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Fluoxetine-induced perinatal
morbidity in a sheep model
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Meghan K. Connelly1, Milo C. Wiltbank1,2 and

Laura L. Hernandez1,2*

1Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI,

United States, 2Endocrinology and Reproductive Physiology Program, University of

Wisconsin-Madison, Madison, WI, United States

Selective serotonin reuptake inhibitors (SSRI) are the most common

antidepressants used by pregnant women. However, adverse pregnancy

outcomes have been described in women taking SSRI during

pregnancy—placental lesions, premature birth, poor neonatal adaptation.

We aimed to investigate the e�ects of fluoxetine (Prozac®; most commonly

used SSRI) treatment during the last month of gestation on pregnancy

complications, placental and neonatal health in a non-depressed sheep

model. On day 119 ± 1 postbreeding (experimental day 0; E0) of a 151-day

expected gestation, Hampshire ewes were randomly assigned to receive

fluoxetine (n = 9 ewes, 15 lambs; daily intravenously treatment with 10

mg/kg on E0 and E1 and 5 mg/kg daily thereafter until parturition) or to a

control group (n = 10; 14 lambs; vehicle only). Blood samples from ewes

were collected throughout the experimental period and postpartum; blood

from lambs were collected postpartum. Analysis of variance was used for

statistical analysis. Fluoxetine treatment reduced placentome growth during

the last month of pregnancy. Gestation length was decreased by 4.5 days

in fluoxetine-treated ewes. Birthweight was reduced in lambs exposed

to fluoxetine in utero; weights remained decreased until postnatal day 3.

Placentome diameter by birthweight ratio was not di�erent between groups

suggesting that the decreased placentome diameter was accompanied by

decreased lamb birthweight. During the first week postnatal, lambs exposed

to fluoxetine in utero had decreased blood pH and decreased total carbon

dioxide, bicarbonate, and base excess and increased lactate (days 3–6),

collectively indicative of metabolic acidemia. Additionally, ionized calcium

was decreased between postnatal days 0 to 4 in lambs exposed to fluoxetine

in utero. Using a non-depressed animal model clearly defines a role for

SSRI on the occurrence of perinatal complications and neonatal morbidity.

The decreased placentome diameter, shortened gestation, decreased

birthweight, decreased calcium levels, and neonatal acidemia suggest the

occurrence of intrauterine growth restriction. The persistence of neonatal

acidemia for several days postpartum suggests poor neonatal adaptation to

extrauterine environment.
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intrauterine growth restriction, neonatal morbidity, preterm labor, acid-base balance,
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Introduction

Selective serotonin reuptake inhibitors (SSRI) are the

primary class of antidepressants prescribed to treat depression

in pregnant women and fluoxetine (Prozac R©), the first SSRI

introduced to the market, is still one of the most popular

antidepressants worldwide (1). Approximately 15% of pregnant

women suffer from depression and 8–13% are prescribed

antidepressants during gestation (2, 3). Although SSRI use

during pregnancy has increased in the past 20 years, numerous

studies have described an increase in adverse outcomes for

both mother and infant related to SSRI use (4–6). However,

interpretation of these adverse pregnancy outcomes in women

is confounded by the effects of underlying depression itself (5).

Circulating serotonin is primarily transported by platelets

upon its uptake by serotonin transporter (SERT). Inhibition

of SERT by SSRI leads to decreased platelet concentrations of

serotonin (as measured in serum or whole blood samples) while

plasma concentrations are increased (7, 8). Elevated plasma

concentrations of serotonin during SSRI treatment potentially

alter placental function. The involvement of serotonin in

intrauterine growth restriction (IUGR) has been investigated (9–

11). Serotonin is a potent vasoconstrictor; therefore increased

serotonergic signaling decreases uterine/placental vascular

perfusion (12, 13) giving rise to placental complications such as

placental insufficiency, the main cause of IUGR (10, 14). Indeed,

placentae from women undergoing SSRI treatment during

pregnancy have several lesions of malperfusion in the maternal

and fetal sides of the placenta along with decreased birthweight

(15). However, the effects of SSRI on placenta size/growth,

another landmark of IUGR (16, 17), are still poorly understood.

