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Abstract
An important hallmark of CRC is the evasion of immune surveillance. HLA-G is a negative

regulator of host’s immune response. Overexpression of HLA-G protein in primary tumour

CRC tissues has already been associated to worse prognosis; however a definition of the

role of immunogenetic host background is still lacking. Germline polymorphisms in the

3’UTR region of HLA-G influence the magnitude of the protein by modulating HLA-G mRNA

stability. Soluble HLA-G has been associated to 3’UTR +2960 Ins/Ins and +3035 C/T (lower

levels) and +3187 G/G (high levels) genotypes. HLA-G 3’UTR SNPs have never been

explored in CRC outcome. The purpose of this study was to investigate if common HLA-G
3’UTR polymorphisms have an impact on DFS and OS of 253 stage II-III CRC patients,

after primary surgery and ADJ-CT based on FL. The 3’UTR was sequenced and SNPs

were analyzed for their association with survival by Kaplan-Meier and multivariate Cox mod-

els; results underwent internal validation using a resampling method (bootstrap analysis). In

a multivariate analysis, we estimated an association with improved DFS in Ins allele (Ins/

Del +Ins/Ins) carriers (HR 0.60, 95% CI 0.38–0.93, P = 0.023) and in patients with +3035

C/T genotype (HR 0.51, 95% CI 0.26–0.99, P = 0.045). The +3187 G/G mutated carriers

(G/G vs A/A+A/G) were associated to a worst prognosis in both DFS (HR 2.46, 95% CI

1.19–5.05, P = 0.015) and OS (HR 2.71, 95% CI 1.16–6.63, P = 0.022). Our study shows a
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prognostic and independent role of 3 HLA-G 3’UTR SNPs, +2960 14-bp INDEL, +3035

C>T, and +3187 A>G.

Introduction
Colorectal cancer (CRC) is still a clinical burden being the third most common cancer in the
United States [1] and the second leading cause of cancer death in Europe, in both women and
men [2]. Recent advances in protein- and genomic-based technologies, validated predictive
and prognostic biomarkers, have demonstrated that CRC should be considered as a heteroge-
neous disease [3–5]. Adjuvant chemotherapy (ADJ-CT) based on fluoropyrimidine (FL) is gen-
erally administered in stage II-III patients after surgical resection of the primary tumour.
Despite optimal surgery and adjuvant therapies, the risk of recurrence for stages II or III disease
is about 40% [6] and ~ 80% of stage II CRC patients will be disease-free even without ADJ-CT
[7]. Recently, gene expression profile signatures of immune-system related genes and presence
of the immune infiltrates in tumour microenvironment were shown to have an independent
prognostic significance in CRC compared to classical clinical factors [8–11].

Tumour immunogenicity, cancer cell capability to escape from the host’s immune system
surveillance, and immunogenetic background of the patient, represent a future challenge of
current research [12]. Two main mechanisms contribute to the cancer immunoediting process
[13] leading to poorly immunogenic tumour cell variants invisible to the immune system. The
first is the minimization of the level of tumour associated antigens (TAA) presentation through
the downregulation or loss of the human leukocyte antigen (HLA) class I expression by tumour
cells [14]. The second is the competence of cancer cells in regulating the expression of the non-
classical HLA class I molecules such as HLA-G [15]. The HLA-G gene codifies for a tolerogenic
molecule with well recognized immune-inhibitory properties on both innate and adaptive
immune responses [16–18]. HLA-G is highly expressed in physiological conditions in tropho-
blast at fetal-maternal interface and has a restricted distribution in normal tissues [19]; how-
ever, an increased expression can be induced in pathological conditions such as cancer [20,21].
Several genetic variations involved inHLA-G regulation have been so far described in the 5’
upstream regulatory (or promoter) region (5’URR) as well as in the 3’ untranslated region
(3’UTR), while in contrast to the classical HLA class I loci, a lower variability in the coding
regions is observed [22–24]. Increased soluble HLA-G levels in biological fluids are associated
with down-modulation of the immune response in the host [15]. TheHLA-G 3’UTR is the
most studied segment of the gene due to the presence of multiple regulatory elements impli-
cated in the modulation of HLA-G expression.

Nine (+2960 14-base pair (bp) INDEL, +3003 T>C, +3010 C>G, +3027 C>A, +3035 C>T,
+3142 G>C, +3187 A>G, +3196 C>G and +3227 G>A) single nucleotide polymorphisms
(SNPs) are known in this region, which can potentially alter the set of microRNAs (miRNAs)
capable of binding the 3’UTR, thus influencing HLA-G RNA turnover, stability and splicing
[25,26]. At least three of these genetic variants have been associated to the transcriptional and
post transcriptional control of HLA-G regulation [27,28]. In particular, the presence (Ins) or
absence (Del) of a 14-bp fragment (5’-ATTTGTTCATGCCT-3’) in position+2960 (14-bp
INDEL, 14-bp Ins/Del) influences transcripts stability and is the most studied SNP. Presence of
14-bp Ins allele produces a more unstable HLA-GmRNA causing lower levels of the protein
[25]. The G nucleotide in position +3142 favours the targeting of three miRNAs (miR-148a,
-148b, and -152) leading to an increase in mRNA degradation [22]. Four-bp upstream to
+3187 A>G and 9-bp downstream to +3196 C>G SNPs, two AU-rich motifs are present. The
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wild type +3187A allele is associated to decreased mRNA stability modifying an AU-rich motif
[29]. Significant differences in soluble HLA-G protein levels have been observed in carriers for
+2960 Ins/Ins and +3035 C/T (lower levels) [29–32], and in +3027 C/C, +3142 G/C, +3187 A/
G (higher levels) [29,33] genotypes. Some 3’UTR SNPs, 14-bp INDEL in particular, have been
related to the susceptibility to certain diseases such as autoimmune diseases [33], preeclampsia,
transplantation, chronic inflammatory diseases and several types of cancer [30,31,34]. Notably,
a recent study in human cancer (chronic lymphocytic leukemia) has reported an association
with the +2960 14-bp INDEL polymorphism and plasmatic HLA-G protein levels and survival
[31].

