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Quantifying protein densities on cell membranes
using super-resolution optical fluctuation imaging
Tomáš Lukeš1,2, Daniela Glatzová3,4, Zuzana Kvíčalová3, Florian Levet 5,6, Aleš Benda3,7, Sebastian Letschert8,

Markus Sauer8, Tomáš Brdička4, Theo Lasser 1 & Marek Cebecauer 3

Quantitative approaches for characterizing molecular organization of cell membrane mole-

cules under physiological and pathological conditions profit from recently developed super-

resolution imaging techniques. Current tools employ statistical algorithms to determine

clusters of molecules based on single-molecule localization microscopy (SMLM) data. These

approaches are limited by the ability of SMLM techniques to identify and localize molecules

in densely populated areas and experimental conditions of sample preparation and image

acquisition. We have developed a robust, model-free, quantitative clustering analysis to

determine the distribution of membrane molecules that excels in densely labeled areas and is

tolerant to various experimental conditions, i.e. multiple-blinking or high blinking rates. The

method is based on a TIRF microscope followed by a super-resolution optical fluctuation

imaging (SOFI) analysis. The effectiveness and robustness of the method is validated using

simulated and experimental data investigating nanoscale distribution of CD4 glycoprotein

mutants in the plasma membrane of T cells.
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Surface molecules influence vital functions of living cells.
Proteins form the largest pool among these essential
molecules. A growing body of evidence supports the

hypothesis that proteins are not distributed homogeneously but
rather in complexes, clusters and other higher-order patterns in
membranes of cells and organisms1–4. It has been experimentally
demonstrated that these protein clusters are involved in the
regulation of signal transduction and other vital cell processes5. It
is therefore important to monitor heterogeneous distribution of
membrane proteins at nanoscale and with quantitative approa-
ches6. The efficiency of currently available tools for cluster ana-
lysis is limited in high-density regions by the ability to identify
and localize individual molecules in raw images, as well as the
blinking properties of the emitters7, 8. This has motivated us to
develop a robust method for investigation of molecular organi-
zation of cell membranes that tolerates diverse experimental
conditions.

The size of membrane protein assemblies varies and is fre-
quently smaller than 200 nm, which is below the resolution limit
of classical fluorescence microscopy. During the last two decades,
super-resolution techniques have been developed that overcome
the diffraction limit9, 10 and provide a detailed view of structures
smaller than 200 nm. Single-molecule localization microscopy
(SMLM) has been frequently used to characterize membrane
protein assemblies11–14. SMLM techniques such as (fluorescence)
photoactivated localization microscopy (PALM, FPALM)15, 16

and (direct) stochastic optical reconstruction microscopy
(STORM, dSTORM)17–20 rely on temporal discrimination of
otherwise spatially overlapping fluorophore images. In sequences
of at least several thousand images, the position of fluorescent
molecules is determined by fitting a model function to the imaged
point spread functions (PSFs). In high-density regions this fitting
procedure may meet its limit, leading to under-counting errors
with significant localization errors for overlapping molecules7.
The stochastic blinking behavior of fluorophores may result in
multiple localizations from single molecules8. It was previously
reported that high photoswitching rates in combination with high
emitter densities can give rise to the appearance of artificial
clusters7. These limitations may compromise the quantification of
densely packed proteins in membrane clusters. Characterization
of such protein clusters becomes a challenge because current
methods for cluster analysis12–14, 21–25 rely both on difficult-to-

model photophysical properties and on acquisition parameters of
the SMLM data. In this work, we readdress these problems with
an approach based on SOFI and present an innovative and
general method to study molecular distribution on cell mem-
branes that overcomes the aforementioned limitations.