Neonatal disorders associated with intrauterine exposure

to SSRI are numerous and associated with increase

neonatal morbidity (4, 5, 18). Besides fluoxetine’s effects

on neurodevelopment (19, 20), treatment during pregnancy

is related to increased neonatal risk for adverse respiratory

and cardiovascular functions (21, 22). The potential

decreased uterine/placental vascular perfusion associated

with compromised neonatal respiratory and cardiovascular

functions caused by maternal SSRI treatment during pregnancy

may result in inadequate oxygen and carbon dioxide exchange

in the peripartum period. However, little is known about the

effects of intrauterine exposure to SSRI on neonatal blood gas

and acid-base homeostasis.

Because of the potential adverse effects of SSRI on

placental function and the neonatal cardiorespiratory system,

we investigated the effects of fluoxetine exposure during the last

month of gestation on placental growth, pregnancy outcomes,

and neonatal health in an ovine model. We aimed to (1) explore

the role of fluoxetine on the occurrence of IUGR, decreased

gestation length, decreased birthweight, neonatal morbidity and

(2) evaluate the effect of fluoxetine on placental growth in a

non-depressed animal model. We hypothesized that fluoxetine

treatment during late pregnancy (1) decreases gestation length,

(2) causes IUGR and (3) affects neonatal health.

Materials and methods

Animal management

Timed-bred multiparous Hampshire ewes (4.4 ± 0.4 years

old) were obtained from the Arlington Sheep Research Unit

from the University of Wisconsin-Madison. Beginning on day

112 ± 1 postbreeding, 20 pregnant ewes were housed in

individual pens at the Livestock Laboratory at the University of

Wisconsin-Madison and maintained at a constant temperature

at 18◦C and a 14/10 hour light/dark cycle. All ewes received

ad libitum access to water and were individually fed haylage,

whole-shell corn, and mineral supplement based on live weight

according to National Research Council Nutrient Requirements

for pregnant ewes (23). After 7 days postpartum, ewes and

lambs returned to the Arlington Sheep Research Unit and were

grouped housed in an open shelter under natural light.

On day 117 ± 1 postbreeding, jugular catheters were placed

in all ewes for intravenous treatment and blood collection. The

catheter was aseptically placed, fixated to the neck and protected

by a bandage. Catheter patency wasmaintained during the entire

period of treatment/ blood collection.

Ewes were pregnant with a range of one to three fetuses;

the average number of fetuses was not different between groups

(p= 0.5; 1.6± 0.2 vs. 1.8± 0.2). Delivery was assisted as needed

and lambs were fed colostrum by assisted nursing or bottle-fed

fresh colostrum from their dam.

Experimental design

On day 119 ± 1 postbreeding (exp. day 0) of a 151 day

expected gestation, ewes were randomly assigned to control or

fluoxetine groups. Fluoxetine-treated ewes received fluoxetine

hydrochloride (C845, AK Scientific, Union City, California,

USA) at 10 mg/kg on exp. days 0 and 1 and at 5 mg/kg

daily thereafter until parturition. Fluoxetine dosage was based

on a previous experiment from our laboratory aiming to be

representative of systemic fluoxetine concentrations in humans.

Lyophilized fluoxetine was reconstituted daily in ethanol and

diluted into 0.9% NaCl saline (07983-02, Hospira, Lake Forest,

Illinois, USA) to the appropriate concentration for each ewe

based on body weight. Final ethanol concentration was <3.5%.

