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Abstract: A new approach is proposed to detect the real-time gait patterns adaptively through
measuring the ground contact forces (GCFs) by force sensitive resistors (FSRs). Published
threshold-based methods detect the gait patterns by means of setting a fixed threshold to divide
the GCFs into on-ground and off-ground statuses. However, the threshold-based methods in the
literature are neither an adaptive nor a real-time approach. To overcome these drawbacks, this
study utilized the constant false alarm rate (CFAR) to analyze the characteristics of GCF signals.
Specifically, a sliding window detector is built to record the lasting time of the curvature of the GCF
signals and one complete gait cycle could be divided into three areas, such as continuous ascending
area, continuous descending area and unstable area. Then, the GCF values in the unstable area are
used to compute a threshold through the CFAR. Finally, the new gait pattern detection rules are
proposed which include the results of the sliding window detector and the division results through
the computed threshold. To verify this idea, a data acquisition board is designed to collect the GCF
data from able-bodied subjects. Meanwhile, in order to test the reliability of the proposed method,
five threshold-based methods in the literature are introduced as reference methods and the reliability
is validated by comparing the detection results of the proposed method with those of the reference
methods. Experimental results indicated that the proposed method could be used for real-time gait
pattern detection, detect the gait patterns adaptively and obtain high reliabilities compared with the
reference methods.

Keywords: ground contact forces; force sensitive resistors; threshold method; constant false detection
probability method

1. Introduction

Walking is the basic capability of human being to move from one gait cycle to another which
allows people to carry out their daily lives [1]. One complete gait cycle in human walking consists of
two main gait patterns, such as stance phase and swing phase. Specifically, stance phase is defined

Sensors 2018, 18, 3764; doi:10.3390/s18113764 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s18113764
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/18/11/3764?type=check_update&version=3


Sensors 2018, 18, 3764 2 of 14

when the foot is in contact with the ground, while swing phase is defined when the foot totally leaves
the ground [2]. Gait analysis is a useful means to quantify the state of the gait patterns, which can be
accomplished by a great number of sensor platforms, including force sensors [3,4], inertial sensors [5–8],
air pressure sensors [1], inclinometer sensors [9], foot switches [10] and electromyography (EMG)
sensors [11,12].

Among all the sensor platforms, force sensor platforms, such as force sensitive resistors (FSRs),
can represent the gold standard method for gait analysis [13]. FSRs can be mounted in shoe soles to
measure the ground contact forces (GCFs). The electrical resistance change of an FSR is proportional to
the GCF induced by human foot. As reported in Reference [1], each gait pattern has a unique GCF
pattern such that the measuring value changes of FSRs can be directly correlated to the gait patterns.

Generally, the division of gait patterns in force sensor platform is based on the threshold method
which sets a threshold to divide the GCF into on-ground and off-ground statuses. As described
by Smith et al. [14], 80% of the detection errors using FSRs was due to the setting of threshold
value such that many researchers presented their approaches to compute an appropriate threshold.
Mariani et al. [4] defined the threshold as 5% body weight with the result that the weight of each subject
should be measured before the experiments. Lopez-Meyer et al. [15] and Catalfamo et al. [16] took use
of the maximum and minimum GCFs of gait cycles to calculate the threshold, which meant that the GCF
should be post-processed after data acquisition. However, Lie Yu et al. [17] and Jing Tang et al. [18]
declared that the methods in Reference [4,15,16] were not adaptable to different people and different
walking speeds. On one hand, for Mariani method [4], different subjects were usually with different
body weights such that different thresholds should be computed for different subjects. Meanwhile,
no matter at what speed the subject walked, one constant threshold was set for the same subject in all
experiments. On the other hand, the Lopez-Meyer method [15] and Catalfamo method [16] could not be
used for real-time gait pattern detection because the maximum and minimum GCFs were obtained in
data post-processing. Therefore, Lie Yu et al. proposed the proportional method (PM) which calculated
the sums and proportions of GCFs for gait pattern detection. Two proportional factors were used
for all subjects in all experiments and this PM achieved high average reliability. Jing Tang et al. [18]
presented the self-tuning triple-threshold algorithm (STTTA) which could search out the maximum and
minimum GCFs in real time. Three initial threshold values were set for all subjects in all experiments
and the three thresholds would be adjusted to adapt the human walking. However, there existed an
obvious drawback for PM that one parameter in Reference [17] was determined by the attachment
between the shoe and the foot, which would cut down the detection accuracy of the whole system.
Additionally, the proposed STTTA in Reference [18] used three thresholds to calculate a new threshold
for the future walking gait cycle. Nevertheless, the calculation formulas were extremely simple which
only relied on the maximum and minimum GCFs in the current walking gait cycle.