SOFI is an optical super-resolution technique that exploits the
spatio-temporal photon traces created by stochastically blinking
fluorophores. SOFI disentangles the overlapping PSFs by
employing higher-order statistics. The strong temporal cross-
correlation over several neighboring pixels is the underlying cause
of SOFI super-resolution26, 27. The achieved resolution
improvement results from the properties of spatio-temporal
cross-cumulants calculated from the entire image sequence of
2D26 or 3D28 images. SOFI can be used to analyze SMLM data,
but tolerates much higher emitter densities29, 30. Balanced SOFI
(bSOFI) combines the information content of several cumulant
orders in a system of linear equations, allowing to extract physical
meaningful parameters such as brightness, emitter density and
the on-time ratio of the blinking emitters31. Molecular density is a
calculated parameter based on the full image sequence and not on
individual localizations acquired in frame-by-frame data post-
processing. In bSOFI multiple blinking of individual emitters
improves the bSOFI signal and, therefore, the accuracy of these
statistically estimated parameters.

SOFI used for estimation of molecular parameters shows some
similarities in its mathematical formulation with image correla-
tion spectroscopy (ICS) and related methods such as spatio-
temporal ICS, raster ICS, and k-Space ICS32–34. All these methods
exploit temporal correlations over a sequence of images. How-
ever, SOFI relies on higher-order cumulants for super-resolution
imaging. The molecular parameter maps, resulting from bSOFI,
are calculated with increased spatial resolution, but compared to
ICS on generally longer time intervals. bSOFI assumes the sample
to be stationary during the image acquisition, where the fluc-
tuations in intensity arise mostly from the blinking behavior of
observed emitters. In contrast, ICS intends to measure fast
molecular processes such as diffusion or number of molecules,
but does not provide super-resolution.

Previously, we demonstrated the potential of bSOFI for
molecular density estimation. The investigated samples have been
tubulin meshworks31 or dense protein structures such as focal
adhesions labeled with fluorescent proteins30.
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Fig. 1 The workflow of SOFI-based molecular density analysis. SOFI images of different cumulant orders were calculated and used to extract molecular
densities. The background was removed using the bSOFI image as a transparency mask. High-density regions (HDRs) were segmented by varying the
threshold parameter over the whole range of available density levels. For each threshold, the area, equivalent diameter, and number of HDRs were
extracted and plotted as a function of the density threshold (Fig. 3). The procedure is then repeated for each sample and ROI
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Here we extend this preliminary work substantially for a
quantitative and user-independent analysis of protein densities on
cell membranes. We present a full framework of a SOFI-based
clustering analysis for quantitative assessment of heterogenous
protein distributions. By an automatic analysis of the bSOFI
density maps, our method quantifies molecular clustering beha-
vior and allows direct comparison of different membrane mole-
cules, their mutant variants or membrane organization at altered
experimental conditions (e.g. the effect of inhibitors or drugs).

Results
Molecular density clustering analysis. For quantifying the pro-
tein distribution in the plasma membrane of T cells, we acquired
image sequences with a total internal reflection fluorescence
(TIRF) microscope equipped with an EMCCD camera to detect
the fluorescence originating from individual fluorescent emitters
(see Methods). The proteins of interest were labelled with ade-
quate blinking fluorophores, i.e. emitters cycling between dark/
bright states.

The algorithm work flow is shown in Fig. 1. All acquired image
sequences are first drift-corrected with sub-pixel precision. Using
ThunderSTORM35, we measured lateral drift using fluorescent
beads (fiducial markers) present in the images. These drift-
corrected image sequences were then processed by the bSOFI
algorithm using second, third and fourth-order cumulant analysis
(see Methods). We extracted molecular density maps by
combining the cumulant images in a system of linear equations
(see Methods). As shown previously30, the accuracy of the density
calculation is mainly determined by the size of the input image
sequence. We acquired image sequences of 5000 frames for each
dataset, optimizing the number of frames by analyzing the signal
to noise ratio (SNR)30. The density maps were further analyzed to
extract molecular density and clustering parameters for a direct
comparison of tested molecules (see Methods). Figure 2 shows a
data-processing example for a single cell.

