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Cancer treatment is a significant challenge for the global health system, although various
pharmacological and therapeutic discoveries have been made. It has been widely
established that cancer is associated with epigenetic modification, which is reversible
and becomes an attractive target for drug development. Adding chemical groups to the
DNA backbone andmodifying histone proteins impart distinct characteristics on chromatin
architecture. This process is mediated by various enzymes modifying chromatin structures
to achieve the diversity of epigenetic space and the intricacy in gene expression files. After
decades of effort, epigenetic modification has represented the hallmarks of different cancer
types, and the enzymes involved in this process have provided novel targets for antitumor
therapy development. Epigenetic drugs show significant effects on both preclinical and
clinical studies in which the target development and research offer a promising direction for
cancer therapy. Here, we summarize the different types of epigenetic enzymes which
target corresponding protein domains, emphasize DNA methylation, histone
modifications, and microRNA-mediated cooperation with epigenetic modification, and
highlight recent achievements in developing targets for epigenetic inhibitor therapy. This
article reviews current anticancer small-molecule inhibitors targeting epigenetic modified
enzymes and displays their performances in different stages of clinical trials. Future studies
are further needed to address their off-target effects and cytotoxicity to improve their
clinical translation.
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INTRODUCTION

Epigenetics is rising to prominence in molecular cell biology as an
evolutionary mechanism by which external factors have
intermediate-term effects on gene expression without changing
the underlying genetic sequence (Rodenhiser and Mann, 2006;
Handel et al., 2010). The epigenetic modification includes, but
does not limit to, DNA methylation of cytosine–guanine base
(CpG) motif and a wide range of histone modifications, including
methylation, acetylation, phosphorylation, sumoylation, and
ubiquitination (Esteller, 2007; Herranz and Esteller, 2007).
Epigenetics is a significant driver of biological complexity and
has a role in developing many diseases (Feinberg and Irizarry,
2010; Flavahan et al., 2017; Feinberg, 2018). For example,
silencing of tumor suppressor genes or activation of oncogenes
by DNA methylation or histone modifications contributes to the
onset of a diversity of cancers (Gronbaek et al., 2007). To date, the
most well-established therapeutic field of epigenetics is cancer, in
which DNA methylation, histone modification, and abnormal
expression of microRNA have all been linked to tumor
development (Shi et al., 2003; Yen et al., 2016). In this review,
we summarize the basic principles manipulating the
abovementioned epigenetic pathways and highlight the
evidence of the promising clinical and preclinical results using
small-molecule inhibitors against chromatin regulators for cancer
treatment.

Epigenetic Modifications and Human
Diseases
Epigenetics is one of the fastest developing fields in biology
(Nepali and Liou, 2021). Recent achievements highlight the
accelerated development of epigenetics, such as the definition
of a human DNA methylome at single-nucleotide resolution, the
various discoveries of histone variants and modifications, the
study of the CpG island in the genome, and the progress of
genome-wide nucleosome positioning maps (Baldi, 2019). It is
necessary for the same genotype to raise numerous different
phenotypes so that epigenetic marks can persist during the
development and can be passed on to the offspring. The
potential location of epigenetic marks includes DNA
methylation, histone modification, and nucleosome location.
They are the key to regulating gene and noncoding RNA
expression (Miranda Furtado et al., 2019). As a result, the
research of these mutations in epigenetic markers and
epigenetic mechanisms associated with diseases has been
launched. A comprehensive understanding of the epigenetic
mechanisms, their interactions, and changes in health and
disease has become an important research topic. The
importance of epigenetics in maintaining normal development
is reflected in that many diseases occur when the wrong
epigenetic markers are introduced or added at the wrong time
or place (Ganesan et al., 2019). It is displayed by searching the
keyword “epigenetics” on PubMed; it displays that there were
around 200 articles published in 1999, but more than 54, 00 in
2021. Thus far, efforts in epigenetic research have mainly focused
on cancer, but as the field has grown, it has provided new insights

into other types of diseases (Angarica and Del Sol, 2017;Wu et al.,
2019). Considering the global incidence of obesity, it cannot be
explained only by genetic factors, environmental factors are more
likely to be the driving factors. Epigenetics is one of the essential
mechanisms which link environmental factors with gene
expression changes. Since the year of 2008, research on the
role of epigenetics in T2D has begun to develop (Ling and
Rönn, 2019). In 2013, an epigenetic association study of
obesity indicated that the DNA methylation difference of
obese subjects was greater than that of lean subjects.
Moreover, this study identified some CpG sites associated with
obesity. Also, it showed that both differential methylation and
differential variability could predict obesity and the reliability is
about 70% (Xu et al., 2013).With the breakthrough in technology,
it is possible to initiate epigenomic analysis on a large scale (Li
et al., 2016; Azangou-Khyavy et al., 2020). Dayeh et al. found
altered DNA methylation of 1,649 CpG sites annotated to 843
genes in islets from 15 T2D cases versus 34 controls. Out of these
genes, other 102 exhibited differential gene expression in the islets
from T2D donors (Dayeh et al., 2014). CDKN1A, PDE7B, and
SEPT9 belong to the genes with decreased DNA methylation and
increased gene expression in T2D islets (Dayeh et al., 2014).
Therefore, the development of epigenetics would provide an open
field for the discovery of targets for prediction and therapeutics in
human diseases (Portela and Esteller, 2010).