Body weight was assessed weekly and fluoxetine dose was

adjusted accordingly. Ewes in the control group received saline

+ ethanol at similar ethanol concentration to fluoxetine-treated

ewes. All ewes were treated at a continuous infusion rate of

200mL for 15min using an automated mini pump (Heska

Vet/IV 2.2, Heska, Loveland, Colorado, USA).
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Transabdominal ultrasonography

Placentome (functional unit of placenta in sheep) diameter

was evaluated by transabdominal ultrasonography (MindrayZ5,

Nanshan, China; 7.5 MHz transducer) (24). A baseline

assessment was made prior to treatment (exp. day −1) followed

by weekly assessments thereafter (E7, 14, and 21). At least three

placentomes were measured per ewe in each evaluation.

Blood and milk collection

Blood samples from ewes were collected from jugular

catheters immediately before each treatment during the

prepartum period and for 6 days postpartum. An additional

blood sample from ewes was collected within 30min of

parturition. Lambs had a jugular blood sample collected within

25min of birth (before colostrum intake) and daily for the 6 days

postpartum. Blood samples were immediately used for blood gas

analysis; remaining blood was centrifuged at 2,000 g for 15min

and serum was stored at −20◦C until assayed. Colostrum was

collected within 30min of parturition (before lamb intake) and

milk was collected on postpartum day 6.

Hormone assays and blood gas analysis

Serum serotonin was determined by EIA (IM1749, Beckman

Coulter, Czech Republic). The intra- and inter-assay CV were

4.2 and 7.4%, respectively. Serum lactate was determined using

Catachem reagents (C454-01, Oxford, Connecticut, USA) on

ChemWell-T analyzer. The intra-assay CV was 3.1%. Colostrum

and milk calcium concentrations were determined as described

(25). The intra-assay CV was 8.0%.

Blood gas analysis was carried out immediately after

jugular blood collection using a portable clinical analyzer (i-

STAT, Abbott Laboratories, Abbot Park, Illinois, USA) with a

CG8+ cartridge. Blood pH, partial pressure of carbon dioxide,

bicarbonate, total carbon dioxide, base excess, and ionized

calcium were analyzed. Since venous blood was collected,

oxygen saturation and oxygen partial pressure data were

not used.

Statistical analysis

All statistical analysis was performed using SAS (version

9.4; SAS Institute Inc., Cary, North Carolina, USA). Data

were analyzed with PROC MIXED procedure using one-

way ANOVA and two-way ANOVA for repeated measures.

Tukey HSH was used for post hoc comparisons. Studentized

residuals with deviations from assumptions of normality and/or

homogeneity of variance were transformed into square root,

logarithms, or ranks. Survival analysis was assessed with PROC

LIFETEST usingWilcoxon test. A probability of≤0.05 indicated

a difference was significant and a probability between >0.05

and ≤0.1 was considered a tendency for significance. Data are

presented as the mean ± standard error of mean (SEM) unless

otherwise indicated.

Results

A fluoxetine-treated ewe with triplets had a foot abscess,

stopped eating haylage, and was treated with antibiotics for 5

days during prepartum; therefore, this ewe was not included

in the analysis. The same ewe had dystocia; one of the lambs

was stillborn and the other two died within 18 h of birth.

Anatomopathological findings suggested pneumonia and sepsis.

Two lambs (one lamb per ewe) from saline-treated ewes with

twin gestation were stillborn due to dystocia. Data from these

animals were not used in the final analysis. Overall, 10 control

and 9 fluoxetine-treated ewes and 14 and 15 lambs from

saline and fluoxetine groups, respectively, were included in the

final analysis.

Fluoxetine treatment decreased serum serotonin

concentrations in ewes and lambs (Figure 1). Serotonin

concentrations were greater in lambs than in their respective

dam on postnatal day 0 (P < 0.0007) for both control and

fluoxetine groups. However, fluoxetine did not affect the

neonatal/maternal ratio of serotonin. Additionally, the decrease

in serum serotonin concentrations between control and

fluoxetine groups was similar for ewes and lambs (82.9 and

81.6% reduction relative to control, respectively).

