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A Gaze Independent Brain-
Computer Interface Based on 
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Eyelids
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Benjamin Blankertz2 & Matthias Treder2,3

A classical brain-computer interface (BCI) based on visual event-related potentials (ERPs) is of limited 
application value for paralyzed patients with severe oculomotor impairments. In this study, we 
introduce a novel gaze independent BCI paradigm that can be potentially used for such end-users 
because visual stimuli are administered on closed eyelids. The paradigm involved verbally presented 
questions with 3 possible answers. Online BCI experiments were conducted with twelve healthy 
subjects, where they selected one option by attending to one of three different visual stimuli. It 
was confirmed that typical cognitive ERPs can be evidently modulated by the attention of a target 
stimulus in eyes-closed and gaze independent condition, and further classified with high accuracy 
during online operation (74.58% ± 17.85 s.d.; chance level 33.33%), demonstrating the effectiveness 
of the proposed novel visual ERP paradigm. Also, stimulus-specific eye movements observed 
during stimulation were verified as reflex responses to light stimuli, and they did not contribute to 
classification. To the best of our knowledge, this study is the first to show the possibility of using 
a gaze independent visual ERP paradigm in an eyes-closed condition, thereby providing another 
communication option for severely locked-in patients suffering from complex ocular dysfunctions.

A brain-computer interface (BCI) is a communication method that translates brain signals into com-
mands for controlling external devices. It can thereby provide an alternative communication channel for 
severely paralyzed patients, such as amyotrophic lateral sclerosis (ALS) patients. To develop BCI systems 
based on event-related potentials (ERPs), various sensory modalities have been exploited1, i.e., vision, 
hearing, and somatic sensation, in which the user is asked to attend on one of the external stimuli, and 
brain signals evoked by different stimuli are discriminated and used as an input source for controlling 
BCI systems. In particular, vision-based BCI paradigms have been intensively studied1 because they 
generally provide a more intuitive way of mapping stimuli to commands accompanying higher commu-
nication performance. Moreover, they typically offer a better classification performance in multi-class 
BCI systems, compared to auditory and haptic BCI paradigms2–5.

Two widely used visual BCI paradigms are steady-state visual evoked potential (SSVEP) and visual 
ERPs1. SSVEP is a periodic brain response to a visual stimulus flickering at a certain frequency. A visual 
ERP is a brain response that is phase-locked to the presentation of visual stimuli, e.g., oddball para-
digm. Both paradigms have been widely used in developing a variety of BCI applications, e.g., men-
tal speller6,7, wheelchair navigation8, prosthesis control9, and mouse cursor control10, and shown the 
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promising possibility of using BCI systems in daily life situations. For example, mental spellers based on 
each paradigm showed a typing speed of up to 10 letters/min7,11, and recent studies further improved the 
typing performance of BCI spellers by hybridizing the SSVEP and visual ERP paradigms12–14.

However, patients with neurodegenerative diseases who are the main targets of BCI technology grad-
ually lose their motor functions, including decline of visual functions in progressed states of the dis-
ease15–22. Several types of dysfunctions in oculomotor control have been reported in the patients, e.g., 
gaze palsy19,22, slow saccade17,19,22, nystagmus15,16,20, and eyelid dropping (ptosis)18,23. Since conventional 
visual BCI systems require moderate eye movements to gaze at a target during stimulation, patients suf-
fering from these symptoms cannot take full advantage of the conventional BCI systems. For those with 
impaired oculomotor functions, a gaze independent BCI paradigm was introduced, where the subject 
covertly focuses on a target stimulus while gazing at the center of a screen without eye movements6,24–31. 
Also, a recent study first showed the feasibility of an eyes-closed visual BCI paradigm based on SSVEP 
under overt attention condition32.

However, existing gaze independent BCIs have limited application value if oculomotor impairments 
are severe. For instance, a classical gaze independent BCI system can be used for patients with gaze palsy, 
but not with involuntary eyelid dropping or slow blink because it is required for successful operation 
that the subject should stably keep the eyes open to covertly recognize visual stimuli using peripheral 
vision. Also, patients with gaze palsy and slow saccade cannot successfully utilize the recently proposed 
eyes-closed visual BCI paradigm requiring direct gaze at a target, and thus the proposed paradigm can 
be especially applied to patients suffering from ocular ptosis or low blink rates, but having mild gaze 
function at least32.