In this paper, the constant false alarm rate (CFAR) is utilized to analyze the characteristic of the
GCF signals. Specifically, a sliding window detector is built to record the lasting time of the curvature
of the GCF signals and one complete gait cycle could be divided into three areas, such as continuous
ascending area, continuous descending area and unstable area. Then, the GCF values in the unstable
area are used to compute a threshold through the CFAR. Finally, the new gait pattern detection rules
are proposed which include the results of the sliding window detector and the division results through
the computed threshold. In order to test the detection reliability of the proposed method, five previous
approaches [4,15–18] in the literature were chosen as reference methods to obtain comparative results.

The aim of this study is to develop a real-time method to detect the gait patterns adaptively.
Specifically, this proposed method is irrelevant to subjects’ body weights and walking speeds.
To evaluate the availability and reliability of the proposed method, five published method are
introduced as references. The detection results of the proposed method are compared with the
reference methods.
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2. Method

2.1. Subjects

This study included twelve males and ten females of average age 23.1 ± 3.2 years and average
mass 68.2 ± 7.6 kg with no history of foot diseases or limitations. Before the experiment, the subjects
gave their written informed consent for participation in this study as the purpose was explained in
detail to each of them and their safeties could be ensured. These subjects were selected from the
postgraduate students of Wuhan University of Technology, which approved our research.

2.2. Measurement Principle of FSR Sensors

To validate our research, we designed a gait phase detection system as shown in Figure 1. Two sets
of FSRs (LOSON LSH-10, LOSON Instrumentation, Nankin, China) were severally embedded into
the insole of the ball and heel of each shoe. The FSRs signal were digitalized by a high resolution
of 16 bits AD converters at a sample frequency of 1000 Hz. Each FSR possesses a wide measuring
range of 0–200 kg with a high accuracy (including linearity and repeatability) of ± 0.5% full scale (FS).
As the FSR sensor outputs a weak micro-voltage-level signal, the output signal should be amplified
to a voltage-level signal. Meanwhile, a pressure tester (TLS-S1000W, Jinan Zhongchuang Industry
Test System Co., Ltd, Jinan, China) is used to calibrate the FSRs such that the amplified output signal
within a range of 0–5 V correlates with the measured mass of 0–200 kg.
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2.3. Description of Walking Experiments 

Figure 1. FSRs placed inside each shoe in the ball and in the heel and a data acquisition board is used
to collect the GCF signal.

After data collection, the acquired FSR signals were filtered by Butterworth low pass filter with a
cut-off frequency of 200 Hz to eliminate the unnecessary high frequency noise.

2.3. Description of Walking Experiments

After sensor calibrations, the experiments were implemented to test the reliability of CFAR for
gait pattern detection. Then, each subject was asked to perform 5 trials to wear the designed shoes to
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walk. The five trials were performed on treadmill for 30 s per trial at a designated constant speed of
2 km/h, 3 km/h, 4 km/h, 5 km/h and 6 km/h in turn.