HLA-G is overexpressed in primary CRC lesions [35–37], and higher levels of the soluble
protein have been detected in plasma of CRC patients compared to that of patients with benign
diseases or healthy donors [38,39]. Expression of HLA-G in tumour tissues has been associated
with the clinical outcome of CRC as an independent and unfavourable prognostic factor of
reduced OS [40,41].

To date, the characterization of HLA-G genotypes, alleles and haplotypes in CRC patients
has not been explored as well as their role in the prediction of CRC prognosis [42].

Considering the relevance of the 3’UTR region in the control and regulation of the HLA-G
transcripts and the lack of data in literature, our purpose was searching for associations
between HLA-G 3’UTR polymorphisms detected at the germinal level, and the disease free sur-
vival (DFS) and OS of stage II-III CRC patients in adjuvant regimen. We analyzed a cohort of
253 CRC patients to investigate if functional SNPs in the 3’UTR ofHLA-G gene, alone or in
combination in the 3’UTR haplotypes, are associated to advantage or disadvantage for DFS
and OS.

Materials and Methods

Ethics Statement
A written Informed Consent was obtained before surgery from all the participants to the use of
their blood samples and clinical data for research purpose. The study was approved by the ethi-
cal committees of the participating institutes, the Centro di Riferimento Oncologico (CRO)-
Aviano National Cancer Institute, Aviano, Italy, University Hospital, Florence, Italy, Istituto
Oncologico Veneto, Padua, Italy, Ospedale Civile di Vittorio Veneto, Vittorio Veneto, Italy,
University Hospital “S. Maria Della Misericordia”, Udine, Italy, and “San Filippo Neri”Hospi-
tal, Rome, Italy.

Patients and treatment
A total of 253 CRC patients with newly diagnosed, untreated, histopathologically confirmed
CRC, were included from an existing prospective collection of only blood samples stored at the
Experimental and Clinical Pharmacology Unit of Centro di Riferimento Oncologico (CRO)-
Aviano, based on previous multicenter pharmacogenomic studies [43,44]. Eligible criteria
were: stage II-III CRC, radiologically-confirmed absence of distant metastasis, age>18 years,
performance status (WHO) 0–2, normal bone marrow, renal and liver function, and Caucasian
ethnicity. Overall patients after diagnosis underwent primary surgery and received ADJ-CT
based on fluoropyrimidine (FL) (i.e., 5-fluorouracil/folinic acid or capecitabine) [44], or FL
plus oxaliplatin (FL+OXA) [43].

ADJ-CT was continued until completion of the planned cycles, recurrence, toxicity or
patient refusal. Patients follow-up was measured from the time of surgery to the last contact or
disease recurrence. Biological tests, pulmonary X-ray, positron emission tomography (PET)
and/or computed tomography (CT) imaging alternatively with abdominal ultra-sonography
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were carried out every 3 months during the first 3 years after surgery. In the next 2 years PET/
CT were performed every 6 months and then annually. Overall evaluations were conducted
independently by the type of ADJ-CT. Recurrence was defined based on PET/CT scans in the
case of metastasis presence, with pathologic confirmation made by the oncologist when
necessary.

HLA-G 3’UTR genotyping
A peripheral blood sample was collected in acid citrate dextrose (ACD) tubes from nearly all
CRC patients. Genomic DNA was extracted from whole blood or from normal colon mucosa tis-
sue by using the EZ1 DNA Blood or Tissue kit and the BioRobot EZ1Workstation (QIAGEN
Inc., Valencia, CA, USA). The 3’UTR of theHLA-G gene was amplified by polymerase chain
reaction (PCR) using the already published [23] primers HLAG8F: 5’- TGTGAAACAGCTGCC
CTGTGT-3’ and HLAG8R: 5’- GTCTTCCATTTATTTTGTCTCT-3’. PCR reactions were car-
ried out in a final volume of 30 μl containing 1.25 mMMgCl2, 0.25 mM of each dNTPs, 5 pmol
of each primer, about 50–200 ng of genomic DNA template, 1X PCR Buffer and 0.5 units of
AmpliTaq Gold DNA polymerase (Applied Biosystems, Foster City, CA, USA). The PCR cycles
were as follows: 5 mins. of initial denaturation at 94°C, 30 cycles of 45 secs. at 95°C, 45 secs. at
56°C, 60 secs. at 72°C, and the final extension step at 72°C for 7 mins. Five microliters of PCR
products (344 bp in presence of deletion and 358 bp for insertion) were first analyzed by electro-
phoresis on 4% agarose gel stained with ethidium bromide. The remaining 25 μl of PCR reactions
were purified using Diffinity RapidTip 2 tips (Sigma-Aldrich, St. Louis, MO, USA). Purified reac-
tions (1–2 μl) were sequenced (Sanger method) by the use of the Big Dye Terminator kit (Applied
Biosystems, Foster City, CA, USA) and an ABI PRISM capillary sequencer with the reverse
HLAG8R primer to prevent sequence overlaps in heterozygous 14-bp samples [23]. Chromato-
grams were visualized with Chromas software version 2.01 and all single nucleotide polymor-
phisms (SNPs), and single nucleotide variants (SNVs) detected were recorded for each study
participant.