Epigenetics and Cancer
Epigenetics participates in all stages of cancer development
(Bates, 2020). Achievements of the Human Genome Project
(HGP) have provided thousands of new targets in cancer
treatment (International Cancer Genome et al., 2010).
However, the HGP did not explain the difference in gene
expression during cancer development. The effect of
epigenetics in cancer has raised the attention of scientists
(Park and Han, 2019). Genetic and epigenetic mutations
participate in tumorigenesis and metastasis by controlling the
interaction between tumor suppressor genes with oncogenes. In
contrast to genetic mutations, epigenetic mutations regulated
gene expression without changing the genome sequence
(Nebbioso et al., 2018). The development of epigenetic
research provides insight for cancer diagnosis, treatment, and
improvement of drug resistance (Verma, 2015; Ponnusamy et al.,
2020). For instance, the promoter containing CpG islands of
breast cancer cells was selectively hypermethylated to inactivation
of tumor suppressor gene expression, such as cell cycle regulator
(p16INK4a and p14ARF), apoptotic regulator (APC, HIC1, and
TWIST), and DNA repair genes (GSTP1, BRCA1, and
MGMT). These well-known tumor suppressor genes promote
the development of breast cancer by changing various
physiological functions of the cell due to promoter
hypermethylated (Shukla et al., 2019). The nature of epigenetic
modification is dynamic and reversible, which ensures a new
epigenetic program and reprograms cells according to different
conditions and provides other targets for designing antitumor
drugs. Current animal models can only reflect the advanced stage
of tumor growth but cannot reflect the early events. The
breakthrough of epigenetics indicates that the dynamic and
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reversible nature of epigenetic plays a vital role in the early
development of cancer. Common epigenetic factors induce
tumor cells to reprogram and, thus, have pluripotency.
Elucidating the relationship between reprogramming-related
transcription factors and tumor epigenomes may help
understand the molecular basis of regulating the cancer
phenotype (Kim, 2020). In addition to cancer therapy,
epigenetics also can serve as biomarkers for cancer diagnosis
and risk assessment due to epigenetic changes before
histopathological changes (Verma, 2015). Pancreatic ductal
adenocarcinoma is usually diagnosed in the advanced stage
without a little effective treatment strategy. The development
of epigenetic markers is helpful for the early diagnosis of this
tumor. Various methylation markers have been reported in
pancreatic ductal adenocarcinoma, such as p16, hMLH1 and
hMLH2, and cyclin D2 (Matsubayashi et al., 2003; Kumari
et al., 2009; Kisiel et al., 2012). In the following sections, the

main events involved in epigenetic regulation in cancer are
discussed.

DNA Methylation
DNA methylation is molecularly defined as a process that adds a
methyl group to 5-carbon on cytosine residues (5mC) in CpG
dinucleotides by DNA methyltransferase enzymes, which
primarily exists in centromeres, telomeres, inactive X-
chromosomes, and repeat sequences (Ning et al., 2016). The
number of epigenetic modifications substantially outnumbers
that of somatic mutations in human cancers. Also, individual
tumor types can be stratified into subgroups based on different
DNA methylation profiles (Pan et al., 2018). Consequently, DNA
methylation has been regarded as a hallmark of cancer
development and is characterized by global DNA
hypomethylation of repetitive elements and CpG-poor regions
concomitant with gene-specific DNA hypermethylation (Estecio

FIGURE 1 |Methylation and demethylation of the gene promoter turn on tumorigenesis. Methylation of promoters inactivates tumor suppressor genes and induces
cancer development. Demethylation of promoters activates oncogenes and results in the cancer cell proliferation.

FIGURE 2 | A schematic diagram of epigenetic tools. These enzymes and protein domains carry out most of the epigenetic modifications on DNA and histone tails.
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TABLE 1 | A list of DNA methyltransferase inhibitors under different phases of clinical trial and their indication.

DNA methyltransferase inhibitors

Classification Compounds Structure Clinical stage References

Nucleoside analogue Azacytidine Phase III Derissen et al. (2013)

Decitabine Phase II Dhillon (2020)

SGI-110 Phase II (Daher-Reyes et al., 2019)

Nonnucleoside analogue Nanaomycin A Preclinical Nakamae et al. (2018)

(Continued on following page)
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and Issa, 2011; Liang and Weisenberger, 2017). Molecularly,
DNA methylation alterations may lead to gene silencing due
to DNA hypermethylation of CpG island promoter and gene
activation owing to DNA hypomethylation of CpG-poor gene
promoters, the process which is executed by DNA
methyltransferases (DNMTs) (Figure 1) (Bestor and Verdine,
1994). DNMT1, DNMT3A, and DNMT3B are three well-
established types of DNMTs responsible for maintaining
chromosomal homeostasis (Zhang and Xu, 2017). Defective
DNMTs may induce imbalance in DNA, which leads to the
onset of chromatin remodeling, genomic instability, and gene
inactivation (Nephew and Huang, 2003; Esteller, 2007). Gaudet
et al. have established that either deletion or reduction of DNMT1
can result in substantial genome-wide hypomethylation and
chromosomal instability (Gaudet et al., 2003); Qu et al. have
reported that hypomethylated CpG islands (CGIs) of the HOXB
cluster found in acute myelocytic leukemia are highly associated
with DNMT3A mutations (Qu et al., 2014). These discoveries
shed light on cancer diagnosis and treatment, realizing the
enormous potential of genomic methylation abnormalities in
tumorigenesis.

Covalent Histone Modifications
Modulation of chromatin via covalent histone modification is
one of the most fundamental ways to regulate DNA
accessibility during physiological processes, including gene
transcription, DNA replication, and DNA damage repair
(Chi et al., 2010). To date, over ten different types of
histone modifications have been identified to be involved in
the process as mentioned above. The key modulators
manipulating these modifications have been deciphered
progressively with the better understanding of epigenetics.
These modifications fall into three categories: 1) writers: the
enzymes are proficient in adding a nucleotide base and specific
amino acid residues on histones; 2) erasers: the enzymes are
capable of removing a nucleotide base and specific amino acid

residues; and 3) readers: the proteins possess specialized
domains that can recognize specific epigenetic marks in a
locus. All these enzymes and protein domains are defined as
epigenetic tools (Figure 2). The N-terminal tails of histones
are usually the targets of covalent histone modification, which
undergo a variety of posttranslational modifications, including
methylation, acetylation, ubiquitylation, sumoylation, and
phosphorylation on specific residues (Th’ng et al., 2005;
Bhaumik et al., 2007). The establishment of an appropriate
pattern of histone modifications is crucial for normal
development and differentiation. On the contrary, the
disorganized pattern of histone modification is associated
with tumor initiation and development (Bannister and
Kouzarides, 2011).