In the present study, we propose a novel gaze independent visual BCI paradigm based on ERPs that 
are modulated by visual stimulation through closed eyelids, so that it potentially applies to locked-in 
state (LIS) patients with complex oculomotor impairments and completely locked-in (CLI) patients. 
To verify the feasibility of the proposed BCI paradigm, a visual stimulation system was implemented 
using a pair of glasses and four LEDs with which online BCI experiments were conducted with twelve 
healthy subjects. In the online experiment, visual stimuli were presented to the subjects with eyes closed 
while wearing the glasses-based stimulation system, and they were asked to covertly attend on one of 
the stimuli without directly gazing at a target in order to answer given questions. Classification outputs 
were given to the subjects for each trial in real-time. Further analyses on classification accuracy and ERPs 
were performed offline.

Method
Subjects. Twelve healthy subjects participated in this study (8 males and 4 females, aged 30.41 ±  3.39 
s.d. years). Three had previous experiences with BCI experiments, and the others were naïve with respect 
to BCIs. None had a history of neurological, psychiatric or other severe disorders that might affect 
experimental outcomes. All subjects had normal or corrected-to-normal vision. The fundamental goal 
of this study and detailed experimental procedures were explained to each subject, and then they signed 
consent forms before the experiments. This study was approved by the Ethics Committee of the Institute 
of Psychology and Ergonomics, Technical University of Berlin (approval number SH_01_20150330), and 
all experiments were conducted in accordance with the declaration of Helsinki.

EEG Data Recording. During the experiments, EEG signals were sampled at 1000 Hz using a 
multi-channel EEG acquisition system (BrainCap, Brain Products, Munich, Germany) with 63 scalp 
electrodes placed according to the international 10–10 system. The electrode locations were Fp1–2,  
AF3–4, 7–8, Fz, F1–10, FT7–8, FCz, FC1–6, T7–8, Cz, C1–6, TP7–8, CPz, CP1–6, Pz, P1–10, POz, PO3–
4, 7–8 and Oz, O1–2. Two EOG channels were created by bipolarly referencing two pairs of electrodes 
(horizontal EOG channel: F9–F10; vertical EOG channel: (Fp1+ Fp2)/2). The EEG signals were refer-
enced to the left mastoid with a forehead ground. The hardware bandpass filter with cutoff frequencies of 
0.016 and 250 Hz was applied before the sampling. The impedance of all electrodes was kept below 20 kΩ.

Visual Stimulation. To present visual stimuli in eyes-closed condition, we constructed a visual 
stimulation system which consists of a pair of glasses, four LEDs, and an LED controller. An Arduino 
Leonardo board containing an ATmega32u4 microprocessor was used as the LED controller. As sketched 
in Fig. 1, two LEDs emitting blue and red light were attached on each side of the glasses for which we 
drilled two holes on each glass, inserted the LEDs, and fixated them using glue. In order to realize a 
3-class BCI system, the two red LEDs placed in the middle were paired and synchronously employed, 
and the blue LEDs on the left and right side of each glass were independently flashed. The duration of 
a single flash was 100 ms, and inter-stimulus-interval (ISI) was set to 1200 ms. The relatively long ISI 
compared to typical ERP studies was empirically determined to help the subjects perceive an upcom-
ing stimulus from the current one in terms of color because the visual stimulus with a short distance 
from the eyes (< 5 cm) yielded longer afterimage durations than in ordinary stimulation conditions. The 
luminance intensity of the LEDs was empirically selected through preliminary experiments, which were 
95 and 80% of the original luminous intensity for the red (500 mcd/20 mA) and blue (1000 mcd/20 mA) 
LEDs, respectively. With this stimulation setting, none of the subjects reported feeling uncomfortable or 
having difficulties focusing on a target stimulus.
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Questions. In the experiments, to demonstrate the possibility of using our proposed BCI paradigm 
in real clinical situations, questions having three possible choices were automatically read out to the sub-
jects using a realistic speech synthesizer. Subjects were asked to answer the questions by concentrating 
on one of the three different types of visual stimuli, e.g., “Which of these drinks is alcoholic?” a) coffee, 
b) lemonade, c) beer. Each of ‘a’ , ‘b’ , and ‘c’ options corresponded to the left blue LED, the right blue 
LED, and the pair of middle red LEDs. Different questions were used for each trial, and the order of the 
questions was randomized for each subject.