In the cotyledonary placenta of sheep, maternal-fetal

exchange occurs exclusively at the placentome, the functional

unit of placenta in ruminants (24). Placentome diameter was

similar (P > 0.1) between groups before onset of treatment

(not shown). After the onset of fluoxetine treatment placentome

growth significantly decreased in fluoxetine-treated ewes while

it increased in control animals (Figure 2). Mean placentome

diameter was 9.5% smaller (P = 0.07) in ewes treated with

fluoxetine than controls, although there was no difference in

placentome diameter (exp. day 21) by lamb birthweight ratio

indicating that reduced placentome growth was accompanied by

reduced fetal growth.

Fluoxetine-treated ewes lost weight (P = 0.0026) compared

to controls during the first week of treatment but had similar

weight gain as controls from Day 7 until parturition (Figure 2).

Similarly, maternal feed intake was decreased (P = 0.0005) in

the fluoxetine group only during the first week of treatment

(4.1 ± 0.04 and 3.6 ± 0.1 kg/day averaged from exp. day

0 to 7 for control and fluoxetine groups, respectively; not

shown). In the control group, placentome diameter by maternal

weight ratio increased during the 21-day treatment period;

conversely, it decreased in fluoxetine-treated ewes indicating
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FIGURE 1

Serotonin concentrations. (A) Serum serotonin concentrations in ewes before treatment (baseline) and after parturition. Days from beginning of

treatment until parturition varied between 26 to 34 days for the control group and 24 to 31 days for the fluoxetine group. (B) Pecentage change

in serum serotonin conentrations in ewes between baseline and after parturition. (C) Serum serotonin concentrations in lambs. Blood sample on

postnatal day 0 was collected before colostrum ingestion. (D) Serum serotonin concentrations in ewes and lambs relative to control group on

postnatal day 0. (E) Neonatal/maternal ratio of serum serotonin concentrations on postnatal day 0; serotonin concentratations in each lamb was

divided by serotonin concentrations in their respective dam. *Indicates significant di�erence between groups.

reduced placentome growth was occurring even when ewes were

gaining weight.

Fluoxetine treatment decreased mean gestation length

(Figure 3). Lamb weight was reduced in lambs born to

fluoxetine-treated ewes at birth and on postnatal days 1–3

(Figure 4). Lamb weight gain until day 35 was not different

between groups.

Fluoxetine treatment did not significantly affect maternal

pH and blood gas status on postnatal days 0 (shortly after

parturition) and 6 (Table 1). Maternal lactate was increased

in the fluoxetine group only immediately after parturition.

However, lambs born to fluoxetine-treated ewes had overall

decreased blood pH during the evaluated period (Figure 5).

Additionally, total carbon dioxide, bicarbonate and base excess

were decreased in lambs from fluoxetine-treated ewes. For

serum lactate, there were overall significant effects of treatment

and day and an interaction indicating increased lactate in

fluoxetine lambs on postnatal days 3–6.

Maternal concentrations of ionized calcium were not

different between control and fluoxetine groups (Figure 6).

Similarly, total calcium concentration was not different between

groups in the colostrum (P > 0.1; 3.7 ± 0.4 vs. 2.5 ± 0.2

ng/dL) or milk on day 6 postpartum (p > 0.1; 1.8 ±. 0.2 vs.

1.5 ± 0.1 ng/dL). Nevertheless, ionized calcium in the newborn

lamb was decreased (P = 0.06) at birth and overall (P = 0.08)

during postnatal days 0–6 (Figure 6). An overall analysis from

postnatal days 0–4 found ionized calcium concentrations were

decreased (P = 0.01) in lambs born to fluoxetine-treated ewes

than controls.