miRNAs are defined as small single-stranded noncoding RNA
molecules (containing ∼22 nucleotides) found in mammals that
function in gene silencing and posttranscriptional gene regulation
(Hutvagner and Simard, 2008). Mechanically, miRNAs negatively
regulate the gene expression of target mRNAs via the sequence-
specific base pairing of miRNAs with 3′ untranslated regions of
target messenger RNAs, followed by the cleavage of the mRNA
strand (Hutvagner and Simard, 2008). Given the nature that
miRNAs are expressed in a cell-specific manner and are involved
in the safeguarding biological processes that include cell
proliferation, differentiation, and apoptosis, aberrant miRNAs
expression is involved in the cancers of different origins that
include breast, colon, gastric, lung, prostate, and thyroid (Di Leva
and Croce, 2013; Reddy, 2015). Unlike normal mRNAs regulated
by epigenetic mechanisms, a tight connection occurs between
miRNAs and epigenetic modification. On the one hand,
epigenetic modification could result in the aberrancies of the
miRNome (Valeri et al., 2009). The dysregulation of miRNome is
defined as the hallmark of cancer initiation and metastasis. The
majority of epigenetic regulation events are involved in the
dysregulation of miRNome (Humphries et al., 2019). On the
other hand, a specific group of miRNAs that is called epi-miRNAs

TABLE 1 | (Continued) A list of DNA methyltransferase inhibitors under different phases of clinical trial and their indication.

DNA methyltransferase inhibitors

Classification Compounds Structure Clinical stage References

SGI-1027 Preclinical Sun et al. (2018)

MG98 uncovered Phase II Linnekamp et al. (2017)
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TABLE 2 | A list of histone lysine methyltransferase inhibitors under different phases of clinical trial and their indication.

Histone lysine methyltransferase inhibitors

Classification Compounds Structure Clinical stage References

G9a (H3K9) BIX-01294 Preclinical Deng et al. (2020a)

UNC0638 Preclinical Nualkaew et al. (2020)

EZH2 (H3K27) EI1 Preclinical Fioravanti et al. (2018)

CPI-1205 Clinical Gulati et al. (2018)

EPZ6438 Clinical Zhou et al. (2020)

(Continued on following page)
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can manipulate epigenetic regulatory mechanisms inside a cell by
targeting enzymes that are responsible for DNA methylation
(DNMT3A and DNMT3B) and histone modifications (EZH2)
(Liu et al., 2013). MiRNA and epigenetics are feedback loops
rather than liners (Yao et al., 2019). A primary theory has been
established that miRNAs modulate epigenetics via regulating

epigenetic modifier enzymes, which facilitate a trilateral
regulatory “epi–miR–epi” feedback circuit in pathological and
physiological processes. The result of this “epi–miR–epi”
interaction has emerged as a new layer of complexity in gene
regulation, whose comprehension sheds light on understanding
human cancerogenesis.

TABLE 2 | (Continued) A list of histone lysine methyltransferase inhibitors under different phases of clinical trial and their indication.

Histone lysine methyltransferase inhibitors

SMYD2 (H3K36) AZ-505 Preclinical de Grass et al. (2014)

LLY-507 Preclinical Kukita et al. (2019)

DOT1L (H3K79) SYC-522 Preclinical Liu et al. (2014)

EPZ-5676 Clinical
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Epigenetic Therapy of Cancer
The reversible nature of the profound epigenetic modification in
cancer has raised the possibility of “epigenetic therapy” as a
treatment option against refractory cancers. Several small-
molecule inhibitors working as chromatin regulators have been
at advanced stages of clinical trials, and the US Food and Drug
Administration (FDA) has approved azanucleosides targeting
DNMTs, vorinostat targeting HDACs, and fedratinib targeting
JAK2 for clinical treatment (Dzobo, 2019). This success indicates
that the rationale of developing small-molecule inhibitors
targeting epigenetic pathways may represent a novel
therapeutic approach in the clinical setting. A successful
clinical introduction of epigenetic inhibitors such as DNA
methyltransferase inhibitors (DNMTis) and histone deacetylase
inhibitors (HDACis) has been well established in treating
hematological malignancies. These discoveries have opened
new unexplored areas to understand the pathogenesis of
cancer development and provided new targets for antitumor
therapy development (Prachayasittikul et al., 2017;
Gambacorta et al., 2019).

DNA Methyltransferase Inhibitors
Tumor suppressor genes function mainly to either repress or
inhibit the cell cycle or promote apoptosis (Joyce et al., 2021). The
better-known tumor suppressor gene includes gene cyclin-
dependent kinase inhibitor 2A (CDKN2A) (Zhao et al., 2016),
breast cancer susceptibility gene breast cancer 1 (BRCA1) (Krais
and Johnson, 2020), and adenomatous polyposis coli (APC)
(Schrock et al., 2020). Global DNA hypomethylation and
hypermethylation of the promoter regions of the tumor
suppressor gene manipulated by DNMTs have been widely
found in the malignant cells, which provide a promising target
to develop drugs against DNMTs (Subramaniam et al., 2014).
DNMTi includes two categories: nucleoside and nonnucleoside
inhibitors (Singh et al., 2013). Among these small-molecule
inhibitors, cytosine analogs azacytidine (5-azacytidine) and
decitabine (5-aza-2′-deoxycytidine) are the two best known
nucleosides DNMTis (Fahy et al., 2012). Molecularly, 5-
azacytidine is an inducer of chromosome breakage and a
mutagen by demonstrating its ability to incorporate itself into
the human genome via various mechanisms (Imanishi et al.,

TABLE 3 | A list of histone arginine methyltransferase inhibitors under different phases of clinical trial and their indication.