Experimental Procedures. Subjects were sitting on a comfortable chair, and wearing the LED-attached 
glasses after EEG preparation. They were asked to avoid any body movements during the experiments 
and to keep their eyes shut during visual stimulation. This was continuously monitored, and subjects nei-
ther made considerable body movements nor did they open their eyes during the experiment. The visual 
stimuli were first presented sequentially without EEG recording to check whether the subjects could 
recognize the position (left, middle or right) and color (blue or red) of each LED stimulus. The visual 
stimuli were presented to the subjects until they fitted the position of the LED glasses as comfortably as 
they could perceive each stimulus, which was generally done within several iterations. Each experiment 
consisted of one calibration and three feedback sessions. In the calibration session, data was collected to 
construct a subject-specific classifier. Fifteen questions (trials) and their true answers were presented, and 
subjects had to covertly attend to the LEDs corresponding to the designated true answers. Subsequently, 
3 feedback sessions with 20 questions each were conducted (a total of 60 questions). Subjects were 
prompted to choose answers to each question by themselves, focus on self-selected LEDs during visual 
stimulation, and input their answers using a keyboard after each trial. The numbers 1–3 were used for 
answering ‘a’, ‘b’, ‘c’ options, respectively, for which the subjects fixed their index, middle, and ring fin-
gers on the numbers 1–3 of the keyboard during the whole feedback sessions. A classifier output (‘a’, ‘b’, 
or ‘c’) was acoustically given as feedback right after the subject input his/her own answer, and online 
classification accuracy was calculated by comparing the classifier output with the subject’s answer. For 
visual stimulation, the three groups of LEDs were randomly illuminated eight times for each trial in both 
calibration and feedback sessions (3 groups x 8 sequences =  24 flashes). Thus, the time required for one 
selection was 31.2 s (1,300 ms x 24 flashes =  31.2 s). A break of about 5 minutes was given between the 
sessions. Subjects reported that the experimental task was not too hard.

EEG Data Analysis. All online and offline data analyses were performed after downsampling to 
100 Hz. No software filter was applied for online data analysis. A linear discriminant analysis (LDA) 
classifier with shrinkage of the covariance matrix was used for online classification during the feedback 
session33. To train a shrinkage LDA classifier, the calibration data were first epoched from – 200 ms to 
1000 ms based on the stimulus onset time, and then baseline correction was performed using the data 
200 ms prior the stimulus. Epochs and channels containing physiological artifacts (e.g., eye and muscle 
movements) were removed based on a variance criterion. About 4% of epochs and less than 1 channel 
were rejected on average. Then, the most discriminative five temporal intervals were selected using a 
heuristic search based on signed square values of point-biserial correlation coefficients (sgn r2), and the 
channel-wise mean amplitudes in the selected time intervals were calculated as features. The shrinkage 
LDA was trained using the features, and applied to the data measured during the feedback sessions for 
online classification (see Blankertz et al.’s study33 for the data processing pipeline in detail).

Three different offline analyses were performed to investigate ERPs elicited by the visual stimuli pre-
sented in eyes-closed condition and to demonstrate the possibility of using our proposed eyes-closed 
BCI paradigm in covert attention condition, respectively. Before all offline data processing, the recorded 
EEG data were first lowpass filtered below 49 Hz using a Chebyschev filter with passbands and stopbands 
of 42 and 49 Hz to remove powerline interference. The first offline analysis was to investigate ERPs for 
which the data sets measured from the three feedback sessions were used (60 trials) and the first three 
steps of the method used in training the shrinkage LDA classifier was identically applied to the data 
sets (data epoching, baseline correction, and artifact rejection). Since the ERP analysis results showed 
stimulus-specific eye movements (see the Supplementary Figures S1 and S2 in advance), we performed 

