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Abstract: We investigated fosfomycin susceptibility in Escherichia coli clinical isolates from South
Korea, including community-onset, hospital-onset, and long-term care facility (LTCF)-onset isolates.
The resistance mechanisms and genotypes of fosfomycin-resistant isolates were also identified. Finally,
the in vitro efficacy of combinations of fosfomycin with other antibiotics were examined in susceptible
or extended spectrum β-lactamase (ESBL)-producing E. coli isolates. The fosfomycin resistance rate
was 6.7% and was significantly higher in LTCF-onset isolates than community-onset and hospital-onset
isolates. Twenty-one sequence types (STs) were identified among 19 fosfomycin-resistant E. coli
isolates, showing diverse genotypes. fosA3 was found in only two isolates, and diverse genetic
variations were identified in three genes associated with fosfomycin resistance, namely, GlpT, UhpT,
and MurA. Some fosfomycin-resistant E. coli isolates carried no mutations. In vitro time-kill assays
showed that fosfomycin alone did not exhibit an excellent killing activity, compared with ciprofloxacin
in susceptible isolates and with ertapenem in ESBL producers. However, combining fosfomycin with
cefixime or piperacillin-tazobactam eradicated susceptible or ESBL-producing isolates, respectively,
even with 0.5×minimum inhibitory concentrations. Overall, we found a relatively high fosfomycin
resistance rate in E. coli isolates from South Korea. Based on their genotypes and resistance mechanisms,
most of the fosfomycin-resistant E. coli isolates might occur independently. Antibiotic combinations
with fosfomycin could be a suitable therapeutic option for infections caused by E. coli isolates.
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1. Introduction

Escherichia coli is one of the most common pathogens in community-acquired and nosocomial
infections, including urinary tract infections (UTIs), biliary tract infections, and complicated
intraabdominal infections. Indeed, one in every three adult women suffers from UTIs and about 50% of
UTIs are caused by E. coli [1,2]. Although E. coli is intrinsically susceptible to many antimicrobial agents,
antimicrobial resistance has been increasingly reported due to extended-spectrumβ-lactamases (ESBLs),
carbapenemases, plasmid-mediated quinolone resistance, and mcr genes causing colistin resistance [3].
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The increase of antimicrobial resistance in E. coli leads to the reduction of usable therapeutic agents
and prolongs the length of hospital stay due to the absence of effective oral antibiotics.

Fosfomycin, an old antimicrobial drug, has resurfaced as a therapeutic option for multidrug-
resistant (MDR) gram-negative bacilli [4]. Its mechanism of action is to inhibit the formation of
the peptidoglycan precursor UDP N-acetylmuramic acid (UDP-MurNAc) in the bacterial cell wall
biosynthesis [5]. Since fosfomycin is structurally unrelated to any other antimicrobial agent, there
is a small chance of cross-resistance [6]. Additionally, it has a broad-spectrum activity against both
gram-negative and gram-positive bacteria, with limited side effects [7,8]. It is known that E. coli has two
main nutrient transport systems essential for fosfomycin uptake: the glycerol-3-phosphate transporter
(GlpT) and a hexose phosphate transporter, known as the glucose-6-phosphate transporter (UhpT) [9].
Thus, the key fosfomycin resistance mechanisms involve reduced permeability related to GlpT and
UhpT, and target modification related to MurA. In addition, drug inactivation can be caused by the
acquisition of fos genes mostly by plasmid, resulting in fosfomycin resistance [6,8,10].

The current resistance rate of E. coli to fosfomycin is estimated to be lower than 5%, and lower than
10% among extended spectrum β-lactamase (ESBL) producers worldwide [11–13]. In South Korea,
the fosfomycin resistance rate has been reported to be up to 3% in clinical E. coli isolates, and up to
7% among ESBL producers [14–17]. However, only a few studies have explored the mechanisms of
fosfomycin resistance and the genotypes of fosfomycin-resistant E. coli isolates in South Korea.