Histone arginine methyltransferase inhibitor

Classification Compounds Structure Clinical stage References

PRMT1 DB75 Preclinical Oudard et al. (2017)

PRMT4 TP064 Preclinical Loe et al. (2021)

PRMT5 EPZ015938 (GSK3326595) Clinical Li et al. (2019)
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2014). Its strategies include inhibition of tRNA
methyltransferases, interference with tRNA methylation, and
interruption of ribosomal RNA processing (Lu and Randerath,
1980; Grosso and Pitot, 1984; Mohana Kumar et al., 2006). In
addition, 5-azacytidine can also interfere with de novo
thymidylate synthesis, empowering its cytotoxicity effect
(Osorio-Montalvo et al., 2018). Pharmacologically, 5-
azacytidine and 5-aza-2′-deoxycytidine form an irreversible
complex with the DNMTs, which results in the degradation of
DNMTs (Valdez et al., 2010). To date, both drugs have been
approved for the treatment of myelodysplastic syndrome (MDS)
and AML in the clinical setting (Soriano et al., 2007). However,

recognized by the pleiotropic effects of 5-azacytidine, 5-aza-2′-
deoxycytidine, and their targets as mentioned above, researchers
have confronted enormous challenges discovering novel
inhibitors that are somewhat held back. To alleviate the toxic
profiles of 5-azacytidine and 5-aza-2′-deoxycytidine, a less
poisonous cytidine analog was developed, called zebularine. It
exerts demethylation activity by stabilizing the binding of
DNMTs to DNA, hindering the methylation and decreasing the
dissociation, thereby trapping the enzyme and preventing turnover
even at other sites (Sanaei and Kavoosi, 2020). It also enhances
tumor cell chemo- and radiosensitivity and has antimitogenic and
angiostatic activities (Balch et al., 2005; Hellebrekers et al., 2006;

TABLE 4 | A list of histone demethylase inhibitors under different phases of clinical trial and their indication.

Histone demethylase inhibitor

Classification Compounds Structure Clinical stage References

LSD1 inhibitors Tranylcypromine analogue
(GSK2879552)

Clinical Kalin et al. (2018)

Bizine Preclinical Kim et al. (2020)

PG11144 Preclinical Zhu et al. (2012)

Namoline Preclinical Sewry et al. (2019)

JmjC domain inhibitors IOX1 Preclinical Hoyle et al. (2021)

KDM6B Preclinical Basu Mallik et al. (2017)
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TABLE 5 | A list of histone deacetylase inhibitors under different phases of clinical trial and their indication.

Histone acetyltransferase inhibitors

Classification Compounds Structure Clinical stage References
HDAC1/2i MRLB-223 Preclinical Newbold et al. (2013)

HDAC3i BG45 Preclinical Tang et al. (2018)

HDAC6i Rocilinostat (ACY-1215) clinical Yang et al. (2020)

Tubacin Preclinical Liang et al. (2019)

HDAC8i C1A Preclinical Kaliszczak et al. (2013)

(Continued on following page)
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Greer et al., 2017). Zebularine inhibits DNA methylation and
reactivates a gene previously silenced by methylation (Cheng
et al., 2003). The mechanism of action of Zebularine is
concentration dependent. High doses of Zebularine can induce
cell cytotoxicity through double-strand breaks, cell cycle arrest,
and causing DNA damage (Orta et al., 2017). Unfortunately, the
high dose required for therapeutic value excluded Zebularine for its
clinical application. Nowadays, there are three candidates from
second-generation nucleoside DNMTi under clinical trials. SGI-
110 is designed for the treatment of advanced hepatocellular
carcinoma (NCT01752933), MDS and AML (NCT01261312),
while 4′-thio-2′-deoxycytidine and RX-3117 are still under
investigation against advanced solid tumors (NCT02423057) and
metastatic pancreatic cancer (NCT03189914), respectively (Issa et al.
, 2015; Lu et al., 2020) (Campbell and Tummino, 2014).

Unlike the nucleoside analogs, nonnucleoside DNMTis
directly bind to the catalytic region of DNMTs instead of
incorporation into DNA. Consequently, the cytotoxicity of 5-
azacytidine and 5-aza-2′-deoxycytidine is less than that of
nucleoside DNMTis (Rondelet et al., 2017). 5-Azacytidine and
5-aza-2’-deoxycytidine are potent inhibitors of DNA
methyltransferase. Its cytotoxicity has been attributed to

several possible mechanisms, including reexpression of growth
suppressor genes and formation of covalent adducts between
DNA methyltransferase and 5-aza-2’-deoxycytidine–substituted
DNA which may lead to steric inhibition of DNA function
(Christman et al., 1985; Kiianitsa et al., 2020; Nunes et al.,
2020). They include procainamide, procaine, epigallocatechin-
3-gallate (EGCG), SGI-1027, nanaomycin A, flavonoid, and
compound 5. Pharmacologically, procainamide and procaine
can modify the CpG regions of DNA, resulting in blocking
DNMTs activities (Li et al., 2018); Morris et al. reported that
flavonoid and EGCG could inhibit DNMT1 enzyme activity from
restoring RXRα expression in human colon cancer cells (Li et al.,
2018). Datta et al. found that SGI-1027 (a quinoline derivative)
could make the MLH1 and P16 promoter region in colon cancer
cells reactive via inhibiting all three DNMTs (Datta et al., 2009).
Similarly, it is documented that nanaomycin A can selectively
target DNMT3a to induce the activation of tumor suppressor
genes in cancer cell lines (Kuck et al., 2010). Compound 5 derived
from a chemical modification of SGI-1027 is the first
nonnucleoside DNMTi that has been investigated in cancer
cell lines. It can display potent antiproliferative effects against
histiocytic lymphoma, breast cancer, Burkitt’s lymphoma, and

TABLE 5 | (Continued) A list of histone deacetylase inhibitors under different phases of clinical trial and their indication.