2.4. Gait Pattern Detection Algorithm

For human walking, a complete gait cycle could be divided into two main phases such as
stance-phase and swing-phase. Stance-phase means that the foot is in contact with the ground, while
swing-phase means that the foot is off the ground. As two FSR sensors are mounted severally inside
the heel and ball of shoe, it would result in that only one point (i.e., the ball or the heel) is contacting
the ground and the other point is off the ground. As a result, single point contact could lead to
the transition detection between the two phases. To be specific, the transition from swing-phase
to stance-phase is Heel-Strike, while the transition from stance-phase to swing-phase is Heel-Off.
To differ from the two transitions, stance-phase is renamed as Full-Stance (i.e., two points are in
contact). To distinguish these gait patterns, the proposed algorithm is presented in the following.

2.4.1. Statistical Characteristic Analysis

The gait pattern detection mainly focuses on the division of on-ground and off-ground statuses
through setting a threshold. As a result, this paper carries out the characteristic analysis of the
two statuses. Firstly, a virtual threshold is set to divide the GCFs into on-ground and off-ground
statuses. Figure 2a demonstrates the division made by the virtual threshold in a complete gait cycle.
The maximum value in this complete cycle divides the GCFs distinguished as on-ground status into
two intervals, including [A B] and [B C] as shown in Figure 2a. Figure 2b depicts the difference
of GCFs. The curvature in Reference [A B] interval is basically positive, which lasts a long time.
Meanwhile, the curvature in Reference [B C] interval is mainly negative, which also lasts a long time.
However, the curvature polarity (i.e., positive or negative) in Reference [C D] interval is unstable and
the determined curvature polarity would change when lasting a short time.
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Figure 2. (a) Using virtual threshold to divide the GCF into on-ground and off-ground statuses, (b) The
differential GCFs are used to identify the References [A B], [B C] and [C D].

Based on these reasons, a sliding window detector could be built to record the lasting time of the
curvature of the GCF signals. Given two types of sliding windows, such as ascending window and
descending window, which can be described as{

AW(1 : NA) = [0, 0, · · · , 0]
DW(1 : ND) = [0, 0, · · · , 0]

(1)
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where Aw is the ascending window function and NA is the size of AW. Meanwhile, DW is the descending
window function and ND is the size of DW.

When the present point (i.e., noted as F) of GCF signals comes, its derivative is computed and
noted as dF. When the dF value is positive, the ascending window would be sliding but the descending
window remains unchanged, which could be written as

AW(1 : NA − 1) = AW(2 : NA)

AW(NA) = 1
DW(1 : ND − 1) = DW(2 : ND)

DW(ND) = 0

(2)

On the other hand, when the dF value is negative, the descending window would be sliding but
the ascending window remains unchanged.

AW(1 : NA − 1) = AW(2 : NA)

AW(NA) = 0
DW(1 : ND − 1) = DW(2 : ND)

DW(ND) = 1

(3)

Then, the numbers of “1” in the two window are counted, which are separately noted as CA and
CD. CA is the number of “1” in the ascending window, while CD is for descending window.

Finally, count limits LA and LD are set for CA and CD, respectively. When CA (or CD) is larger
than LA (or LD), it can be considered that the curvature lasts a long time. Additionally, when the CA
is smaller than LA and the CD is smaller than LD, it can be considered that the curvature lasts a short
time. When proper values are chosen for these parameters, the GCFs signals can be processed in the
Figure 3. However, the [A’ B’] and [B’ C’] intervals could not be considered as on-ground status. As a
result, this statistical characteristic analysis would lead to false detection such that further research
should be carried out.
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2.4.2. Constant False Alarm Rate and Threshold Computation

For all of the relating studies, the set threshold is closer to the GCFs differentiated as off-ground
status. Therefore, threshold computation should be made after [C’ D’] interval is searched using sliding
window detector. The error between GCF value at point D’ and the computed threshold would lead to
false detection. As a result, CFAR is used to make up this drawback.