Instead of setting the threshold by the examiner, our SOFI-
based clustering analysis evaluates the density maps by mono-
tonically increasing the threshold in a full spectrum of calculated
densities (see Methods). Starting with a low threshold, large
regions with a low average density are segmented. Increasing the
threshold step by step allows precise density quantification
(Supplementary Fig. 1). The algorithm analyzes each region of
interest (ROI) by calculating, for each density threshold, the
average number and area of HDRs, as well as the relative area
occupied by the HDRs. The averaged data across all cells for each
protein variant over the range of density thresholds are shown in
Fig. 3a–c. This analysis provides an overview of HDR parameters
in relation to the density threshold, unraveling the overall
clustering behavior of the samples under study. Inset images in
Fig. 3a and Supplementary Fig. 1 indicate how the density
threshold affects the detection of HDRs. Detailed statistics of the
quantitative molecular density data can be further presented for
the optimal density threshold (Fig. 3d) or any other threshold
selected, for example, based on biological reasoning. The optimal
density threshold shown in Fig. 3a–c is determined automatically
by the algorithm (Supplementary Fig. 2) to distinguish between
clustering that corresponds to a random distribution of proteins
and the non-random behavior of proteins that creates larger
HDRs. This fully automated algorithm does not require manual
selection of this important parameter by the user. When
calculating the fourth-order SOFI image, the pixel size of the
resulting SOFI density map is 26.25 nm. According to the
Shannon-Nyquist sampling theorem, the smallest detectable HDR
would have a diameter of 52.5 nm. The density analysis can
distinguish differences in HDR diameters in increments of 26.25
nm. Higher resolution could be possible with higher-order SOFI
images at the expense of more input images, i.e. longer
acquisition times. To verify our approach in membrane areas
with different molecular densities, we performed simulations that
indicate good reliability of the analysis across a broad range of
HDR densities (500–3000 mol/µm2) and HDR to background
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Fig. 2 Example of data processing for a single cell expressing wild-type CD4-mEos2 fusion protein. First, bSOFI image a is generated and a molecular
density map b is calculated. Segmentation of clusters in the 3 × 3 µm region of interest (ROI) as indicated in b is performed for each molecular density by
monotonically increasing the threshold (an example is shown for a relative density threshold equal to 2.2 times the mean density (c, d). For each threshold,
a histogram of equivalent diameters (e), i.e. diameter of a circle of the same area as the non-circular region, and a histogram of the measured area (px2; f)
of high-density regions (HDRs) in the ROI shown in d are presented
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ratios (20–100). The accuracy of HDR detection increases with
increasing HDR to background ratio, which was sufficiently high
for all conditions in our real cell experimental data (see Methods
and Supplementary Fig. 3).

Protein nanoscale organization. In order to validate our
approach, we expressed four different mutant variants of mEOS2-
labeled CD4 and analyzed individual protein distributions on the
plasma membrane of resting T cells immobilized on poly-L-
lysine-coated glass coverslips. Using TIRF microscopy, we imaged
20 cells for each CD4 variant (i.e. 80 in total), acquiring 5000
frames per cell. Tested mutants were native CD4 protein (WT),
palmitoylation mutant (CS1), and truncated variants lacking the
extracellular (dD1D4) and cytoplasmic (dCT) domains (Supple-
mentary Fig. 4).

Segmentation of SMLM data acquired for CD4(WT)-mEos2
indicated the accumulation of native CD4 in HDRs with irregular
shape, frequently forming networks (Fig. 2 and Supplementary
Fig. 5). SMLM-based cluster analysis of these localization data
would be a challenge due to the limitations discussed above and
in Supplementary Fig. 5. Moreover, we compared our SOFI-based
approach with the state-of-the-art clustering analysis based on
SMLM data and showed that SOFI exhibited a consistent
performance across a whole range of tested conditions with no
cluster-like artifacts (Supplementary Figs 6 and 7). On the
contrary, SMLM-based clustering analysis is prone to artifacts if
the optimal conditions are not met (i.e. in the case of low
irradiation intensity, short off times of fluorophores, high
molecular density per frame). SOFI-based clustering analysis

achieved an unbiased robust performance and comparable results
under different experimental conditions, which underlines the
“quantitativeness” of our approach (Supplementary Figs 6 and 7).