Histone acetyltransferase inhibitors

HPOB Preclinical Liu et al. (2018)

PCI-34051 Preclinical Morgen et al. (2020)

C149 Preclinical Suzuki et al. (2012)
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prostate cancer at micromolar doses (Zhou et al., 2018). However,
few of these inhibitors have been used in the clinical setting owing
to their dissatisfactory clinical safety and efficacy. Table 1
summarizes several drugs that are in the different stages of
clinical trials.

Lysine can be monomethylated, demethylated, or
trimethylated by lysine methyltransferases (KMTs). Suv39h1
is the first histone KMT, and its main methylation site is H3K9.
However, it was found that the site of H3K9 was almost no
longer enzymatically active after the modification and its
trimethylated peptide was no longer used as the substrate of
methylase. In addition, the acetylation of H3K9 can inhibit the
methylation of this site, and the dephosphorylation of H3S10 is
the prerequisite for the methylation of H3K9. Thus, the
phosphorylation of H3S10 can inhibit the methylation of
adjacent site K9.

According to the types of amino acids at the modification
sites, histone methylation can activate or inhibit gene
transcription. For example, the methylation of histone H3K4,
H3K36, and H3K79 sites can effectively activate the expression of
corresponding genes, while the demethylation or trimethylation
of H3K9, H3K27, and h4k20 is usually associated with gene
silencing.

Histone lysine methylation plays an important role in the
construction and maintenance of heterochromatin and
euchromatin regions. In summary, lysine methylation regulates
protein function mainly through two mechanisms: on the one
hand, it can interact with other forms of PTMs; on the other hand,
it can regulate protein function by influencing protein–protein
interaction. Given that specific lysine residues on histone protein

are prone to methylation, which subsequently leads to tumor
development, researchers developed specific inhibitors to
interfere with the catalytic activity of methyltransferases on
histone protein methylation (Rea et al., 2000). These
methyltransferases specific for H3K4 include SET1, MLL, and
SMYD1&3 families of proteins (Biswas and Rao, 2018). Cao et al.
reported that a small molecule (MM-401) could disrupt the
methyltransferase activity of MLL1 (Cao et al., 2014).
Methylation of H3K9 was executed by G9a, GLP, SETDB1/2,
and SUV39H1/2 (Torrano et al., 2019). Chaetocin was initially
designed as an HKMT inhibitor under this category (Sak et al.,
2021). Since then, several modified inhibitors were developed.
BIX-01294, the first selective inhibitor of G9a, and its advanced
alternative UNC0638 are potential candidates as antitumor
agents (Pirola et al., 2018). Pappano et al. reported that A-366,
a peptide-competitive inhibitor of G9a and GLP, plays a key role
in inhibiting leukemic cells (Pappano et al., 2015). Coincidentally,
Yuan et al. also documented that BRD4770, an inhibitor of G9a,
could induce pancreatic cancer cell death combined with gossypol
(Yuan et al., 2013). As a well-established hallmark of cancer
initiation, methylation of H3K27 is catalyzed by EZH1/2 (Dai
et al., 2017). As a result, the inhibitors that target EZH1/2 have
demonstrated promising effects on tumor shrinkage in the
preclinical setting (Dai et al., 2017). It was reported that UNC
1999, a SAM-competitive dual inhibitor of EZH1/2, inhibited cell
proliferation of MLL-rearranged acute leukemia (Yamagishi
et al., 2019). Recently, constellation pharmaceuticals initiated a
clinical trial for testing the safety and efficacy of CPI-1205, an
EZH2 inhibitor against B-cell lymphoma (NCT02395601)
(Gehling et al., 2015). Also, tazemetostat (an EZH2 inhibitor)

TABLE 6 | A list of histone acetyltransferase inhibitors under different phases of clinical trial and their indication.

Histone acetyltransferase inhibitors

Classify Compounds Structure Clinical stage References
Tip60 TH1834 Preclinical Idrissou et al. (2020)

p300 C646 Preclinical Ono et al. (2016)
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is under clinical investigation (NCT03010982 and
NCT03028103) (Kuntz et al., 2016). Methylation of H3K36 is
another widely studied target for developing small-molecule
inhibitors. Astra Zeneca identified AZ-505 as a specific
inhibitor of methylation of H3K36 delayed cyst growth in a
mouse model of polycystic kidney disease (Nguyen and Zhang,
2011). Nguyen et al. also reported that LLY-507, a selective
inhibitor of SET and MYND domain-containing protein 2
(SMYD2) for methylation of H3K36, could abolish cell
proliferation of several cancerous cell lines (Nguyen and
Zhang, 2011). Besides, a disruptor of telomeric silencing 1-like
(DOT1L), a histone H3K79 methyltransferase, has also been
targeted to disrupt histone modification (Liu et al., 2014).
Preclinical studies have demonstrated that DOT1L inhibitors
that include EPZ004777, EPZ-5676, and SYC-522 can inhibit
hematopoietic malignancies in different stages of clinical trials
(Liu et al., 2014). Although most of the inhibitors mentioned
above are still under clinical investigation, the recent accelerated
approval of tazemetostat for metastatic or locally advanced
epithelioid sarcoma sheds light on a promising direction
towards further developing such compounds for cancer
treatment. Table 2 lists several drugs that are currently in the
preclinical and clinical trials.