It is assumed that H0 is the detection result of GCF identified as true off-ground status and H1

is the detection result of GCF identified as true on-ground status. Meanwhile, D0 represents that the
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GCF is detected as off-ground status, while D1 represents that the GCF is detected as on-ground status.
In this paper, the threshold value is calculated based on the analysis of [C’ D’] interval which can
be distinguished as off-ground status. Therefore, it would happen that the division results obtained
by the computed threshold are detected as on-ground statuses, while the true detection results are
off-ground statuses. Then, the false detection probability in this case can be expressed as

PF = P(D1|H0) =
∫ ∞

T
p(x|H0)dx (4)

where PF is the false detection probability and P(D1|H0) is the probability that judges H0 as D1.
Meanwhile, x is the GCFs happening in the [C’ D’] interval, T is the detection threshold and P(x|H0) is
the probability density function.

As shown in Figure 4, the unfiltered x in the [C’ D’] interval is subject to normal distribution.
However, the filtered x obeys the Rayleigh distribution as pictured in Figure 5. Therefore, the P(x|H0)
can be described as

p(x|H0) =
x

σ2 e(−
x2

2σ2 ) (5)

where σ the signal density of x. Substituting the Equation (5) into Equation (4), the false detection
probability can be rewritten as

PF =
∫ ∞

T

x
σ2 e(−

x2

2σ2 )dx = e(−
T2

2σ2 ) (6)

Then, the detection threshold T can be obtained in the following.

T =
√
−2σ2 InPF (7)

When the [C’ D’] interval is searched through the sliding window detector, the detection threshold
would be computed immediately at point D.’ In Rayleigh distribution, σ is proportional to the average
of x, which can be expressed as

σ =

√
2
π

x (8)

where x is the average value of x in Reference [C’ D’] interval. The GCF values after D’ point would be
compared to the detection threshold T to divide the GCFs into on-ground and off-ground statuses.
As shown in Figure 6, [A” B”] and [B” C”] are the continuous ascending and descending areas for the
next gait cycle, respectively. Meanwhile, A” and D’ are the same point. In point A” (or D’), a threshold
is computed according to Equation (7). Then, the status division can be made, which can be stated
as follows.

S =

{
1, F ≥ T
0, F < T

(9)

where F is the GCF after D’ (or A”) point. For S, “1” indicates an on-ground status and “0” indicates an
off-ground status. As depicted in Figure 6, this calculated threshold divides the next gait cycle with the
result that two intersection points E’ and F’ are obtained. Based on the division formula in Equation
(9), [A” E’] and [F’ C”] intervals are both judged as off-ground status. However, the PF value would
affect the threshold value according to Equation (7), which could be exactly described in Figure 7.
The GCFs marked in blue are detected to be in unstable area. The lines marked in red and green are the
computed threshold using two different PF values. Therefore, the gait patterns could be distinguished
according to the rules in Table 1, when both the status divisions of ball and heel are made.
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Table 1. Rule of gait pattern detection. 

Heel Ball 

Gait Pattern 
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Algorithm 
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Threshold 

Results of 
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Algorithm 
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Threshold 
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Figure 6. For the first gait cycle, the sliding window detector divides GCFs into continuous ascending
area, continuous descending area and unstable area. The GCFs in the unstable area from the first gait
cycle are used to compute a threshold for the next gait cycle according to the CFAR.
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Table 1. Rule of gait pattern detection.

Heel Ball

Gait PatternResults of Sliding
Window Algorithm

Status Division by
Detection Threshold

Results of Sliding
Window Algorithm

Status Division by
Detection Threshold

[C’ D’] interval —

[C’ D’] interval
—

Full-Stance

[A’ C’] interval
1 Heel-Strike

0 Swing-Phase

[C’ D’] interval —

[A’ C’] interval

1 Heel-Off

0 Swing-Phase

[A’ C’] interval
1 1 Full-Stance

0 0 Swing-Phase

2.5. Evaluation of the Results

In order to test the reliability of the proposed method, reference methods should be determined.
As well known, the Lopez-Meyer method had been compared with the “GAITRite system” and
acquired a comparative and reliable confidence of 95% [15]. Therefore, not only the Lopez-Meyer
method [15] but also the other methods [4,16–18] in the literature were introduced as reference methods.
The gait pattern detection rules of these methods were severally presented in Reference [17,18].
Hence, the reliability of this study is determined by comparing the detection results between the
reference methods and the proposed algorithm. Finally, the obtained reliabilities were processed to
measure the “test-retest reliability” by taking several measurements on each subject. The analysis is
performed with the intraclass correlation coefficient (ICC) proposed by Bartko [19].