Thus, we used our SOFI-based clustering analysis to quantify
distribution of CD4 variants on the surface of resting T cells. To
minimize cell-size dependency and aiming for a true comparative
protein density analysis among different CD4 variants, we
selected a 3 × 3 µm ROI in each cell. All CD4 variants exhibited
comparable protein expression levels (Supplementary Fig. 8).
Figure 3 summarizes the quantitative data on CD4 membrane
organization and indicates significant differences between the
tested protein variants at the cell surface of resting T cells. As
shown in Fig. 3d, native (WT) CD4 are organized in HDRs
covering a large part of the plasma membrane as indicated in Roh
et al.36. Such arrangements depend on the intact extracellular
domain and palmitoylation of CD4 since mutants lacking these
structures exhibit more random distribution with rare accumula-
tion in rather small HDRs (Fig. 3d). This observation is also
supported by the truncation variant, which lacks the cytoplasmic
part (dCT) but contains a single cysteine residue for palmitoyla-
tion. Reversibility of this protein lipid modification can lead to a
more rapid depalmitoylation of dCT variant compared to native
CD4 with two membrane-proximal cysteine residues (Supple-
mentary Fig. 4). Indeed, dCT variant forms fewer HDRs than
native CD4, but is more heterogeneously distributed compared to
a non-palmitoylatable mutant (CS1).

The results presented in Fig. 3 strongly indicate the ability of
our new method to identify HDRs with irregular shape and
varying densities. The imaged cells also exhibited a high level of
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Fig. 3 SOFI analysis of four CD4 protein variants in resting T cells immobilized on poly-L-lysine-coated coverslips. Native CD4 (WT), palmitoylation mutant
(CS1) and variants lacking the extracellular (dD1D4) and cytosolic parts (dCT) were tested (n= 20 per variant). a Number of high-density regions (HDRs)
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intercellular variability, especially in case of the intermediate
phenotype (dCT), and heterogeneity between HDRs identified
within ROIs (Supplementary Fig. 9). The presented results of
clustering analysis performed under diverse (real) conditions
emphasize the robustness of our method.

Discussion
In this work, we introduced a novel method for the character-
ization of molecular organization and clustering on cellular sur-
faces. The method shows an unbiased performance over a broad
spectrum of non-ideal experimental conditions, which are com-
mon in single-molecule localization microscopy and microscopy
in general. Our fully-automated quantitative clustering analysis is
based on SOFI, which provides several distinct advantages over
SMLM-based approaches: (i) applicability to densely populated
regions (overlapping fluorescence emitters) without a need to
adapt specific imaging conditions37, which are not always
accessible; (ii) no need for multiple blinking corrections38, 39 or
other specialized approaches for circumventing the problem of
cluster artifacts generated by overcounting of blinking fluor-
ophores11, 40, and (iii) inherent access to molecular density
without a priori assumptions about the clustered molecules. Our
approach does not require molecular localization coordinates to
calculate clustering properties of proteins (or other molecules) on
the cell surface. Importantly, the algorithm provides quantitative
molecular density analysis of protein distributions independent of
any user-defined parameters. The optimal density threshold to
distinguish a random distribution of proteins from clustering is
automatically determined for a tested dataset. We demonstrated
the applicability of the proposed method by analyzing the surface
distribution of CD4 glycoprotein, which forms large, dense, and
interconnected regions on human T cells. Our molecular density
analysis indicates the importance of the extracellular domain and
of receptor palmitoylation for the organization of CD4 on the
plasma membrane. This key conclusion is based on the analysis
quantifying the clustering behavior of proteins across all density
levels available in the sample with no need of an arbitrary
threshold specified by the user (Fig. 3a). The fully automated
approach opens widely the door for the identification of mole-
cules, variants, or experimental conditions where diverse supra-
molecular structures are formed at different densities. These
would be more difficult in a cluster analysis depending on the
manual threshold selection.

We believe that the presented method represents an innovative
and universal tool to study molecular distribution on cell mem-
branes. It bears the potential to be extended to any surface
molecules accessible for fluorescent labeling under physiological,
pathological, or pharmacological conditions.