Statistical analysis
The aim of this study was to assess associations between HLA-G polymorphisms in the 3’UTR
regulatory region and DFS and OS respectively of stage II-III CRC patients treated with
ADJ-CT after primary surgery. DFS was defined as the time from date of surgery to date of
clinically detectable recurrence (local, regional or distant), death from any cause, or last follow-
up evaluation. OS was defined as the time from date of surgery to date of death from any cause,
or last follow-up time. Longitudinal analyses were determined by means of Kaplan-Meier
method (log-rank test) and Cox models. Cox proportional hazard models were used to estimate
adjusted hazard ratios (HRs) and corresponding 95% confidence intervals (CIs). Associations
were firstly evaluated by means of univariate models and only those that resulted statistically
significant (two-sided P�0.05) were included in multivariate models. Adjustment for age (con-
tinuous variable), sex (male vs female), stadium (II vs III); first tumour location (colon vs rec-
tum) and type of ADJ-CT (FL-alone vs FL+OXA) were computed. After performing a Cox
regression using the common genomic model, the associations of SNPs with clinical outcomes
were also evaluated for genomic models of transmission (dominant and recessive). In a domi-
nant model for a SNP with a major allele “A” and a minor allele “b”, the collective genotypes
(“Ab”+”bb”) are compared to a reference genotype “AA”. For a recessive model, “bb” is com-
pared to a collective (“AA”+”Ab”) reference group. The HR of a reference genotype group is
arbitrarily fixed at 1.00. Survival analyses were not computed when a genotype or a haplotype
was detected in only one patient. Only haplotypes with frequency>1% were included in the
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survival analyses. An internal validation of the study results was carried out by a bootstrap
resampling technique. We ran 1000 bootstrapped Cox models adjusted for the aforementioned
variables. SAS software, version 9.2 (SAS Institute Inc., Cary, NC, 1999–2001) was adopted for
the estimations. Adherences of genotypic proportions to expectations under Hardy-Weinberg
(HW) equilibrium and two-locus linkage disequilibrium (LD) were evaluated by means of the
Haploview program v4.2. The most probable haplotype of each sample at the unknown
gametic phase, was reconstructed by the use of the PHASE method (program v2.1.1) [45].

Results

Patient characteristics and survival analysis
The main demographic and clinical characteristics of CRC patients (N = 253) together with
log-rank tests are summarized in Table 1.

Mean age was 60.5 +/-10.9 (IQ range 54–68 [25%-75%]) years, median age was 62.5 (range
24–82) years at onset. Most tumors (181/253 = 72%) presented stage III at the time of onset
and were preferentially located at the left colon portion (191/253 = 76%). At diagnosis, stage II
patients (N = 72) had pT3N0M0 (94%) of whom 6% had pT4aN0MO stage; most of them had
>12 lymph nodes excised (72%), while 16% of patients had<12 lymph nodes excised. In 12%
of cases the number of the analysed lymph nodes was not reported, although there was confir-
mation of no nodal involvement (N0). Mean follow-up time was 44.4 months for DFS (95% CI
42.1–46.7) and 74.8 months for OS (95% CI 71.9–77.8). Median follow-up time was 56.3
(range 1.2–186.3) months for DFS and 62.8 (range 4.6–186.3) months for OS. Five-year DFS
was 65% (Fig 1A) and 5-year OS was 78% (Fig 1B). Total relapses were 82 (82/253 = 32%), 37%
of staged III (67/181) and in 21% of stage II. Fifty six patients (56/253 = 22%) died during fol-
low-up. Adjuvant therapy was administered as FL in 44% or as FL plus platinum (FL+OXA) in
56% of patients. One hundred and forty five patients (145/253 = 57%) completed the planned
cycles for ADJ-CT. ADJ-CT treatment, FL alone or FL+OXA, was not significantly associated
with both DFS (P = 0.512) and OS (P = 0.629) (Table 1). A significantly shorter OS was associ-
ated with males (P = 0.019), more advanced tumour stage (III) and rectal tumour location
(P = 0.050) (Table 1). Moreover, advanced tumour stage was also associated with a shorter DFS
(P = 0.010).

HLA-G 3’UTR germinal screening
For each CRC patient the HLA-G 3’UTR segment was analyzed by direct sequencing. We
detected 9 common SNPs atHLA-G 3’UTR: +2960 14-bp INDEL (rs371194629), +3003 T>C
(rs1707), +3010 C>G (rs1710), +3027 C>A (rs17179101), +3035 C>T (rs17179108), +3142
G>C (rs1063320), +3187 A>G (rs9380142), +3196 C>G (rs1610696) and +3227 C>A
(rs1233331). The germinal allele frequencies for HLA-G 3’UTR polymorphisms detected in
this set of CRC patients were reported in S1 Table. Only those polymorphisms with�5% vari-
ant allelic frequency (+2960 14-bp INDEL, +3003 T>C, +3010 C>G, +3027 C>A, +3035
C>T, +3142 G>C, +3187 A>G, and +3196 C>G) were considered for survival (DFS and OS)
analysis (Table 1). The distribution of genotypes of all selected SNPs were in agreement with
HW equilibrium (S1 Table). Strong LD (r2 = 0.98) was found between +3010 C>G and +3142
G>C polymorphisms (S1 Fig). Finally, HLA-G 3’UTR haplotypes were reconstructed from the
unphased gametic genotype data at the 16 variation sites for each of the 253 individuals affected
by CRC by PHASE method. A total of 20 different haplotypes were defined; of these, 14 have
been already described [46] and 7 (30%) were novel (for more details see S2 Table). The most
represented haplotype was UTR-2 (36%), then UTR-1 (24%), UTR-3 (13%), UTR-4 (11%),
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Table 1. Clinical and demographic characteristics of patients.