Discussion

Understanding the effects of maternal medication on

pregnancy complications and neonatal outcomes is vital to

comprehensively assess the risk of perinatal exposure to

psychotropic medication on maternal and newborn wellbeing

during the peripartum period. Findings from the present study

are especially relevant because they clearly establish a role

for fluoxetine treatment during gestation on the occurrence

of perinatal complications and extend previously known

effects of in utero exposure to fluoxetine into the postpartum

period. More specifically, findings from the present study

support the hypotheses that fluoxetine treatment during late

pregnancy (1) decreases gestation length, (2) causes IUGR

(decreased placentome growth and decreased birthweight) and
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FIGURE 2

Placentome diameter. (A) Placentome diameter throughout experimental period relative to pretreatment. (B) Boxplot of placentome diameter

on experimental day 21 (gestational day 140 ± 1). Boxplot depicts median, 10th, 25th, 75th, and 90th percentile. (C) Placentome diameter by

lamb birthweight ratio. (D) Maternal weight change from baseline. (E) Placentome diameter by maternal weight ratio change from baseline.

Baseline maternal weight and placentome diameter were assessed on experimental day −1 (gestational day 118 ± 1). *indicates significant

di�erence between groups and # indicates a tendency for significance.

FIGURE 3

Pregnancy length. (A) Survival analysis depicting number of animals giving birth each day. The 50% point is shown. (B) Mean gestation length.

(C) Boxplot of gestation length. Boxplot depicts median, 10th, 25th, 75th, and 90th percentile.
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FIGURE 4

Lamb weight. (A) Boxplot of neonatal birthweight. Boxplot depicts median, 10th, 25th, 75th, and 90th percentile. (B) Mean lamb birthweight. (C)

Lamb weight gain. (D) Lamb weight during the evaluated period. *Indicates significant di�erence between groups and # indicates a tendency for

significance.

TABLE 1 Maternal acid-base status.

Outcomes Saline

(n= 10)

Fluoxetine

(n= 9)

P-value

Postnatal day 0

pH 7.508± 0.01 7.439± 0.04 0.14

Partial pressure of carbon

dioxide, mmHg

33.1± 1.1 35.2± 3.7 0.6

Bicarbonate, mmol/L 23.5± 2.5 23.4± 1.6 0.9

Total carbon dioxide, mmol/L 27.2± 0.8 25.0± 1.3 0.2

Base excess, mmol/L 3.3± 0.9 0.0± 1.7 0.1

Lactate, mmol/L 3.2± 0.7 7.0± 1.6 0.02

Postnatal day 6

pH 7.485± 0.01 7.478± 0.02 0.8

Partial pressure of carbon

dioxide, mmHg

39.5± 1.2 39.3± 0.9 0.9

Bicarbonate, mmol/L 29.7± 0.7 29.0± 0.9 0.6

Total carbon dioxide, mmol/L 30.8± 0.8 30.1± 0.9 0.6

Base excess, mmol/L 6.2± 0.8 5.6± 1.2 0.9

Lactate, mmol/L 1.7± 0.4 2.8± 0.8 0.2

(3) affects neonatal health (neonatal acidemia, hyperlactemia,

and hypocalcemia). Furthermore, the decreased capacity of the

neonate to establish adequate acid-base balance in the present

study extends previously reported short-term intrauterine

fluoxetine-induced fetal acidemia (26) to neonatal acidemia

during the first week of life in neonates exposed to fluoxetine

in utero.

Increased plasma and/or placenta serotonin content are

associated with placenta pathology and IUGR in humans and

animal models: idiopathic IUGR in humans (10, 11, 27);

serotonin or serotonin precursor treatment in rodents (28, 29);

SSRI treatment in humans (4, 6, 15), mice (30–32), and sheep

(present study); SERT null mouse model (33, 34). Increased

serotonin signaling caused decreased blood perfusion to the

placenta (13, 35) resulting in abnormal placenta function and

growth (19). Similarly, women undergoing SSRI treatment

during gestation (36) and pregnant rats treated with 5HTP

(serotonin precursor) (28) exhibit decreased placental weights.