Methylation of histones can also occur in arginine residues,
enabling the cell another layer of regulatory options (Cuthbert
et al., 2004). Given the nature that arginine can be mono-, di-, or
methylated modified, the modifications extend the complexity of
gene regulation and are associated with transcriptional activation
or suppression according to the location of the arginine residues
(Wysocka et al., 2006; Jain and Clarke, 2019). Like the
development of KDM inhibitors, the search for an arginine
demethylase is also under active investigation. Physiologically,
protein arginine methyltransferase (PRMT) can catalyze
methylation of arginine residues on histones (Thompson and
Fast, 2006; Jain and Clarke, 2019). PRMT family proteins and
their arginine methylation are closely related to the occurrence
and development of cancer. PRMT has nine members from
PRMT1 to 9. Arginine methylation can be divided into
monomethylation, symmetrical emethylation, and
asymmetrical emethylation. According to arginine methylation,
PRMT family members can be divided into three types: I, II, and
III. Type I includes PRMT1, 2, 3, 4, 6, and 8, which can catalyze
monomethylation and asymmetric dimethylation; type II
includes Prmt5 and 9, which can catalyze monomethylation
and symmetrical dimethylation; and type III includes prmt7
that can only catalyze monomethylation. Dysfunction of
PRMT has been associated with different cancers, which leads
to the efforts to developing specific inhibitors targeting this
protein (Mohammad et al., 2019). Drew et al. reported that
TP-064 and EZM2302, two inhibitors against PRMT4,
inhibited the growth of multiple myeloma in the preclinical
setting (Drew et al., 2017). EPZ015938, a selective inhibitor
against PRMT5, is now under clinical investigation for
patients with solid tumors and non-Hodgkin’s lymphoma (Siu
et al., 2019). Bonday et al. also demonstrated that LLY-283, an
inhibitor against PRMT5, can reduce tumor cell growth in vitro
(Bonday et al., 2018). PRMT family members are often

coexpressed and highly expressed in cancer, but its clinical
significance is not clear. Liu Wen et al. confirmed that
PRMT4, PRMT5, and PRMT7 were highly expressed in breast
cancer, colorectal cancer, and prostate cancer, and the high
expression of PRMTs was highly correlated with the
enrichment of arginine methylation and abnormal alternative
splicing of hnRNPA1. In breast cancer, colorectal cancer, and
prostate cancer cells, PRMT4, PRMT5, and PRMT7 and their
mediated hnRNPA1 methylation and splicing isomerism can
effectively promote the growth of cancer cells. This provides a
new direction and approach for cancer treatment. Table 3
highlights some PRMTis in the preclinical and clinical settings.

Demethylation of lysine residues on histone proteins via
targeting histone lysine demethylase KDM1 (LSD1/2) and
KDM2-8 (JmjC domain proteins) represents another strategy
of developing small-molecule inhibitors (Rotili and Mai, 2011;
Hoffmann et al., 2012). Both families have been investigated for
the development of inhibitors owing to their crucial role in
tumorigenesis. Prusevich et al. found that bizine, the second
generation of LSD1/2, significantly inhibited cancer cell
proliferation in vitro (Prusevich et al., 2014). Zhu et al.
reported that the inhibition of LSD1 reduced the growth of
human breast cancer cell lines (Zhu et al., 2012). Willmann
et al. demonstrated that LSD1 inhibition could also be used
for androgen-dependent prostate cancer treatment (Willmann
et al., 2012). Gupta recently identified that an irreversible LSD1
inhibitor, HCI-2509, was beneficial against MYCN-amplified
neuroblastoma cells (Gupta et al., 2018). On the other hand,
the development of specific inhibitors of JmjC-KDM also has
come a long way. It was established that hydroxamic acid scaffold,
hydroxyquinoline analogs, and cyclic peptides showed potential
effectiveness as JmiC-KDM inhibitors (Rose et al., 2008). Though
these inhibitors are still at the early stages of development,
Hopkinson et al. and Thinnes et al. have initiated two
preclinical studies to test the effectiveness of IOX1 and
flavonoids against cancer cells (Hopkinson et al., 2013;
Thinnes et al., 2014). Current drug development is
summarized in Table 4.

Acetylation is a very common posttranslational modification
(Drazic et al., 2016). In human cells, more than 1,750 proteins can
be acetylated at lysine residues. Histone deacetylases (HDACs), as
epigenetic modifiers, play an important role in gene transcription
(Autin et al., 2019). Changes, mutations, and/or inappropriate
recruitment of HDACs have been widely found, which are
involved in tumorigenesis through a series of biological
pathways (Hadley et al., 2019). Therefore, HDACs are
considered a promising tumor therapeutic target, and their
inhibitors are developing rapidly (Luparello et al., 2020). The
application of HDAC inhibitors (HDACis) as anticancer drugs in
cancer has been confirmed in cell lines and animal models
(Falkenberg and Johnstone, 2014). The first generation of
HDACi was developed based on screening by experience for
some agents whose potential targets were HDACs. These
agents originated from the tumor cell differentiation
inducer, including butyrate, trichostatin A (TSA), and
vorinostat (Leder and Leder, 1975; Riggs et al., 1977). Then,
more HDACis were discovered from natural products, which
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have different properties and clinical settings (Johnstone,
2002; West and Johnstone, 2014). However, the traditional
HDACi was targetting multiple HDACs, which led to the
difficulty of verifying the biological consequences and
toxicities from inhibition of a specific HDAC or/and
combined effect of multiprotein HDAC complexes
(Bantscheff et al., 2011). Therefore, researchers need to
identify more molecules as a new HDACi generation with
an improved activity and specificity. HDACi has four major
classic structures, including hydroxamic acid derivatives,
aminobenzamide, cyclic peptide, and short-chain fatty acids
(Cappellacci et al., 2020). Then, we sum up the HDACi which
has been approved by the FDA of USA in Table 5. More
interestingly, advantages of multitargeting antitumor drugs
have been presented due to the multifactorial nature of tumor
etiology in this respect because histone deacetylase inhibitors
play an important role in many anticancer activities and have
become a privileged tool for the development of mixed drugs.
EGFR/HER2/HDAC hybrid inhibitor CUDC-101 is the first
success of multitargeting drugs, which is one of the HDAC/
kinase dual-acting compounds family (Luan et al., 2019). The
other excellent “hybrid drug” is PI3Ks/HDAC hybrid inhibitor
CUDC-907, which entered a phase 2 clinical trial (Hesham
et al., 2018). GUDC-101 and CUDC-907 exhibit improved
synergistic effects than the single-targeted drugs and overcome
resistance to receptor tyrosine kinase inhibitors via multiple
signaling. HDAC/CDK-4/JAK1i and LSD1/HDACi are the
novel multitargets to develop “hybrid drug.” Preclinical data
of Roxyl-zhc-84 (HDAC/CDK-4/JAK1i) and corin (LSD1/
HDACi) also show better therapeutic effect than single
acting compounds alone or in combination (Huang et al.,
2018; Kalin et al., 2018). The clinical and preclinical results
of the abovementioned agents show that the development of
high-efficiency multitarget hybrid drugs is worthy of further
research. The design guideline of hybrid HDACi should keep
the potency and drug similarity of single target compounds to
their respective targets and have an acceptable ADMET
spectrum, while avoiding the increased toxicity and
targeting effect due to the decreased targeting selectivity.