Variables N (%) 5-years Log-rank 5-years Log-rank

DFS % P-value1 OS % P-value1

Age, median

< 62.5 years 122 (48) 67 0.698 80 0.297

> 62.5 years 131 (52) 63 76

Gender

Male 140 (55) 60 0.076 73 0.019

Female 113 (45) 71 84

UICC (TNM) stage

II 72 (28) 79 0.010 89 0.010

III 181 (72) 60 73

First tumour location

Colon 191 (76) 67 0.435 81 0.050

Cecum 10 (5)

Right 50 (26)

Transverse 13 (7)

Left 83 (44)

Sigma 35 (18)

Rectum 62 (24) 61 0.522 68

Adjuvant Chemotherapy

FL+OXA 143 (56) 66 0.512 78 0.629

FL 110 (44) 64 77

HLA-G 3’UTR SNPs

+2960 14 bp INDEL

Del/Del 78 (31) 54 0.036 70 0.231

Ins/Del 115 (45) 70 79

Ins/Ins 60 (24) 70 84

Dominant Model 175 (69) 70 0.010 81 0.095

Recessive Model 60 (24) 70 0.411 84 0.329

+3003 T>C

T/T 201 (79) 66 0.725 77 0.996

T/C 47 (19) 60 79

C/C 5 (2) 80 80

Dominant Model 52 (21) 63 0.667 80 0.935

Recessive Model 5 (2) 80 0.600 80 0.985

+3010 C>G

C/C 94 (37) 68 0.162 80 0.213

C/G 119 (47) 67 80

G/G 40 (16) 54 67

Dominant Model 159 (63) 64 0.318 77 0.577

Recessive Model 40 (16) 54 0.063 67 0.079

+3027 C>A

C/C 225 (89) 63 0.176 78 0.684

C/A 27 (11) 81 80

+3035 C>T

C/C 205 (81) 63 0.051 77 0.367

C/T 47 (19) 77 81

+3142 G>C

G/G 93 (37) 68 0.113 79 0.226

(Continued)
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UTR-7 (5%), UTR-5 (3%), UTR-18 (3%), UTR-15 (1%) and UTR-6 (1%). These 9 haplotypes
represented more than 97% of total, but UTRs 1–4 were predominant (84%).

Associations between HLA-G 3’UTR SNPs and Disease Free Survival
Among the 8 eligible polymorphisms identified, 4 SNPs (+2960 14-bp INDEL, +3035 C>T,
+3142 G>C, and +3187 A>G) in the HLA-G 3’UTR region were associated to DFS in univari-
ate analysis (Table 1). Statistically significant associations between DFS and the polymor-
phisms +2960 14-bp INDEL (log-rank P = 0.036), +3035 C>T (log-rank P = 0.051, Fig 1D),
+3142 G>C in the recessive model (log-rank P = 0.038), and +3187 A>G (log-rank P = 0.019)
were found (Table 1). The polymorphism +2960 14-bp INDEL was also associated to DFS in
the dominant (Ins/Del + Ins/Ins vs Del/Del) model (log-rank P = 0.010, Fig 1C) and the +3187
A>G SNP in the corresponding recessive (G/G vs A/G+A/A) model (log-rank P = 0.007, Fig
1E). In particular, the Del/Del genotype was associated to a reduced 5-year DFS (54%) com-
pared to both Ins/Del (70%) and Ins/Ins genotypes (70%) (Table 1). The +3035 C/T genotype
was borderline significantly associated to prolonged 5-year DFS (77%) than the wild type
+3035 C/C (63%) combination. Patients with the +3142 C/C mutated genotype had a reduced
5-year DFS (52% with respect to 68% in subjects carrying the wild type-G/G and heterozygous-
G/C genotypes. The presence of the +3187 GG homozygous mutated genotype was associated
with a reduced 5-year DFS (33%) compared to wild type +3187 A/A (68%) and the heterozy-
gous +3187 A/G (65%) genotypes. UTR-1 haplotype, the second most represented (24%) in
our CRC cohort, was associated to reduced DFS (log-rank P = 0.007, S2A Fig).

We further evaluated the association between the HLA-G 3’UTR SNPs and related recon-
structed most abundant haplotypes (UTR2-, UTR-1, UTR-3, UTR-4, UTR-7, UTR-5, UTR-18,

Table 1. (Continued)

Variables N (%) 5-years Log-rank 5-years Log-rank

DFS % P-value1 OS % P-value1

G/C 119 (47) 68 80

C/C 41 (16) 52 67

Dominant Model 160 (63) 64 0.366 77 0.627

Recessive Model 41 (16) 52 0.038 67 0.085

+3187 A>G

A/A 145 (57) 68 0.019 82 0.036

A/G 93 (37) 65 76

G/G 15 (6) 33 51

Dominant Model 108 (43) 61 0.130 73 0.063

Recessive Model 15 (6) 33 0.007 51 0.025

+3196 C>G

C/C 106 (42) 60 0.062 72 0.191

C/G 107 (42) 73 84

G/G 40 (16) 59 79

Dominant Model 147 (58) 69 0.074 82 0.076

Recessive Model 40 (16) 59 0.417 79 0.773

DFS, Disease Free Survival; OS, Overall Survival; SNPs, Single nucleotide polymorphisms; FL, Fluoropirymidine; OXA, Oxaliplatin; significant values

(�0.05) are shown in bold.
1P values (log-rank test) given for the genotypes, the dominant and/or the recessive models.

doi:10.1371/journal.pone.0144000.t001
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UTR-15 and UTR-6) and DFS of CRC patients by means of multivariate Cox models (Table 2
and Table 3 for haplotypes).