In the present study, the functional area of the placenta was

reduced due to fluoxetine treatment—a strong indication of

IUGR (37, 38). The reduced uterine blood flow (26) and

decreased placenta growth/size (28, 36) in addition to altered

placenta morphology (15) caused by fluoxetine treatment might

be the cause of placental insufficiency and IUGR resulting

in decreased newborn weight. Placental insufficiency is an

important cause of preterm birth (39). Accordingly, fluoxetine-

induced placental insult leading to placental insufficiency is

likely associated with the increased incidence of preterm birth

in women and the shorter gestation length in sheep exposed

to fluoxetine.

Fluoxetine-induced decrease in uterine artery blood flow

has been associated with decreased partial pressure of oxygen

and oxygen saturation of hemoglobin, as well as fetal acidemia

accompanied by increased partial pressure of carbon dioxide

(26). Although lambs are normally born in an acidotic state

(40, 41), intrauterine exposure to fluoxetine caused further

reductions in neonatal blood pH and this wasmaintained during

the first week of life. Hypoxia-induced neonatal acidosis after

parturition is a clinical indicator of placental insufficiency (42).

Fluoxetine-induced fetal acidemia has similarities to respiratory

acidosis since there is increased partial pressure of carbon
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FIGURE 5

Lamb acid-base status. (A) pH. (B) Total carbon dioxide. (C) Bicarbonate. (D) Base excess. (E) Partial pressure of carbon dioxide. (F) Lactate.

*Indicates significant di�erence between groups.

dioxide perhaps due to reduced diffusion of carbon dioxide

from fetal to maternal circulation related to reduced placental

blood flow. Conversely, the postnatal acidemia is quite different

since there is no change on partial pressure of carbon dioxide.

In addition, the decreased bicarbonate and base excess are

consistent with metabolic acidosis suggesting an effect of

increased plasma serotonin on kidney function as it has been

shown (28). Similarly, the increased lactate on postnatal days 3–

6 may be related to altered renal function (28) or hypoxia due

to respiratory distress commonly related to in utero exposure to

SSRI (43).

The similar reduction in serum serotonin concentrations in

ewes and lambs highlights the capacity of fluoxetine to inhibit

fetal/neonatal SERT, thereby, increasing plasma serotonin and

possibly giving rise to serotonin toxicity/syndrome in newborns

exposed to serotonergic drugs as it has been reported (44–48).

Other SSRI with reduced placental transfer may causemoremild

symptoms (49). Additionally, although persistent pulmonary

hypertension of the newborn is the most recognizable

complication from in utero SSRI exposure (5, 18), we described

less commonly reported SSRI-induced homeostatic imbalance—

neonatal acidemia, hyperlactemia, and hypocalcemia. Neonatal

providers should be aware of possible outcomes to discern

between serotonin syndrome, drug withdraw, and other SSRI-

related perinatal morbidity (45, 50).

Most studies in women have failed to determine whether

adverse pregnancy outcomes are related to the use of SSRI

or with depression itself (5). However, the observed outcomes

in this ovine model clearly establishes a role for fluoxetine in

perinatal complications independent of the effects of depression
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FIGURE 6

Ionized calcium (iCa) concentrations. (A) Maternal levels of iCa at parturition and 6 days postpartum. (B) Boxplot of neonatal concentrations of

iCa after lambing. Boxplot depicts median, 10th, 25th, 75th, and 90th percentile. (C) Concentrations of iCa in lambs during days 0–6 of age.

and highlights possible perinatal complications that arise from

maternal use of fluoxetine. In a recent report, only moderate and

high doses of SSRI taken during entire gestation were related to

preterm birth while low doses or dose reduction/discontinuation

during the first trimester did not (43). Along with the present

results, it seems likely that SSRI exposure primarily during

late pregnancy is the main driver of preterm birth. Of special

relevance, <30 days of treatment during late gestation reduced

pregnancy length and increased neonatal morbidity.