3. Results

3.1. Selection of Coefficients

Before the experiments, the sizes (i.e., NA and ND) and lengths (i.e., LA and LD) of the ascending
and descending windows should be optimized. Firstly, one million of the GCF points judged as
off-ground status through the reference methods were used to test the probability that the GCF
points failed to be divided into unstable area. Secondly, the traversing search method was used to
optimize these parameters, which are shown in Figures 8a and 9a. The testing probability is smaller,
the parameter selection is better. When the testing probability is zero, a great many of parameter
combinations could be figured out. On the other side, the optimization algorithm should obey two
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conditions that LA is smaller than NA and LD is smaller than ND. Therefore, the testing probability
results of being zero are extracted and described in Figures 8b and 9b. Bigger value of these parameters
would lead to the lag to detection results such that the smallest parameter values in Figures 8b and 9b
is chosen. As a result, optimum values of LA = 35, NA = 38, LD= 36 and ND = 40 were used.
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To determine the highest reliability of the proposed algorithm, PF were optimized using the
traversing search method. Choosing the data from 5 subjects as training data, optimum values of
PF = 20.5 were used, which is shown in Figure 10.
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3.2. Results of Gait Pattern Detection

As shown in Table 2, the proposed algorithm was highly reliable when compared with the
five reference methods. The average reliabilities were 90.15%, 89.83%, 89.45%, 89.98% and 88.90%
when compared with the TAM [16], Lopez-Meyer [15], PM [17], STTTA [18] and Mariani method [4],
respectively. The average ICC of reliabilities was 0.56, which proved to be fair according to the
guidelines of Cicchetti [20] and moderate according to the guidelines of Koo and Li [21].

Table 2. Reliability of the proposed method compared with the reference methods.

Subject Gender Compared with
TAM Method

Compared with
Lopez-Meyer Method Compared with PM Compared with

STTTA
Compared with
Mariani Method

1 Male 91.49% 92.52% 89.85% 88.91% 86.61%
2 Male 90.89% 92.49% 92.31% 91.23% 89.63%
3 Male 86.33% 89.43% 86.35% 92.42% 91.07%
4 Male 90.26% 91.15% 87.96% 85.56% 88.89%
5 Male 88.68% 90.81% 91.23% 89.98% 89.62%
6 Male 90.96% 85.66% 90.96% 91.32% 90.06%
7 Male 92.01% 91.57% 85.65% 92.04% 90.65%
8 Male 89.46% 91.81% 92.12% 87.99% 86.30%
9 Male 89.17% 86.55% 88.64% 88.27% 87.96%
10 Male 85.32% 91.22% 92.31% 84.42% 87.34%
11 Male 89.27% 94.93% 84.69% 89.81% 86.58%
12 Male 88.38% 91.96% 88.96% 88.84% 89.39%
13 Female 86.22% 89.04% 92.35% 92.29% 90.25%
14 Female 87.61% 85.78% 91.20% 91.70% 89.11%
15 Female 90.53% 89.32% 88.99% 90.52% 85.98%
16 Female 96.41% 88.95% 89.62% 90.59% 87.19%
17 Female 90.12% 89.81% 86.34% 91.23% 88.67%
18 Female 92.11% 89.61% 91.37% 93.12% 90.96%
19 Female 94.22% 91.27% 89.91% 90.06% 91.41%
20 Female 91.75% 86.33% 87.65% 88.93% 89.47%
21 Female 91.91% 86.12% 90.03% 87.32% 88.58%
22 Female 91.49% 92.52% 89.85% 93.05% 90.05%

Average — 90.15% 89.83% 89.45% 89.98% 88.90%

In this paper, the collected GCF data were processed through the proposed algorithm. The GCFs in
the left ball and heel were severally pictured in Figure 11a, b along with the unstable area and computed
threshold marked. Then, the GCFs status division was made through the Equation (9), which was
depicted in Figure 11c,d. Similarly, the processing results of the right foot were demonstrated in
Figure 12. It was qualitatively illustrated in Figure 13 where the gait patterns were identified according
to the rules in Table 1.