The Ins/Del heterozygous carriers had a significantly reduced risk or recurrence (HR 0.59,
95% CI 0.36–0.96, P = 0.035) as well Ins allele carriers of (low-HLA-G secretor) according to
the dominant model (HR 0.60, 95% CI 0.38–0.93, P = 0.023). Forty-two percent of patients
with the Del/Del genotype (N = 78) had a recurrence (33/78), while a lower incidence (28%)
was observed in patients with Ins/Del (N = 115) and Ins/Ins (N = 60) genotypes (Table 2).

A borderline statistically significant association with reduced risk of disease recurrence was
determined in patients carrying the +3035 C/T (low-HLA-G secretor) genotype (HR 0.51, 95%
CI 0.26–0.99, P = 0.045). The 21% of heterozygous (C/T) patients for +3035 C>T SNP had a
relapse (10/47) with respect to the 35% found in the wild type +3035 C/C combination (72/
205). CRC patients carrying the +3187 G/G mutated genotype (high-HLA-G secretor) were
associated with an increased risk or relapse (HR 2.61, 95% CI 1.24–5.50, P = 0.012 and consis-
tently according to the recessive model (HR 2.46, 95% CI 1.19–5.05, P = 0.015). A detectable
relapse was observed in the 60% (9/15) of CRC patients with the +3187 G/G mutated genotype

Fig 1. Kaplan-Meier survival curves for Disease Free Survival and Overall Survival according to the
genotypes. (A) Disease Free Survival curve for the total of CRC patients. (B)Overall Survival curve for the
total of CRC patients. (C) Disease Free Survival curve for the +2960 14-bp INDEL SNP according to the
dominant model. (D) Disease Free Survival curve for the +3035 C>T SNP. (E) Disease Free Survival curve
for the +3187 A>GSNP according to the recessive model. (F)Overall Survival curve for the +3187 A>G
according to the recessive model.

doi:10.1371/journal.pone.0144000.g001
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Table 2. Associations of HLA-G 3’UTR SNPs with disease free survival and overall survival in 253 stage II-III CRC patients.

Disease Free Survival Overall Survival

HLA-G 3’UTR Genotypes and genetic models N Relapses, N Adjusted HR
(95% CI)1

P-value Dead, N Adjusted HR
(95% CI)1

P-value

+2960 14 bp INDEL (rs371194629)

Del/Del 78 33 1 - 22 1 -

Ins/Del 115 32 0.59 (0.36–0.96) 0.035 23 0.72 (0.40–1.30) 0.269

Ins/Ins 60 17 0.61 (0.34–1.10) 0.097 11 0.63 (0.30–1.30) 0.212

Dominant model (Ins/Del+Ins/Ins) 175 49 0.60 (0.38–0.93) 0.023 34 0.68 (0.40–1.18) 0.171

Recessive model (Ins/Ins) 60 17 0.82 (0.48–1.39) 0.457 11 0.76 (0.39–1.46) 0.406

+3003 T>C (rs1707)

T/T 201 64 1 - 45 1 -

T/C 47 17 1.26 (0.73–2.17) 0.401 10 1.01 (0.51–2.03) 0.968

C/C 5 1 0.72 (0.10–5.22) 0.744 1 1.15 (0.16–8.42) 0.895

Dominant model (T/C+C/C) 52 18 1.21 (0.71–2.06) 0.480 11 1.03 (0.53–2.00) 0.942

Recessive model (C/C) 5 1 0.69 (0.10–4.96) 0.709 1 1.14 (0.16–8.36) 0.896

+3010 C>G (rs1710)

C/C 94 27 1 - 19 1 -

C/G 119 38 1.11 (0.68–1.83) 0.670 24 0.99 (0.54–1.82) 0.973

G/G 40 17 1.63 (0.89–3.00) 0.115 13 1.60 (0.78–3.26) 0.197

Dominant model (C/G+G/G) 159 55 1.24 (0.78–1.96) 0.369 37 1.15 (0.66–2.00) 0.632

Recessive model (G/G) 40 17 1.54 (0.90–2.63) 0.117 13 1.61 (0.86–3.02) 0.140

+3027 C>A (rs17179101)

C/C 225 77 1 - 50 1 -

C/A 27 5 0.54 (0.22–1.35) 0.186 5 0.82 (0.33–2.05) 0.666

+3035 C>T (rs17179108)

C/C 205 72 1 - 47 1 -

C/T 47 10 0.51 (0.26–0.99) 0.045 8 0.66 (0.31–1.41) 0.287

+3142 G>C (rs1063320)

G/G 93 27 1 - 19 1 -

G/C 119 37 1.05 (0.64–1.72) 0.860 24 0.96 (0.52–1.75) 0.882

C/C 41 18 1.65 (0.90–3.00) 0.103 13 1.54 (0.76–3.15) 0.233

Dominant model (G/C+C/C) 160 55 1.19 (0.75–1.89) 0.465 37 1.10 (0.63–1.93) 0.728

Recessive model (C/C) 41 18 1.61 (0.95–2.71) 0.078 13 1.59 (0.84–2.98) 0.153

+3187 A>G (rs9380142)

A/A 145 42 1 - 26 1 -

A/G 93 31 1.16 (0.73–1.86) 0.529 23 1.26 (0.71–2.22) 0.431

G/G 15 9 2.61 (1.24–5.50) 0.012 7 2.96 (1.22–7.15) 0.016

Dominant model (A/G+G/G) 108 40 1.33 (0.86–2.05) 0.205 30 1.46 (0.86–2.48) 0.162

Recessive model (G/G) 15 9 2.46 (1.19–5.05) 0.015 7 2.71 (1.16–6.33) 0.022

+3196 C>G (rs1610696)

C/C 106 40 1 - 29 1 -

C/G 107 26 0.61 (0.37–1.02) 0.059 18 0.68 (0.37–1.24) 0.206

G/G 40 16 0.96 (0.54–1.72) 0.899 9 0.72 (0.34–1.52) 0.388

Dominant model (C/G+G/G) 147 42 0.72 (0.46–1.12) 0.142 27 0.69 (0.41–1.18) 0.173

Recessive model (G/G) 40 16 1.18 (0.68–2.05) 0.559 9 0.84 (0.41–1.72) 0.630

1HRs (Hazard Ratios) adjusted for age, sex, tumour stage, first tumour site and type of adjuvant chemotherapy (FL plus or without OXA). Significant

values (�0.05) are shown in bold.

doi:10.1371/journal.pone.0144000.t002
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(N = 15), in 33% (31/93) of heterozygous A/G (N = 93), and in 29% (42/145) of wild-type A/A
(N = 145) patients.