In this study, we investigated the antimicrobial susceptibility of different E. coli clinical isolates
from South Korea, including community-onset, hospital-onset, and long-term care facility (LTCF)-onset
isolates. We also identified the resistance mechanisms and genotypes of fosfomycin-resistant isolates.
In addition, the in vitro efficacy of combinations of fosfomycin with other antibiotics were examined in
E. coli isolates, including ESBL producers. Although combination therapy based on fosfomycin is not
commonly used, we explored the possibilities of combination therapy, especially using oral antibiotics
such as ciprofloxacin and cefixime.

2. Results

Among the 283 E. coli clinical isolates from South Korea, 19 isolates (6.7%) were resistant to
fosfomycin based on the cut-off minimum inhibition concentration (MIC) (Table 1). The fosfomycin
resistance rates were higher in LTCF-onset isolates (10.0%) than in community-onset and hospital-onset
isolates (6.0% and 6.9%, respectively), but their difference was not statistically significant. The difference
of fosfomycin resistant rates between hospitals was also not statistically significant, although it was
significantly lower in urinary tract infection (UTI) isolates than in non-UTI isolates (P, 0.042) (Table 1).
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Table 1. Antibiotics susceptibilities of all E. coli isolates in this study.

Antimicrobial
Agents

Number of Resistant Isolates (%)

Total
(n = 283)

Mode of Acquisition Site of Infection c Facility e

Community-
onset

(n = 150)

Hospital-
onset

(n = 102)

LTCF b-
onset

(n = 31)
P UTI d

(n = 129)
Non-UTI
(n = 154) P SMC

(n = 114)
SCH

(n = 107)
KUAH
(n = 62) P

Fosfomycin 19 (6.7) 9 (6.0) 7 (6.9) 3 (10.0) 0.384 5 (3.9) 14 (9.1) 0.042 4 (3.5) 9 (8.4) 6 (9.7) 0.054
Ciprofloxacin 181 (64.0) 72 (48.0) 70 (68.6) 22 (71.0) 0.285 70 (72.9) 111 (59.4) 0.023 67 (58.8) 62 (57.9) 52 (83.9) 0.008

Cefepime 117 (41.3) 48 (32.0) 55 (53.9) 14 (45.2) 0.008 45 (34.9) 72 (46.8) 0.115 45 (39.5) 40 (37.4) 32 (51.6) 0.022
Cefixime 131 (46.3) 58 (38.7) 57 (55.9) 16 (51.6) 0.033 54 (48.9) 77 (50.0) 0.363 48 (42.1) 45 (42.1) 38 (61.3) 0.062

P/T a 88 (31.1) 38 (25.4) 42 (41.2) 8 (25.8) 0.025 42 (32.6) 46 (29.9) 0.813 49 (43.0) 34 (31.8) 5 (8.1) <0.001
Amikacin 6 (2.1) 0 4 (3.9) 2 (6.5) 0.017 4 (3.1) 2 (1.3) 0.534 5 (4.4) 0 1 (1.6) 0.116

Ertapenem 7 (2.5) 1 (0.7) 6 (5.9) 0 0.012 4 (3.1) 3 (1.9) 0.880 1 (0.9) 3 (2.8) 3 (4.8) 0.244
Colistin 30 (10.6) 12 (8.0) 15 (14.7) 3 (9.7) 0.219 18 (14.0) 12 (7.8) 0.121 20 (17.5) 7 (6.5) 3 (4.8) 0.007