Sensors 2018, 18, x FOR PEER REVIEW  11 of 15 

 

Table 2. Reliability of the proposed method compared with the reference methods. 

Subject Gender 

Compared 

with TAM 

Method 

Compared with 

Lopez-Meyer 

Method 

Compared 

with PM 

Compared 

with 

STTTA 

Compared with 

Mariani Method 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

Male 

Male 

Male 

Male 

Male 

Male 

Male 

Male 

Male 

Male 

Male 

Male 

Female 

Female 

Female 

Female 

Female 

Female 

Female 

Female 

Female 

Female 

91.49% 

90.89% 

86.33% 

90.26% 

88.68% 

90.96% 

92.01% 

89.46% 

89.17% 

85.32% 

89.27% 

88.38% 

86.22% 

87.61% 

90.53% 

96.41% 

90.12% 

92.11% 

94.22% 

91.75% 

91.91% 

91.49% 

92.52% 

92.49% 

89.43% 

91.15% 

90.81% 

85.66% 

91.57% 

91.81% 

86.55% 

91.22% 

94.93% 

91.96% 

89.04% 

85.78% 

89.32% 

88.95% 

89.81% 

89.61% 

91.27% 

86.33% 

86.12% 

92.52% 

89.85% 

92.31% 

86.35% 

87.96% 

91.23% 

90.96% 

85.65% 

92.12% 

88.64% 

92.31% 

84.69% 

88.96% 

92.35% 

91.20% 

88.99% 

89.62% 

86.34% 

91.37% 

89.91% 

87.65% 

90.03% 

89.85% 

88.91% 

91.23% 

92.42% 

85.56% 

89.98% 

91.32% 

92.04% 

87.99% 

88.27% 

84.42% 

89.81% 

88.84% 

92.29% 

91.70% 

90.52% 

90.59% 

91.23% 

93.12% 

90.06% 

88.93% 

87.32% 

93.05% 

86.61% 

89.63% 

91.07% 

88.89% 

89.62% 

90.06% 

90.65% 

86.30% 

87.96% 

87.34% 

86.58% 

89.39% 

90.25% 

89.11% 

85.98% 

87.19% 

88.67% 

90.96% 

91.41% 

89.47% 

88.58% 

90.05% 

Average — 90.15% 89.83% 89.45% 89.98% 88.90% 

In this paper, the collected GCF data were processed through the proposed algorithm. The 

GCFs in the left ball and heel were severally pictured in Figure 11a, b along with the unstable area 

and computed threshold marked. Then, the GCFs status division was made through the Equation (9), 

which was depicted in Figure 11c,d. Similarly, the processing results of the right foot were 

demonstrated in Figure 12. It was qualitatively illustrated in Figure 13 where the gait patterns were 

identified according to the rules in Table 1. 

 

Figure 11. Status division for left ball and heel. (a) GCFs in the left heel, (b) GCFs in the left ball,  

(c) Status division for GCFs in the left heel, (d) Status division for GCFs in the left ball. 

Figure 11. Status division for left ball and heel. (a) GCFs in the left heel, (b) GCFs in the left ball,
(c) Status division for GCFs in the left heel, (d) Status division for GCFs in the left ball.



Sensors 2018, 18, 3764 11 of 14

Sensors 2018, 18, x FOR PEER REVIEW  12 of 15 

 

 

Figure 12. Status division for right ball and heel. (a) GCFs in the right heel, (b) GCFs in the right ball, 

(c) Status division for GCFs in the right heel, (d) Status division for GCFs in the right ball. 