UTR-1 haplotype, containing the +3187Gmutated allele, was associated with poor progno-
sis in DFS when present in double (Hom) dose (HR 2.53, 95% CI 1.20–5.32, P = 0.014)
(Table 3). The HR of the +3035 C/T and +2960 14-bp INDEL combined effect confirmed the
protective role of both SNPs in DFS (HR 0.40, 95% CI 0.20–0.82, P = 0.013).

Associations between HLA-G 3’UTR SNPs and Overall Survival
The +3187 A>G SNP was the only one to be associated with OS (log-rank P = 0.036), and in
the corresponding recessive model (log-rank P = 0.025, Fig 1F) in univariate analysis (Table 1).

Table 3. Associations betweenHLA-G 3’UTR haplotypes with disease free survival and overall survival in 253 stage II-III CRC patients (N = 506).

Disease Free Survival Overall Survival

HLA-G 3’UTR Haplotypes1 N Relapses, N Adjusted HR (95% CI)2 P-value Dead, N Adjusted HR (95% CI)2 P-value

UTR-2

InsTCCCGAGG 180 42 1 - 26 1 -

Het 108 29 0.72 (0.44–1.18) 0.197 19 0.76 (0.43–1.37) 0.365

Hom 72 13 0.92 (0.49–1.73) 0.803 7 0.68 (0.29–1.55) 0.354

UTR-1

DelTGCCCGCG 120 38 1 - 28 1 -

Het 90 29 1.08 (0.67–1.74) 0.745 21 1.12 (0.63–1.99) 0.699

Hom 30 9 2.53 (1.20–5.32) 0.014 7 2.82 (1.17–6.77) 0.021

UTR-3

DelTCCCGACG 66 21 1 - 14 1 -

Het 56 19 1.09 (0.65–1.82) 0.753 13 1.11 (0.59–2.09) 0.745

Hom 10 2 1.98 (0.48–8.19) 0.347 1 1.15 (0.16–8.53) 0.890

UTR-4

DelCGCCCACG 55 17 1 - 11 1 -

Het 47 17 1.28 (0.74–2.19) 0.375 11 1.18 (0.61–2.31) 0.623

Hom 8 0 - - 0 - -

UTR-7

InsTCATGACG 27 4 1 - 5 1 -

Het 25 4 0.47 (0.17–1.29) 0.144 4 0.76 (0.27–2.13) 0.760

UTR-5

InsTCCTGACG 17 4 1 - 3 1 -

Het 17 4 0.56 (0.21–1.54) 0.263 3 0.74 (0.23–2.39) 0.617

UTR-18

DelTGCCCACA 15 3 1 - 2 1 -

Het 15 3 0.55 (0.17–1.74) 0.307 2 0.57 (0.14–2.37) 0.441

UTR-15

InsTCCCGACG 6 2 1 - 1 1 -

Het 4 2 1.91 (0.46–7.94) 0.371 1 0.87 (0.12–6.37) 0.893

UTR-6

DelTGCCCACG 6 3 1 - 1 1 -

Het 6 3 1.25 (0.38–4.16) 0.715 1 0.58 (0.08–4.33) 0.596

Het, haplotype in heterozygous state; Hom, haplotype in homozygous state; significant values (�0.05) are shown in bold.
1HLA-G 3’UTR haplotypes were reconstructed by PHASE method according to worldwide distributions46

2HRs (Hazard Ratios) adjusted for age, sex, tumour stage, first tumour site and type of adjuvant chemotherapy (FL plus or without OXA).

doi:10.1371/journal.pone.0144000.t003
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Similarly, UTR-1 haplotype was associated to OS (log-rank P = 0.025, S2B Fig). In multivariate
analysis carriers for the +3187 G/G genotype (high-HLA-G secretor) were associated with
reduced OS (HR 2.96, 95% CI 1.22–7.15, P = 0.016) and consistently in the recessive model
(HR 2.71, 95% CI 1.16–6.33, P = 0.022). Mortality rate was higher (47%) in homozygous
mutated +3187 GG (7/15) carriers than in the heterozygous +3187 A/G (25%, 23/93) and in
the wild type +3187 A/A (18%, 26/145) carriers (Table 2). Multivariate analysis for most repre-
sented haplotypes showed an association between UTR-1 haplotype in double (Hom) dose and
diminished OS (HR 2.82, 95% CI 1.17–6.77, P = 0.021) (Table 3). The observed associations in
both DFS and OS were unmodified in a bootstrap model confirming the internal validity of the
associations observed (not shown).

The relation between types of polymorphisms and DFS or OS risk, was further examined
stratifying by stage (II and III) (not shown). Although some differences in the hazard ratios
were detected across strata, the observed associations were still confirmed. Moreover, these
associations were compatible with the effect of random variation since heterogeneity tests were
not significant.