Histone acetylation is considered as the best-studied
histone modification, which occurs at the ε amino groups of
evolutionarily conserved lysine residues on tail domains (Hake
et al., 2004). From a functional perspective, histone acetylation
is primarily associated with the activation of transcription. It
mainly occurs at the regions of enhancers, promoters, and the
gene body (Wang et al., 2009). Altered global levels of histone
acetylation, such as acetylation of H4 at lysine (K), have been
linked to tumor development in various cancers, which have
also been found to be of potential prognostic value (Elsheikh
et al., 2009). When hyperacetylation of proto-oncogenes
occurs, the expression of the target genes will be activated.
On the contrary, when hypoacetylation of tumor suppressors
occurs, co-occurring with DNA methylation, the tumor
suppressors will be inactivated. These two mechanisms
collectively contribute to the onset of tumor initiation and
development. The enzymes that catalyze the addition of acetyl
groups to histone lysine residues are histone acetyltransferases

(HATs) (Seto and Yoshida, 2014). Numerous chemical
compounds have been tested for their potential as HAT
inhibitors (HATis) (Carrozza et al., 2003; Eliseeva et al.,
2007; Arif et al., 2010). Stimson et al. reported that PCAF
and p300 inhibitors, two isothiazolinone-based compounds,
could inhibit cell proliferation of colon cancer cells (Stimson
et al., 2005). More recently, Modak et al. found that embelin, a
natural compound of hydroxybenzoquinone class, could block
the activity of PCAF (Modak et al., 2013). Sun et al. reported
that HAT Tip60 could sensitize tumor cells against ionizing
radiation (Sun et al., 2006). Gao et al. reported that TH 1834, a
novel version of Tip60 inhibitor, can induce cancer cell
apoptosis (Gao et al., 2014). However, the questions are
that these chemical compounds are moderately toxic
towards humans (Bruserud et al., 2007; Subramanian et al.,
2010; Deng H. et al., 2020). As a result, researchers are still
working on screening the better candidates with low toxicity
but high effectiveness. Table 6 summarized two drugs that are
in the preclinical stage.

Small Molecules Targeting miRNAs
Given the well-documented nature that miRNAs play central roles
in tumor development and because of the challenges of using
nucleotide analogs for regulating miRNAs expression, it has been
realized that the development of small-molecule drugs targeting
specific miRNAs (SMIRs) would be a novel avenue for cancer
treatment (Zhang et al., 2010). SMIRs are small synthetic organic
molecules that can irreversibly bind to miRNAs. Mechanically,
they bind to the grooves and pockets on the surface ofmiRNAs and
interfere with the biological functions of targeted miRNAs
(Mohammad et al., 2019). However, due to the structural
flexibility and highly electronegative surfaces of SMIRs, RNA
molecules have been excluded as drug target candidates for a
long period. However, from the perspective of miRNA spatial
structures, miRNAs appear to be “druggable” because the
formation of stem loops in pre-miRNAs and the bulges in
miRNAs can facilitate targeting by small molecules (Velagapudi
et al., 2014). Of interest, Gumireddy et al. reported that
diazobenzene and its derivatives could serve as specific
inhibitors of pri-miR-21 formation (Gumireddy et al., 2008).
Besides, it is documented that small-molecule enoxacin
(Penetrex) can enhance small-interfering RNA-mediated mRNA
silencing and facilitate the biogenesis of endogenous miRNAs
(Shan et al., 2008). Though these mechanisms remain unclear,
these findings undoubtedly provide proof of the modulation of
miRNA activity by small-inhibitory molecules.

Recently, a novel strategy of developing a novel combined
treatment therapy has been found. The rationale is rooted in the
concept that many cancers share common gene or/and protein
regulation pathways by chromatin regulators and miRNAs. For
example, Swierczynski et al. comprised data from mirbase.org
and DIANA-MICROT to find the overlap of HDAC-miRNA
combinations. Then, they indicated HDACs and miRNAs shared
some gene or/and protein regulation pathways (Swierczynski
et al., 2015). Though detailed mechanisms remain to be
elucidated, the complex linkage between miRNA and HDAC
has emerged as a potential drug target, which might provide
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possible novel therapeutic approaches in the near future. It is
reported that complete inhibition of HDAC2 can increase histone
H4 pan-acetylation of the miR-183 promoter region and
subsequently upregulate the transcriptional activity of miR-
183, which leads to miR-183-mediated tumor suppression in
neuroblastoma (Swierczynski et al., 2015; Zhu and Wang, 2021).
Similarly, inhibition of HDAC3 with specific inhibitors can result
in an increased hyperacetylation of the Dleu/miR-15a/16-1
promoter region. This upregulation increases the expression of
miR-15a/16-1, which suppresses lung cancer cell growth. Besides,
silencing of HDAC9 can stop sprouting in vitro and reduce vessel
growth in a zebrafish model in vivo via the repression of the miR-
17-92 cluster, indicating a possible common therapeutic target for
cancer vasculogenesis (Hernandez-Romero et al., 2019). These
could lead to personalized cancer therapies, which employ
HDACs and simultaneously modify miRNAs. But, their
mechanism of action remains to be addressed (Dawson and
Kouzarides, 2012).

