whether infections 
are common (high prevalence) or rare (low prevalence; Greiner & 
Gardner, 2000). For example, when sample size is relatively low, an 
overrepresentation of false positives can elevate prevalence esti-
mates when diseases are rare. Conversely, an overrepresentation of 
false negatives can bias prevalence estimates downward when dis-
eases are common.

Our work demonstrates the potential to improve the accuracy of 
prevalence estimates by altering the threshold for positivity for the 
highest quality test (Figure 1a). If results from the best test (the test 
with the fixed specificity provided to the BLCA model) are quanti-
tative, choosing a threshold that maximizes specificity will improve 
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prevalence estimate accuracy when infections are rare, while max-
imizing sensitivity will improve estimates when infections are com-
mon (Figure 3, S2 and S3; Table S2). This choice follows naturally, 
because higher specificity allows you to detect more true negatives, 
which are prevalent when infections are rare. In contrast, higher sen-
sitivity allows you to detect more true positives, which are prevalent 
when infections are common. In addition, this logic can guide the 
choice of single tests (or the choice of a threshold for a single test) to 
use for estimation of prevalence without the need for advanced sta-
tistical analysis: our work shows that maximizing test sensitivity for 
common diseases, or test specificity for rare diseases, can produce 
single test estimates of comparable accuracy to BLCA.

Analyzing our wildlife case study of Leptospira interrogans in 
California sea lions, we report new estimates for the sensitivity 
and specificity of key diagnostic tests in this system to explore 
the statistical power of BLCA for a given sample size. The samples 
used in this study span a ten-year period across a range of dif-
ferent epidemiologic conditions, so here our prevalence estimates 
reflect the prevalence in the sample of stranded animals rather 
than the prevalence in the wild population at any point in time. At 
a titer cutoff 1:3,200, our estimates for the sensitivity and spec-
ificity of MAT were 64.4% (95% CrI: 52%-78.1%) and 98.1% (95% 
CrI: 95.8%-99.6%), respectively, which differ from previous CSL 
estimates using this titer cutoff obtained from known positive and 
negative animals (Se = 100% and Sp = 100%; Colagross-Schouten 
et al., 2002). These previous estimates were likely idealized due 
to small samples and the study design (Greiner & Gardner, 2000), 
as the negative controls were born in captivity with no possibil-
ity of residual titers from a previous exposure, and the positive 
animals were selected based on clear clinical signs and renal le-
sions indicating leptospirosis. Diagnosis in wild animals is likely to 
be complicated by residual titers from previous exposures, or by 
chronic infections that are no longer associated with a high titer 
(Buhnerkempe et al., 2017). Due to these and other complicating 
factors, sensitivity and specificity are unlikely to be perfect in 
stranded wild animals.

This contrast highlights the influence of the underlying study 
population and the importance of considering system-specific 
characteristics and ecological context when utilizing BLCA. Test 
sensitivity and specificity estimates likely vary with underlying 
prevalence and sample size due to the probability of sampling in-
dividuals that are truly infected or truly uninfected, which in turn 
modulates the ratio of false positives to false negatives in the 
data. For example, at 90% true prevalence, most individuals will 
be true positives, so testing regimes will have the potential to pick 
up more true positives/false negatives and fewer true negatives/
false positives, leading to a higher estimated sensitivity and lower 
estimated specificity.

Broadly, we demonstrate that BLCA works well for estimat-
ing prevalence and test accuracy, but some caution is warranted 
because its performance does not always beat that of the single 
best available test. In particular, there are scenarios with low sam-
ple size and low-to-moderate prevalence where a single test with 

high specificity can yield more accurate prevalence estimates than 
BLCA. A rule of thumb, apparent in Table S2, is that this can hap-
pen when the expected number of infected individuals in the sam-
ple is ≤10. When the best test has lower specificity (e.g., Test A in 
Table S2), neither approach worked well if the expected number 
of infections is ≤20. In all other situations, prevalence estimates 
from BLCA are comparable to or better than estimates from a 
single diagnostic test, and this performance advantage increases 
as the highest quality diagnostic test decreases in sensitivity or 
specificity (i.e., moving toward points A or E). Furthermore, prev-
alence estimates made using BLCA will be more robust to changes 
in prevalence across cyclical epidemics than estimates made using 
a single test. Our data simulations provide quantitative insight into 
the relative performance of these approaches, to help research-
ers assess whether the additional effort of BLCA is worthwhile. 
In many circumstances, the BLCA method provides more accurate 
estimates than researchers would otherwise be able to obtain, 
making it a worthwhile tool that addresses many challenges faced 
by disease ecologists.
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