Methods
Microscope setup. A customized setup built on an inverted optical microscope
(IX71, Olympus) was used for cell imaging. A 150 mW 561 nm laser (Sapphire,
Coherent) and a 100 mW 405 nm laser (Cube, Coherent) provided the excitation
and activation, respectively. An acousto-optic tunable filter (AOTFnC-400.650-TN,
AA Optoelectronics) provided fast switching of the laser sources. Both lasers were
combined and focused into the back focal plane of an objective (UApoN 100x, NA
= 1.49, Olympus). Total internal reflection was achieved with a commercial TIRF
module (IX2-RFAEVA-2, Olympus) and the fluorescence emission was detected by
an EMCCD camera (iXon DU-897, Andor).

Generation of CD4 mutant variants. pXJ41-mEOS2 plasmid was prepared by
cloning the full mEOS2 sequence41 (kind gift of Sean A. McKinney; Janelia Farm,
Ashburn, VA) to the pXJ41 vector. The pXJ41-mEOS2 plasmid includes 5′UTR
and the leader sequence of human CD148 with c-Myc tag for better protein
expression in Jurkat T cells and immunolabeling.

The coding sequence of native CD4 and its non-palmitoylatable variant (CS1;
mutations C419S and C421S) was a kind gift of W. Popik (Meharry Medical
College, Nashville, TN;42). cDNA was amplified using primers TATGGTACCAAG

AAAGTGGTGCTGGGCAAAAAA and GGATCCAATGGGGCTACATGTCTTC
TGAAACC and sub-cloned into pXJ41-mEOS2 vector. Primers TATGGTACCA
AGAAAGTGGTGCTGGGCAAAAAA and GGATCCACAGAAGAAGATGCC
TAGCCCAAT were used to generate CD41-419 variant lacking the intracellular part
(dCT), and GATCCGGAGGTGGATCTAGTGCGATTAAGCCAGACATGAAG
and CTCGAGTTATCGTCTGGCATTGTCAGGCAATC for CD4387-458 variant
lacking the extracellular part (dD1D4). The products were subcloned into pXJ41-
mEOS2 using KpnI and BamHI restriction sites.

Sample preparation. Jurkat T cells in RPMI-1640 media (Sigma-Aldrich), com-
plemented with glutamine and 10% fetal calf serum (Life Technologies), were
grown in an incubator under controlled conditions of 37°C, 5% CO2, and 100%
humidity. The cells were transiently transfected using the Neon® transfection
system (Life Technologies). One microgram of vector DNA per shot (3 pulses of
1325 V lasting for 10 ms) per 200,000 cells was used (see manufacturer’s instruc-
tions). Twenty-five-millimeter diameter microscope coverslips were cleaned by
incubation with 2% Hellmanex (Sigma-Aldrich) overnight at 42˚C and subse-
quently washed with MiliQ water. Prior to use, the coverslips were coated with
poly-L-lysine (Sigma-Aldrich). Twenty hours after transfection, the cells were
washed with PBS, resuspended in phenol red-free RPMI-1640 media (Sigma-
Aldrich), seeded on the poly-L-lysine-coated coverslips, and incubated for 5 min at
37°C under 5% CO2. After a quick PBS wash the cells were fixed using 4% par-
aformaldehyde in PBS at 37°C for 10 min. After removal of excess liquid, the
fixation was stopped with 0.1 M NH4Cl in PBS and the cells were washed with PBS.
Finally, the coverslip was placed into a ChamLide holder for imaging (Live Cell
Instruments).

Imaging. Fixed cells were imaged in a PBS solution at room temperature. For
monitoring drift, 200 nm gold beads (BBI international) were added to the sample.
The mEos2 fluorophore was excited at 561 nm with a maximum power of ~ 30 mW
and activated by a 405 nm laser with a maximum power of ~ 0.3 mW (both
measured at the sample plane). Cells were imaged with an EMCCD camera using
an EM gain of 300 and an exposure time of 32 ms.