Figure 1. Schematic illustration of the developed visual stimulation system. Two LEDs colored with 
blue and red were attached with a distance of 1 cm on the center of each glass. The red LEDs placed inside 
of each glass were paired and each blue LED was separately employed, such that a 3-class BCI system was 
implemented. The duration of a single flash and inter-stimulus interval (ISI) were set to 100 ms and 1200 ms, 
respectively.
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a second offline analysis in order to investigate the contribution of eye movements to classification. 
The horizontal and vertical EOG channels were used to examine stimulus-specific eye movements, and 
offline classification accuracy was estimated with three different channel sets (all channels, six frontal 
channels (Fp1–2, AF3–4,7–8), and the other channels) to check the spatial and temporal distribution of 
discriminative information, especially for the frontal electrode set. It was assumed that the six frontal 
electrodes contain the information most pertinent to eye movements based on the ERP topographic 
maps shown in the Supplementary Figures S1 and S2. For the latter analysis, a standard binary classi-
fication (target vs. non-target; chance level 50%)33 was separately performed for each electrode set by 
taking whole temporal features (yielding a spatial distribution of discriminative information), and for 
each time interval created by a 80 ms sliding window with 50% overlap (yielding a temporal distribution 
of discriminative information) in which the three sets of electrodes were also separately employed. In 
the third offline analysis, we calculated classification performance after clearly removing all identifiable 
physiological artifacts, especially eye movements, to further check the impact of stimulus-specific eye 
movements on classification. To obtain cleaned EEG signals, the original EEG data were decomposed 
into neural and artifactual source components by using independent component analysis (ICA), and 
artifactual components were projected out. An artifactual independent component classification method, 
called MARA (Multiple Artifact Rejection Algorithm)34,35 was used to automatically select artifactual 
components. Using the artifact-free EEG data, online classification was simulated in offline fashion with 
the identical method employed for the online classification. In this study, a Matlab toolbox, EEGLAB, 
and its plug-in, MARA, were used to perform ICA and MARA, respectively (http://www.user.tu-berlin.
de/irene.winkler/artifacts/).

For statistical analysis, two non-parametric methods, Friedman and Wilcoxon signed-rank test, 
were performed because testing data sets did not follow a normal distribution as confirmed by the 
Kolmogorov-Smirnov test. The Friedman and Wilcoxon signed-rank tests correspond to the paramet-
ric statistical tests, one-way repeated-measures ANOVA and paired t-test, respectively. The significance 
level for the Friedman test was set to 0.05, and a Bonferroni-adjusted significance level was used for the 
Wilcoxon post-hoc analysis, i.e., p =  0.05/the number of post-hoc tests.

Results
Online Classification and ERPs. Figure 2(a) shows the online classification accuracies of each sub-
ject and their mean. All subjects achieved performance substantially higher than the chance accuracy of 
33.33%, with a mean accuracy of 74.58% across subjects. Figure 2(b) shows the confusion matrix of the 
online classification results. The correct mean recognition rates of left, middle, and right targets were 
70.83%, 86.24%, and 66.66%, respectively, and the performance of middle targets is significantly higher 
than that of both left and right ones (Friedman χ 2(2) =  8.54, p =  0.014; the Bonferroni post hoc analysis: 
middle > left =  right, corrected p <  0.01). It is also observed in Fig.  2(b) that most false negatives for 
the left and right class occur in the middle class (24.16% and 24.99% false negatives for left and right 
targets, respectively).

Figure 3 depicts grand-average ERPs of the cleaned EEG signals obtained after applying ICA for tar-
get and non-target stimuli and their differences in terms of the sgn r2 value, and Fig. 4 separately shows 
grand-average ERP topographical maps for each target. In these figures, typical P3 components are seen 
in both target and non-target conditions, but they are considerably larger for targets than for non-targets 

Figure 2. Online classification results. (a) Classification accuracies of each subject, and their mean and 
standard deviation (chance level 33.33%). (b) Confusion matrix of online classification results. The mean 
classification accuracies of the left, middle, and right class are 70.83, 86.24, and 66.66%, respectively, and 
most false negatives of the left and right class are observed in the middle class (24.16% for the left class and 
24.99% for the right class, respectively).
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(see the Supplementary Figures S1 and S2 for the grand-average ERPs of the original EEG data before 
artifact rejection).