Epigenetic Therapy (EpiDrugs) in Acquired
Chemoresistance
Chemoresistance is a major obstacle to successful
chemotherapy in clinic. Acquired drug resistance was
controlled by multiple genetic and/or epigenetic ways
(Ponnusamy et al., 2020). Unlike genetic mutations,
epigenetic modulation in chemoresistance presents the
characteristics of plasticity and reversibility, which puts a
new insight into overcoming the acquired chemoresistance
via epigenetic reprograming (Miranda Furtado et al., 2019).
Recurrent tumors may still be sensitive to second-line
chemotherapy because of the heterogeneity and poised
epigenetics. However, during chemotherapy, the temporal
epigenetic changes would induce acquired chemoresistance
and lead to sensitive tumor no longer responding to second-line
chemotherapy (Brown et al., 2014). The possible ways by which
epigenetic dysregulation contribute to acquired chemoresistance are
listed in detail as follows: 1) Chemotherapy induces abnormalities in
cell energy metabolism that regulate the generation/source of
epigenetic factors and alter the cellular epigenetic spectrum,
thereby promoting acquired chemoresistance (Wang et al., 2018);
2) various efflux transporters, including p-glycoprotein, multidrug-
resistant protein, and breast cancer resistance protein associated with
acquired drug resistance showed epigenetic dysregulation during
chemotherapy (Kim et al., 2014); 3) epigenetic events such as DNA
methylation and histone modification induce apoptotic tolerance
and autophagy contributing to the development of acquired drug
resistance (Hervouet et al., 2013; Sui et al., 2013); 4) epigenetic
dysregulation–mediated regulation of major tumor growth signaling
and altered chemotherapeutic target expression may contribute to
acquired chemoresistance; 5) epigenetics also improves acquired
chemoresistance by regulating genes involved in the formation of
tumor microenvironments, such as tumor-associated fibroblasts and
HIF-1α (Marks et al., 2016); 6) cellular reprogramming regulated by
epigenetic events was established and developed with acquired
chemoresistance (Phi et al., 2018); 7) epigenetic dysregulation and
subsequent aberrant cellular energetics promote drug resistance by

silencing genes involved in DNA repair or directly altering their
structure (House et al., 2014). 8) epigenetic dysregulation is a key
pathway for ROS and its related oxidative stress to induce acquired
chemoresistance (Shrishrimal et al., 2019). Therefore, it is not
sufficient to target genetic abnormalities alone as a method to
overcome acquired chemoresistance. Due to epigenetic
heterogeneity in different patients and tumors, understanding the
epigenetic dynamic landscape response to chemotherapy is
necessary for EpiDrug discovery. Recently, clinical and preclinical
studies have been conducted to evaluate the effect of EpiDrugs in
overcoming drug resistance (Ediriweera et al., 2019). However, the
results showed the double edges of EpiDrugs in chemoresistance.
Due to the lack of specificity, despite EpiDrugs silencing tumor
suppressors, they also hypomethylated microsatellite regions and
activated oncogenes, promoting chemresistance (Ley et al., 2010).
Taking together, developing EpiDrugs with a specific target and
selectivity is critical and challenging. Meanwhile, dose adjustment
and scheduling may be an important issue in EpiDrugs used to
overcome chemoresistance (Ediriweera et al., 2019).

CONCLUSION

Since the discovery of epigenetics by C. Waddington, tremendous
development has been achieved in the field of epigenetics.
Various enzymes and specialized proteins have been
established for remodeling chromatin organization. Though
cancer is a polygenic disease, studies have established a tight
association of epigenetics with tumorigenesis. The profile of
epigenetic alteration has provided novel targets for the
development of antitumor agents as indicated by the US-FDA
approval of HDAC inhibitors to treat a form of lymphoma
(Giannini et al., 2012). However, enormous challenges remain
to be overcome to accelerate the transition from bench to bedside.
First of all, several substrates synergistically taking part in
chromatin remodeling have been identified. In addition, most
enzymes work as a part of a multiprotein complex, which
increases the difficulty for active enzyme production and
screening. These successful cases verify the hypothesis that it
is possible to regulate the epigenetic process of treating diseases,
and the therapeutic window of this new drug can be realized in
the clinic. Although there are some ongoing clinical trials for a
wide range of neoplastic and nonneoplastic diseases, the
application of epigenetic drugs in clinical practice is mostly
limited to hematological malignancies. The potential of
epigenetic drugs is expanding to other diseases, from
infectious diseases to brain diseases, cardiovascular diseases,
and metabolic disorders. It seems promising, and more
interesting results are expectant within a few years. However,
the development of clinical trials needs to identify biomarkers
that can predict drug response and avoid complications and
unnecessary side effects in patients with nonsensitive tumors.
Epigenetic mutations (hypermethylation of the tumor suppressor
gene promoter) and epigenetic enzyme mutations (loss or gain of
function) can be used as predictors of chemotherapy response in
several cancers. For instance, epigenetic silencing of MGMT has
been used as a biomarker to predict response to temozolomide in
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patients with glioblastoma. With the development of next-
generation sequencing technology, it is possible to explore
more unknown fields for the world. Therefore, further efforts
will focus on increasing drug selectivity and expanding the
spectrum towards solid tumors, since most of the clinically
available epigenetic drugs are pan-HDAC inhibitors that are
only effective against hematological malignancies. Appropriate
patient selection and optimizing trial design and dosing schedules
may also improve clinical efficacy.
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