Although it was not investigated in the present study, SSRI

use has been associated with other pregnancy complications

such as increased risk of gestational hypertension, preeclampsia,

and postpartum hemorrhage. Interestingly, SSRI-induced

increased serotonin may be involved in the occurrence of

these conditions. As a vasoactive hormone, increased plasma

serotonin affect blood pressure and may lead to hypertension

as reported in patients taking SSRI (51). Additionally, SSRI

increases the risk for preeclampsia likely due to altering

uteroplacental blood perfusion (52). Noteworthy, gestational

hypertension, preeclampsia, and SSRI use during gestation

increase the risk of preterm birth (2, 5, 51, 52). On a similar

note, COVID-19 infection has also been associated with

preeclampsia, preterm birth, and low birthweight in infants.

It has been suggested that the effects of COVID-19 infection

are likely associated with uteroplacental vasoconstriction

and endothelial disfunction due to SARS-CoV-2 modulation

of renin-angiotensin-aldosterone system by binding to

angiotensin-converting enzyme 2 (53, 54). The pathophysiology

of uteroplacental blood perfusion and its impact on preterm

birth under different scenarios such as SSRI use, gestational

hypertension, preeclampsia, and COVID-19 needs to be

addressed to improve maternal and fetal health. Lastly, the

decreased platelet serotonin content caused by SSRI use may be

related to the increased risk for postpartum hemorrhage because

platelet serotonin plays an important role in platelet aggregation

and vasoconstriction (55, 56). Accordingly, SSRI use has been

associated with abnormal bleeding (55).

The main strengths of this study are related to the

animal model. Although rodent models are widely used in

biomedical research, similarities between humans and sheep

(number of fetuses per gestation, fetal intrauterine development,

and stage of fetal organ maturation at birth) as opposed

to humans and mice (57) make sheep a superb animal

model for studies of pregnancy that may allow more direct

translation to human medicine (14, 58, 59). Because this

sheep model recapitulated several findings associated with

fluoxetine exposure during pregnancy in women (3, 4, 6,

43), it should be considered for further investigation of

the mechanistic effects of fluoxetine on pregnancy outcomes

and neonatal heath. The ovine model has been widely used

to study IUGR (14, 58, 59) but our study emphasizes

the power of this model in understanding pharmaceutical

effects on placental development, pregnancy, and neonatal

outcomes. Specifically, our experiment further supports the

use of the ovine model in translational pregnancy studies

for investigating mechanistic actions of fluoxetine on the

regulation of placental function and fetal development and

to explore preclinical implementation of preventive therapies

to overcome the adverse effects. Furthermore, the rapid onset

(within 7 days) of reduction of placental size in this model

can be useful to identify SSRI-dependent and independent

early placental changes, physiologic mechanisms, and possibly

placental markers of placental insufficiency that culminate

with decreased placental growth, fetal growth restriction, and

preterm birth for future clinical triage of pregnancies at

greater risk.
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A limitation of our study is the difference in normal

blood values (pH, lactate, blood gases, calcium) between

human babies and lambs which challenges a direct comparison

between species. Additionally, we did not investigate the

underlying cause of fluoxetine-induced fetal/neonatal acidemia

and hypocalcemia. Lastly, while the intravenous administration

of the drug allowed consistent delivery of the desired amount of

drug it does not represent the pharmacokinetics of absorption of

fluoxetine in humans taking the drug orally.

In conclusion, maternal fluoxetine treatment during

late gestation reduced placental growth, caused IUGR, and

decreased gestation length similar to the effects of fluoxetine

treatment in pregnant, depressed women. Additionally, lambs

exposed to fluoxetine in utero exhibited metabolic acidemia

and hypocalcemia during the first week of life, as observed in

preterm and IUGR babies. However, more than recapitulating

findings in women, we established a role for fluoxetine in

perinatal complications and neonatal morbidity in our non-

depressed sheep model shedding light on the interpretation of

the effects of SSRI on pregnancy outcomes in women previously

obscured by the effects of depression itself.
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