Eye Movements. Along with the P3 components, eye movements are also found as evidenced by 
activity in frontal electrode sites (see Supplementary Figures S1 and S2). Figure 5 shows the character-
istics of the eye movements induced by each directional stimulus, where horizontal and vertical EOGs 
are separately presented. The red, blue and green lines represent EOGs measured when a target is left, 
middle, and right LED, respectively, for each stimulus. It is confirmed in Fig. 5(a) that the subjects shifted 
their eyes to the opposite side of a visual stimulus when left and right stimuli are presented, irrespective 
of whether they are targets or non-targets (see the first and third rows in Fig. 5(a)). Note that because 
horizontal EOG was calculated by subtracting F10 from F9, a negative EOG value corresponds to a shift 
of the eyes to the right and vice versa. Little horizontal movements are observed for the middle stim-
ulus but strong vertical eye movements are shown, while the left and right stimuli induce little vertical 
movements (see around 200 ms in Fig. 5(b)). The stimulus-specific eye movements are in line with those 
observed in the grand-average ERP maps of the original EEG data (Supplementary Figure S2).

Offline Classification. The spatial and temporal distribution of discriminative information of the 
three electrode sets is presented in Fig. 6. Significantly lower performance is consistently observed in the 
frontal electrode set (“Frontal”) in which eye movements are most strongly reflected, compared to the 
other two electrode sets (‘All’ and “Central-Occipital”). In particular, no considerable difference in clas-
sification accuracy is observed between the two electrode sets constructed using all electrodes (“All”) and 
the central-occipital electrodes (“Central-Occipital”). The performance differences between the three 
electrode sets are statistically confirmed for both spatial (Fig. 6(a), Friedman χ 2(2) <  32.08, p =  0.0007; 
the Bonferroni post hoc analysis: “All” =  “Central-Occipital” >  “Frontal”, corrected p <  0.01) and tem-
poral distribution (Fig. 6(b), Friedman χ 2(2) ≤ 8.17, p ≤0.0169; the Bonferroni post hoc analysis: “All” =  

Figure 3. Grand-average ERPs for target and non-target stimuli and their differences in terms of the 
sgn r2 value along time after removing artifact components using ICA. No significant eye movements are 
observed in the ERP maps, while P3 components are clearly seen. The topographic maps in each column 
correspond to the five time periods shaded in the top panel.
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“Central-Occipital” >  “Frontal”, corrected p <  0.05 for all time intervals except the first, second, third 
and fifth ones).

Figure 7 shows the comparison of classification accuracies obtained before and after artifact rejection 
using ICA for each subject. The degree of performance change varies from one subject to another, but it 

Figure 4. Class-specific grand-average ERPs for target and non-target stimuli and their differences in terms 
of the sgn r2 value after removing artifact components using ICA when a target is the (a) left, (b) middle, 
and (c) right stimulus, respectively. P3 components more shifted to the direction of a visual stimulus 
are observed in the sgn r2 maps of the second time periods for left and right targets. In each figure, the 
topographic maps in three columns correspond to the three time periods shaded in the top panels, and the 
time intervals were empirically selected to better show the target-specific ERP patterns.

Figure 5. (a) Horizontal and (b) vertical eye movements occurred during stimulation. The red, blue, 
and green lines indicate eye movements produced when a target is the left, middle, and right stimulus, 
respectively, and the shaded areas of each line represent the standard errors of respective EOG signals. 
Irrespective of whether visual stimuli are targets or non-targets, eye movements moved to the opposite 
direction of a visual stimulus are confirmed in horizontal EOGs when left and right stimuli are presented, 
while dominant vertical EOGs are observed for middle stimuli.
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is not significantly different in average (before ICA: 74.58% vs. after ICA: 75.83%, p =  0.74 with Wilcoxon 
signed rank test). The confusion matrix of the simulated classification results (after ICA) showed a sim-
ilar trend to that of original ones (before ICA) in terms of classification accuracy of each class and false 
negatives of left and right targets (not shown here).