Discussion
Emerging data demonstrates a key role of genes involved in immune response checkpoints and
their associations with the CRC clinical outcomes [47]. In order to progress, malignant
tumours must elude or evade the host’s immune system. In the quest to develop personalized
cancer therapies, researchers are increasingly examining the patient’s immune response to can-
cer. SNPs within genes involved in immune response should be helpful to define the immuno-
genetic profile of the patients and to improve treatment strategies modulating anti-tumor
immune response by targeting novel immune checkpoints. Improvement in immunosurveil-
lance mechanisms may be achieved by means of immunotherapies with monoclonal antibodies
and through chemotherapies and radiotherapies [48]. The purpose of personalized medicine is
to identify the optimal treatment for each individual patient to maximize benefits and mini-
mize adverse effects. To achieve this goal, novel informative biomarkers and new approaches
to optimize clinical outcomes are needed in order to better stratify patients for cancer care.

The potential clinical relevance of HLA-G in cancer as a negative regulator due to its direct
or indirect tolerogenic properties to avoid immune cells response, was previously highlighted in
several studies [17,24]. However, HLA-Gmolecule may counteract or elicit the progression of
cancer as a consequence of its immune-modulatory properties regulated by SNPs present in the
untranslated regions [15]. Previous studies have reported significant associations betweenHLAG
polimorphisms (in particular the +2960 14-bp INDEL) and cancer risk [30,34], but to the best of
our knowledge, this is the first study indicating a role forHLA-G 3’UTR regulatory SNPs in DFS
and OS after adjuvant treatment of CRC. Our results emphasize the role of the host’s immunoge-
netic background in the CRC prognosis as well as report the molecular characterization of the
3’UTR region at the germinal level in subjects affected by colorectal cancer [42].

The common HLA-G 3’UTR polymorphisms were investigated and after multivariate sur-
vival analyses using Cox’s regression models we found that +2960 14-bp INDEL, +3035 C>T
and +3187 A>G SNPs had a significant and independent prognostic role with high internal
validity by bootstrap modeling. HLAG 3’UTR SNPs previously reported to be associated with a
reduced protein production such as +2960 14-bp INDEL and +3035 C>T were linked to a bet-
ter prognosis, whereas the +3187 A>G SNP (increased HLAG production), was associated to
worse DFS and OS.

This study shows that the +2960 14-bp INDEL SNP, already described as a disease risk-
marker, is also a prognostic marker for DFS in CRC patients treated with standard ADJ-CT.
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Intriguingly, our results on survival for +2960 14-bp INDEL SNP are in agreement with those
observed in a non-solid tumour [31] and also in patients infected by the human immunodefi-
ciency virus (HIV) [49], further highlighting the prognostic relevance for the 14-bp Ins/Del
polymorphism. The +2960 14-bp INDEL (Ins/Del) SNP (rs371194629) was reported to modu-
late the magnitude of HLA-G production by regulating HLA-G mRNA stability [25]. In partic-
ular, the Del/Del genotype has been associated with high and stableHLA-GmRNA expression
and higher levels of the soluble HLA-G, whereas the Ins/Ins genotype displays a lower produc-
tion of mRNA and soluble or membrane bound molecules [29–32]. At the multivariate analy-
sis, we estimated an association with a reduced DFS in patients who are carriers of Ins allele in
the heterozygous Ins/Del patients and in (Ins/Del+Ins/Ins) agreement with the dominant
model (HR 0.60, 95% 0.38–0.93, P = 0.023). CRC patients with the Del/Del genotype showed
an increased relapse rate and reduced 5-year DFS %.

Concerning OS, we found a similar trend of improved prognosis for Ins allele even if not
statistically significant probably due to the small sample size. In reference to SNP +3035 C>T
(rs17179108), it has been reported, in a recent published study [29], that subjects presenting
the +3035 C/T genotype had significantly lower levels of the soluble HLA-G compared to
+3035 C/C (wild type) subjects. We observed a protective role of +3035 C/T genotype in the
outcome (DFS) of CRC patients, though with a borderline (HR 0.51, 95% 0.26–0.99, P = 0.045)
statistically significant association in the multivariate Cox’s model. The +3035 C/T genotype
was associated to prolonged 5-year DFS (77%) and a lower (21%) recurrence incidence (10/47)
with respect to the wild type +3035 C/C combination that presented a decreased 5-year DFS
(63%) and a 35% of relapse (72/205). CRC carriers for +3035 C/C had a decreased 5-year DFS
% and an increased relapse incidence. It should be pointed out that the +3035 C/T heterozy-
gous genotype, detected in 47 patients, was always associated to the Ins allele, in heterozygous
Ins/Del (N = 27) and in homozygous Ins/Ins (N = 20) patients. Even if a protective HR in DFS
resulted in the combined analysis of +3035 C/T and +2960 14-bp INDEL polymorphisms, no
firm conclusion about a multiplicative or additive effect of the 2 SNPs cannot be inferred from
this study. Regarding the +3187 A>G polymorphism (rs9380142), the +3187A allele has been
associated to decreased HLA-G expression and the presence of +3187 G/G genotype to signifi-
cantly increased soluble levels of HLA-G [29,50]. To date, no association with survival and this
HLA-G SNP was reported. We found an association between +3187 G/G carriers (HR 2.61,
95% CI 1.24–5.50, P = 0.012), and according to the recessive (G/G vs A/A+A/G) model (HR
2.46, 95% CI 1.19–5.05, P = 0.015) with reduced DFS. Similarly, the +3187 G/G carriers were
associated to a reduced OS (HR 2.96, 95% CI 1.22–7.15, P = 0.016), also in the recessive model
(HR 2.71, 95% CI 1.16–6.63, P = 0.022). These results may highlight that the modulation of the
clinical outcome in CRC patients harbouring the +3187 A>G change is due to the contribution
of the G allele in double dose. CRC patients carriers for +3187 G/G mutated genotype (N = 15)
had increased recurrence rate and a reduced 5-year DFS %. Carriers of +3187 G/G mutated
combination were also associated to a reduced 5-year OS percentage and increased mortality
rate. The opposite prognostic associations found in CRC patients for SNPs +2960 14-bp
INDEL and +3187 A>G, are corroborated by the evidence that these two polymorphisms are
not in LD (r2 = 0.27). Furthermore, presence of +3187G allele is always associated to the Del
allele, which are represented in the reconstructed UTR-1 haplotype. The latter, when present
in double dose (UTR-1/UTR-1), has been associated to an unfavourable prognosis such as
+3187 G/G genotype.