 

Figure 13. (a) Results of gait pattern detection for left foot, (b) Results of gait pattern detection for 

right foot. 

On one side, the detection results of the proposed method were depicted in Figures 11–13. On 

the other side, the detection results of the reference methods were not provided due to the high 

reliabilities which would lead to high similarity comparing with Figures 11–13.  

3.3. Real-Time Application for Gait Pattern Detection 

In this gait pattern detection system, the sampling frequency was set to be 1000 Hz. After data 

acquisition in each time, the data processing, including the sliding window detector, threshold 

computation based on CFAR, status division and gait pattern detection, could be actualized within 

one sampling period. In fact, the time delay between data acquisition and detection result in one 

running cycle was less than 1 ms. As a result, the proposed algorithm can be used for gait pattern 

detection in real time. 

4. Discussion 

4.1. Advantages of the Research 

When compared with the five reference methods, the proposed method is highly reliable (as 

seen in Table 2) and can identify the gait patterns in real time. The proposed method can be 

adaptable to different subjects with different body weights at different walking speeds, because 

adaptive thresholds are calculated according to the GCF signal characteristic analyzed though the 

Figure 12. Status division for right ball and heel. (a) GCFs in the right heel, (b) GCFs in the right ball,
(c) Status division for GCFs in the right heel, (d) Status division for GCFs in the right ball.

Sensors 2018, 18, x FOR PEER REVIEW  12 of 15 

 

 

Figure 12. Status division for right ball and heel. (a) GCFs in the right heel, (b) GCFs in the right ball, 

(c) Status division for GCFs in the right heel, (d) Status division for GCFs in the right ball. 

 

Figure 13. (a) Results of gait pattern detection for left foot, (b) Results of gait pattern detection for 

right foot. 

On one side, the detection results of the proposed method were depicted in Figures 11–13. On 

the other side, the detection results of the reference methods were not provided due to the high 

reliabilities which would lead to high similarity comparing with Figures 11–13.  

3.3. Real-Time Application for Gait Pattern Detection 

In this gait pattern detection system, the sampling frequency was set to be 1000 Hz. After data 

acquisition in each time, the data processing, including the sliding window detector, threshold 

computation based on CFAR, status division and gait pattern detection, could be actualized within 

one sampling period. In fact, the time delay between data acquisition and detection result in one 

running cycle was less than 1 ms. As a result, the proposed algorithm can be used for gait pattern 

detection in real time. 

4. Discussion 

4.1. Advantages of the Research 

When compared with the five reference methods, the proposed method is highly reliable (as 

seen in Table 2) and can identify the gait patterns in real time. The proposed method can be 

adaptable to different subjects with different body weights at different walking speeds, because 

adaptive thresholds are calculated according to the GCF signal characteristic analyzed though the 

Figure 13. (a) Results of gait pattern detection for left foot, (b) Results of gait pattern detection for
right foot.

On one side, the detection results of the proposed method were depicted in Figures 11–13. On the
other side, the detection results of the reference methods were not provided due to the high reliabilities
which would lead to high similarity comparing with Figures 11–13.

3.3. Real-Time Application for Gait Pattern Detection

In this gait pattern detection system, the sampling frequency was set to be 1000 Hz. After
data acquisition in each time, the data processing, including the sliding window detector, threshold
computation based on CFAR, status division and gait pattern detection, could be actualized within one
sampling period. In fact, the time delay between data acquisition and detection result in one running
cycle was less than 1 ms. As a result, the proposed algorithm can be used for gait pattern detection in
real time.