Discussion
Visual BCI paradigms have been intensively studied to realize practical BCI systems for paralyzed 
patients, but the performance of conventional visual BCI systems decreases significantly when users are 
not allowed to directly gaze at a target stimulus24,36,37. Even though variations of the classical paradigm 
have been introduced to overcome clinically relevant problems (e.g., gaze independent or eyes-closed 
paradigms), they cannot be also applied to severely locked patients with multiple visual dysfunctions 
because they have been generally developed for a certain type of oculomotor impairment. In this study, 
we introduced a novel visual BCI paradigm that could be used in both gaze independent and eyes-closed 
conditions to encompass multiple oculomotor abnormalities, and demonstrated the feasibility of our 
novel BCI paradigm with a high mean online performance of 74.58%.

Since our proposed BCI paradigm was intended for LIS patients suffering from complex ophthalmo-
plegia and CLI patients, the characteristics of eye movements induced during visual stimulation should 

Figure 6. (a) Spatial and (b) temporal distribution of discriminative information of three electrode sets. 
The electrode sets, “All”, “Frontal”, and “Central-Occipital”, were constructed using all electrodes, six frontal 
electrodes (FP1–2, AF3–4, 7–8), and the others excluding the frontal electrode set, respectively. In general, 
the performance of the ‘Frontal’ electrode set is significantly lower than that of the other electrode sets. The 
vertical bars represent the standard deviations of the classification accuracies for each condition.

Figure 7. Comparison of simulated classification accuracies attained before and after applying ICA.  The 
difference between the accuracies is not statistically significant (before ICA: 74.58% vs. after ICA: 75.83%, 
p =  0.74 with Wilcoxon signed rank test).
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be carefully investigated. A series of analyses confirmed that the subjects tended to move their eyes 
to an opposite or avoidable direction from a visual stimulus (see Fig.  5). Thus, stimulus-specific eye 
movements can be explained by a reflex action to protect the eyes from a sudden light stimulus as pupil-
lary light reflex. Most importantly, because the subjects consistently showed the reflex response for the 
same stimulus, irrespective of whether it is a target or non-target, eye movements did not contribute to 
classification performance (see Fig.  6). This suggests that the class-discriminative ERPs reflect genuine 
neural attention related processes. It was also reported in the literatures that ocular reflexes are generally 
weaken in patients with motor neuron diseases (MND)38,39, but saccade reflex similar to the reflexive 
eye movements observed in this study is relatively well preserved in those patients40–43. This is because 
the impairment of the frontal eye field that frequently happens in MND patients leads to eye movement 
abnormalities, but does not affect reflexive saccades in general44. This indicates that the potential target 
users of our proposed paradigm could also show reflexive eye movements similar to those shown in 
healthy subjects. Taken all results together, it can be expected that our paradigm might be useful for 
LIS patients suffering from multiple oculomotor impairments and CLI patients with cover attention, 
although this needs further evaluation in a clinical study.

In the ERP maps shown in Figs 3 and 4, visible P3 components were observed even when non-target 
stimuli were presented, but they were not as strong as those elicited by target stimuli. Similar P3 patterns 
were also observed in our previous BCI studies6,45 when a center speller was employed where both target 
and non-target stimuli were presented in the fovea similar to our proposed paradigm in this study. This 
phenomenon was explained by the fact that visual stimulation centered in foveal regions with the highest 
photoreceptor density lead to more involvement of neurons for visual processing, thereby resulting in the 
visible P3 components even for non-target stimuli6,45. It seems reasonable to assume that the P3 compo-
nents elicited by non-target stimuli in this study can be generated by a similar mechanism.