The variation sites described in the 3’UTR are mainly arranged in haplotypes (known as
UTR-1 to UTR-44) with the UTR-1 and UTR-2 as the most frequent in the worldwide popula-
tion [46]. Therefore, we performed a haplotype analysis on HLA-G 3’UTR variants to test
whether haplotypes are more predictive than single variants.
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UTR-1 (DelCTGCGCCGCGTCGCG) haplotype carrying the 14-bp Del, +3003T, +3010G,
+3027C, +3035C, +3142C, +3187G and +3196C alleles, has been considered as a high express-
ing haplotype. In particular, individuals with the +3187 G/G genotype and thus the UTR-1/
UTR-1 combination in double dose, exhibit significant higher levels of the soluble HLA-G
[29,51]. UTR-1/UTR-1 haplotype combination shares characteristics of high HLA-G producer
presenting the 14-bp Del/Del, the 3142 C/C and the 3187 G/G genotypes. UTR-1 was the only
HLA-G 3’UTR haplotype associated with prognosis in CRC patients in multivariate regression
Cox’s analysis. We found an association of reduced DFS (HR 2.53, 95% CI 1.20–5.32,
P = 0.014) and OS (HR 2.82, 95% CI 1.17–6.77, P = 0.021) in CRC patients carrying the UTR-1
haplotype in double (Hom) dose. Estimations found are not surprising since patients homozy-
gous for UTR-1 haplotype (N = 15) are the same carriers for +3187 G/G change and share the
same survival pattern.

Moreover, we observed a strong LD (S1 Fig, available online) between the +3010 C>G
(rs1710) and +3142 G>C (rs1063320) SNPs, consistently with the data reported for the world-
wide population [46]. Both polymorphisms were not associated to DFS or OS in multivariate
analysis (Table 2). In summary, our results demonstrates an independent potential prognostic
value after multivariate analysis for three HLA-G 3’UTR polymorphisms, the +2960 14-bp
INDEL, the +3035 C>T, and +3187 A>G. CRC patients carrying the Ins allele (lower HLA-G
producer) were associated with a favourable DFS with a reduced risk of relapse (protective
prognostic role). CRC patients carriers for the +3187 G/G genotype and UTR-1/UTR-1 haplo-
type (higher HLA-G producer) were associated with an unfavourable prognosis in both DFS
and OS. Furthermore, patients carrying the +3035 C/T genotype (lower HLA-G producer) and
therefore the Ins allele (in heterozygous or homozygous state) were associated with an
improved prognosis though with a borderline significant association.

Finally, this study supports associations between the non-metastatic colorectal cancer out-
come after CT treatment and polymorphisms of a gene involved in immune tumour escape.
Our preliminary findings share a functional rationale considering that patients with higher lev-
els of HLA-G would be more immunosuppressed and have a worse clinical prognosis as postu-
lated by Rizzo et al [31]. The effect of immune surveillance on the outcome of patients after
chemotherapeutic treatments is one of the currently attracting issues in cancer therapy. It is
well recognized that the individual variability of drug response depends also on the genetic var-
iations in human genome, thus enforcing the concept of personalized medicine [52]. Due to
the functional impact of the HLA-G protein in cancer immune contexture, and the known cor-
relations of functional-regulatory SNPs in the 3’UTR with the HLA-G protein level, the con-
cept of germline genomic variation is very attractive. Only a small sample of blood is required
for the genetic test, and the genotyping process is a standard and common method used in clin-
ical practice. In addition, it should be especially considered for inoperable patients. Future per-
spectives will be analyze HLA-G 3’UTR polymorphisms in the outcome of metastatic CRC
patients. These results could provide new insights to better stratify patients and also for combi-
nation therapy between CT and monoclonal antibodies (i.e. cetuximab and bevacizumab) cur-
rently adopted in clinical practice.

Some limitations of this work should be highlighted. Despite an internal validation (boot-
strap analysis) confirming the results, HLA-G 3’UTR SNPs should be analyzed for their prog-
nostic role in an independent CRC cohort treated with surgical resection and without any
chemotherapy. Moreover, our data should be explored considering also the contribution of val-
idated prognostic and predictive biomarkers for CRC. Another limit is the lack of biological
samples such as tumour or plasma samples to correlate genetic data with tissue and/or soluble
levels of HLA-G to sustain functional hypothesis about the regulatory role of these SNPs, even
if previous published studies support consistent data [29–32,51]. Nonetheless, these novel
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findings presented here for the role of HLA-G 3’UTR region in prognosis of colorectal cancer
provide the basis for implementation of personalized cancer treatments. Identification of high
risk patients with well-recognized prognostic, predictive and novel immune-related genomic
biomarkers may represent a new frontier in the management of CRC patients. In conclusion,
+3035 C>T and in particular, +2960 14-bp INDEL and +3187 A>G polymorphisms in the
regulatory 3’UTR of the HLA-G gene, have emerged as novel prognostic biomarkers in deter-
mining survival outcome in colorectal cancer. Therefore, our exploratory findings should be
verified in independent larger CRC cohorts as well as further relevant functional studies are
required.
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