4. Discussion

4.1. Advantages of the Research

When compared with the five reference methods, the proposed method is highly reliable (as seen
in Table 2) and can identify the gait patterns in real time. The proposed method can be adaptable to
different subjects with different body weights at different walking speeds, because adaptive thresholds
are calculated according to the GCF signal characteristic analyzed though the sliding window detector
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and the CFAR. As reported in Reference [17], the attachment between the shoe and foot would lead to
bigger change of GCF magnitude in the unstable area such that the PM reliability would be affected to
be lower. However, this situation would not happen in this proposed method as the lasting time of the
differential GCF is used by the sliding window detector to identify the GCF in the unstable area.

The STTTA [18] and the proposed method can both achieve to adaptively identify the gait patterns
in real time. However, the STTTA can identify the gait patterns using the GCFs data in the current
period. Meanwhile, the proposed method applied the sliding window detector using the GCFs data
in a lasting time which consisted of 35 (or 36) sampling periods. Specifically, for STTTA, when the
GCFs in the heel or ball are judged to be off-ground status, a sudden change of GCF signal would
lead to the GCF value to be larger than the threshold and judged to be on-ground status. Therefore,
misdetection would happen for STTTA in this situation. Nevertheless, this situation will not happen
in this proposed method, because the gait pattern is distinguished and given from the analysis of
detection results in 35 (or 36) sampling periods.

According to the detection rules in Table 1, when the GCFs are identified to be in the unstable area,
these GCF signals are judged to be off-ground status. When the heel and ball are both judged to be
off-ground status, the specific gait pattern is swing phase. In swing phase, if the foot trembles leading
to relatively larger GCF values, the sliding window detector would still identify the GCF signals to be
in unstable area. Meanwhile, the CFAR algorithm would figure out a larger threshold to avoid the
GCF signals identified as on-ground status.

For lower exoskeleton robot systems, the gait pattern detection plays an extremely important
role. The results of gait pattern detection correlate with motion intention of the wearer such that the
robotic leg automatically move to stand or swing. Meanwhile, the lower exoskeleton robot systems
need real-time and adaptive gait pattern detection for different wearers to move at different walking
speeds. This proposed method would meet this need.

The detection results were obtained from able-bodied subjects and a cyclic gait pattern sequence
could be analyzed for healthy people using this research. However, the gait pattern sequence of
hospital patients would differ from that of healthy people. Therefore, this research would help with
the diagnosis of some persons with walking injuries, diseases or limitations.

Most studies [5,22,23] used the accelerometers and gyroscopes to obtain the acceleration and
velocity for gait pattern detection. Some gait patterns in these studies did not appear in this paper, such
as toe-off and initial-contact. If we want to identify the toe-off phase on this force platform, another
FSR should be added to be mounted inside the top of the shoe. Meanwhile, a relatively small threshold
was set for the GCF in the heel to detect the initial-contact.

4.2. Limitation of the Research

When the subject is walking at a faster speed, the lasting time of the GCF signals identified to
be in the unstable area would get less such that the data points in this area reduce. In this situation,
the data points in this area would not obey Rayleigh distribution strictly. To overcome this drawback,
sampling frequency should be guaranteed to be high enough.

As reported in Reference [18], the cut-off frequency of Butterworth low pass filter is 10 Hz.
However, the GCF signal should not be filtered excessively in this proposed method, which would
destroy the data distribution characteristic.

When the subject jumps, both feet are judged to be swing-phase. In the walking experiments,
subject jumping was rarely observed and only occurred when the subjects were running at a sufficiently
rapid pace.

5. Conclusions

This paper uses the statistical theory to detect the gait patterns in real time. The statistical theory
consists of sliding window detector and CFAR algorithm. The sliding window detector divides the
GCFs into three areas, such as continuous ascending area, continuous descending area and unstable



Sensors 2018, 18, 3764 13 of 14

area. Then, the CFAR algorithm calculated adaptive thresholds according to GCF signals identified
to be in the unstable area. The status division would be made according the adaptive threshold
and the area division result. Finally, the gait pattern could be distinguished based on the detection
rules. Experimental results indicated that the proposed method could be used for real-time gait
pattern detection, detect the gait patterns adaptively and obtain high reliabilities compared with the
reference methods.
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