Most of misclassified left and right targets were assigned to the middle class, as shown in Fig.  2(b). 
This result can be interpreted by the mismatch of the number of LEDs used for each class along with the 
mentioned cortical magnification caused by the fovea-centered stimulation. In this study, a pair of LEDs 
was used for the middle stimulus and they were presented to both eyes simultaneously, while one LED 
was used for the left and right stimulus, respectively. As already discussed, relatively high P3 amplitudes 
were also seen for non-target stimuli due to the impact of the fovea-centered stimulation. Therefore, P3 
amplitudes for the middle non-target stimulus employing 2 LEDs could be larger compared to the left and 
right non-target stimulus. This would result in a reduced difference of P3 amplitudes between targets and 
non-targets whenever the middle non-target stimulus is presented, thereby provoking misclassifications 
toward the middle class when targets are left and right LEDs. In fact, this speculation is indirectly backed 
by Fig. 8 showing grand-average ERP maps obtained when a target is the left LED, where the ERPs elicited 
by non-target right and middle LEDs are separately illustrated. As expected, P3 amplitudes are stronger for 
the middle LEDs than for the right LED, and the P3 amplitude differences between targets and non-targets 
are considerably reduced in the case that a non-target is the middle stimulus (see the second and third 
rows in Figs. 8(a) and (b)). A similar trend is also observed when a target is the right LED (not shown 
here). This suggests that the number of LEDs and light intensity require careful balancing across stimulus 
conditions. In particular, the LED intensity should be more carefully elaborated before applying our para-
digm to real target patients because a light stimulus might negatively affect patients’ eyes in long-term use.

An eyes-closed visual BCI paradigm was first introduced based on SSVEP32, where EEG patterns 
induced by attending either left or right visual stimuli were classified. The eyes-closed SSVEP para-
digm showed a good classification performance ranging from 81.3% to 96% in average (chance level: 
50%), depending on stimulation time, and the corresponding information transfer rates (ITR) were 
9.09–10.62 bits/min. Compared to the performance of our proposed paradigm, classification accuracy 
cannot be directly compared due to different chance levels (50% vs. 33.33%), but the average ITR of 
the eyes-closed SSVEP paradigm is much higher than that of our paradigm (1.23 bits/min). However, it 
should be noted that the eyes-closed SSVEP paradigm requires accurate horizontal eye movements to 
focus on either left or right stimulus, thereby limiting its application value for patients with severe oculo-
motor dysfunctions. On the other hand, our proposed eyes-closed ERP paradigm could be used in gaze 
independent condition, as demonstrated in our results (see Fig. 7). Therefore, if a paralyzed patient had 
moderate ocular functions, the eyes-closed SSVEP paradigm would be a better option than our paradigm 
in terms of the communication rate. If it is not the case, our proposed eyes-closed and gaze independent 
BCI paradigm could be a better choice for communication. Nevertheless, the relatively low ITR should 
be improved in the future studies by optimizing various experimental variables, such as flash duration, 
ISI, and the number of visual stimuli, for practical use. Another solution to increase the communication 
rate of the proposed ERP paradigm would be to take advantage of SSVEP features by incorporating the 
SSVEP paradigm to our paradigm, as in previous hybrid BCI systems combining the SSVEP and visual 
ERP Paradigm12–14.

Recently, significant advances have been made in the development of BCI systems based on non-visual 
sensory modalities such as auditory46–51 and tactile52–54, and they could be also utilized for patients with 
poor ocular functions because they are independent of oculomotor functions. Some ERP studies com-
pared different sensory modalities and consistently showed the superiority of a visual paradigm over 
auditory or tactile ones with respect to P3 amplitudes55,56 and BCI performance2–4,51. However, it does 
not mean that a visual BCI paradigm is the best option for all end-users. Instead, a feasible and practical 
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paradigm is highly dependent on the individual patient’s state of disease, which was demonstrated in sev-
eral end-user studies conducted with different sensory BCI paradigms57–60. For example, a tactile modal-
ity showed better BCI performance than visual and auditory ones57, while a better performance was 
shown for a visual paradigm than an auditory one58. Thus, a user-centered BCI paradigm should be first 
investigated in practice before applying BCI technology to end-users. In this sense, our proposed BCI 
paradigm can provide another option for patients suffering from multiple ocular impairments, along with 
auditory and tactile paradigms. Furthermore, as some studies already demonstrated the positive impact 
of multisensory stimuli paradigms on BCI performance (e.g., visual + auditory)2,3,61, our novel visual BCI 
paradigm could be used simultaneously with other sensory paradigms to improve communication rate.
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