SOFI molecular density analysis. SOFI needs the sample to be immobile during
image acquisition, and imaging beyond the diffraction limit demands drift cor-
rection. Tracking the positions of gold nanoparticles provides translational motion
vectors in between consecutive frames. Registering consecutive frames with sub-
pixel precision using bilinear interpolation was used for drift correction.

The drift-corrected image sequence was sub-divided into sub-sequences of 500
frames each. These sub-sequences were chosen sufficiently short in order to
minimize the influence of photobleaching22, 24. In each subsequence, SOFI images
of second, third and fourth-order were calculated. These SOFI images were then
averaged across all sub-sequences.

The SOFI-based molecular density analysis was programmed in MATLAB
taking into account a linearization procedure as described in ref. 24. Combining
SOFI images of different orders allows one to extract density maps (Supplementary
Note 1).

Molecular density (i.e. number of emitters per pixel area) at pixel position r is
given as
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ðrÞ, g2; g3; g4 represents cumulant images of second, third and fourth-

order, respectively. μn ¼ EVfUnðrÞg, where EVfUnðrÞg is the expectation value of
the PSF (UnðrÞ) of the nth-order cumulant image. For more details, see
Supplementary Note 1.

Areas containing only background are removed using the bSOFI image as a
mask. The threshold filtering procedure is described in more detail in
Supplementary Fig. 1. The algorithm loops through a whole range of density levels
presented in the sample, starting with a threshold equal to zero and increasing the
threshold step by step in each iteration. For each threshold, the data are further
processed to acquire quantitative parameters describing regions with local protein
density above the threshold, i.e. high-density regions (HDRs). The algorithm
calculates the area, equivalent diameter, number of HDRs, and the proportion of
the total area of the ROI covered with HDRs. As a result, we obtain a graph that
describes the dependence of HDR parameters on the molecular density and reveals
the overall clustering behavior of the sample under study. The reliability of the
algorithm was investigated under a broad range of simulations (Supplementary
Fig. 3).

The absolute values of SOFI molecular density map depend on expression of the
fluorescent markers and parameters of the microscope (particularly excitation
intensity and a camera gain). Therefore, we use relative densities and investigate
relative changes of local density. For simulations, the molecular density maps were
normalized by the mean density calculated over all ROIs. For the experimental
data, samples were split into four groups according to four CD4 variants. In each
group, the group mean density was calculated across ROIs of 20 samples. ROI of
each sample was first normalized to the same mean within the group and then by
the maximum of all group means. This normalization procedure largely removes
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the expression dependence in between the experiments while preserving the
differences in relative density in between the CD4 variants. Therefore, normalized
SOFI density values can be compared across experiments, as long as the parameters
of image acquisition remain the same.

Simulations. The simulation assumed photokinetics as known for fluorescent
proteins in PALM experiments24. A photon time trace for each fluorophore was
simulated providing the number of emitted photons over time. The pixel intensity
at a given time point corresponds to the integration over the brightness originating
from fluorophores in the conjugated object localizations. The number of converted
photo-electrons was estimated by a Poisson distributed random distribution. The
average value was taken as a pixel value multiplied by the detection efficiency.
Additive noise corresponding to thermal noise, read-out noise, and gain variations
was added as a Gaussian noise contribution. Optical system and camera parameters
are matched to the microscope system settings (NA, wavelength, magnification,
pixel size etc.).

The ground truth object is composed of 10 HDRs randomly distributed over an
area of 3 × 3 µm. The diameter of generated HDRs varies over the range 60–180
nm, whereas the molecular density in HDRs varies over the range 500–3000
molecules/µm2. In between the HDRs, individual molecules were randomly
distributed such that the HDR to background ratio was {20, 50, 100}. For each test
scenario, we simulated a random distribution of labeled molecules, including no
clusters as a control. In total, we generated and analyzed 720 simulated image
sequences (Supplementary Fig. 3). The simulation proves that the algorithm
performs well under a broad range of conditions.

Data availability. All data and code are available from the corresponding authors
upon request.
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