Tigecycline 3 (1.1) 0 2 (2.0) 1 (3.2) 0.075 2 (1.5) 1 (0.6) 0.593 0 0 2 (3.2) 0.117
a P/T, piperacillin/tazobactam. b LTCF, long-term care facility. c All patients accompanied by E. coli infection. d UTI, urinary tract infection. e SMC, Samsung Medical Center; SCH,
Samsung Changwon Hospital; KUAH, Korea University Ansan Hospital.
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The ciprofloxacin resistance rate was very high (64.0% in all isolates), especially in UTI isolates and
isolates from KUAH (Table 1). Isolates resistant to cephalosporin (cefepime and cefixime) were found
more frequently in hospital- and LTCF-onset isolates. The piperacillin–tazobactam resistance rate was
higher in isolates from SMC and SCH, unlike fosfomycin, ciprofloxacin, and cefepime resistance rates.
The amikacin resistance rate was very low (2.1%), and only seven ertapenem-resistant isolates were
identified (2.5%). The colistin resistance rate was 10.6%. While the colistin resistance rate did not differ
in the mode of acquisition and site of infection, it was significantly higher in isolates from SMC (17.5%)
compared to those from the other two hospitals (6.5% in SCH and 4.8% in KUAH, respectively). Only
three isolates were resistant to tigecycline. Multidrug resistance (MDR), defined as resistance to ≥3
antibiotic classes, was identified in 116 isolates (41.0%).

Using the MLST analysis, the genotypes of 19 fosfomycin-resistant E. coli isolates were identified
(Table 2). A total of 14 STs were identified. Only three of these STs were found in multiple isolates:
ST1193 in four isolates, while ST131 and ST1531-slv in two isolates each. Eight STs were newly
identified, and they were defined as slv or dlv of the most closely related ST. The largest CCs were
CC131 and CC14. All CC131 isolates except one (C072) were MDR. The fosfomycin resistance rates
were similar between isolates from blood (16/243 isolates, 6.6%) and urine (3/40 isolates, 7.5%).
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Table 2. Characteristics of 29 fosfomycin-resistant E. coli isolates: genotype, clinical characteristics, and amino acid alterations in genes associated with
fosfomycin resistance.

Isolate No. CC a ST a Allele no. b Specimen Site of
Infection c

Mode of
Acquisition

d

Amino Acid Alterations

fos GlpT UhpT MurA

S020

CC131

ST131 53-40-47-13-36-28-29 Blood IAI Hospital
S074 ST131 53-40-47-13-36-28-29 Blood UTI Hospital D220N
C072 ST131-slv1 53-40-193-13-36-28-29 Blood Cholangitis Community
C073 ST131-slv2 53-40-47-200-36-28-29 Blood UTI LTCF
A011 ST131-dlv1 53-35-47-13-36-5-29 Blood IAI Hospital
C025

CC14

ST1193 14-14-10-200-17-7-10 Urine UTI Community
C036 ST1193 14-14-10-200-17-7-10 Blood Cholangitis Community G168R
A049 ST1193 14-14-10-200-17-7-10 Blood UTI Community M136K
S019 ST1193 14-14-10-200-17-7-10 Blood Prostatitis LTCF
C078 ST1193-slv 14-40-10-200-17-7-10 Blood UTI Community
C106

CC69
ST106 21-38-27-6-5-8-4 Blood UTI Community

A004 ST106-dlv 21-88-27-6-5-79-4 Blood UTI Community fosA3
A031

CC95
ST1531-slv 37-35-19-37-17-5-26 Blood UTI Community A16T

A041 ST1531-slv 37-35-19-37-17-5-26 Blood UTI LTCF A16T
C011 CC155 ST58 64-4-16-24-8-14 Blood Liver abscess Community Y60F

C045 CC38 ST38 4-26-2-25-5-5-19 Urine UTI Hospital Ins. of
DG139

C063 CC10 ST10 10-11-4-8-8-8-2 Urine UTI Hospital fosA3 G168R P99S
A043 CC398 ST398-slv 64-40-1-1-8-8-6 Blood Cholangitis Hospital A154T
S050 CC95 ST95-slv 37-38-34-37-17-11-26 Blood NF Hospital A16T
a CC, clonal complex; ST, sequence type. b adk-fumc-gyrB-icd-mdh-purA-recA, slv, single-locus variant; dlv, double-locus variant. The allele number different from the most closely related ST
was underlined. c UTI, urinary tract infection; IAI, intraabdominal infection; NF, neutropenic fever. d LTCF, long-term care facility.
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As for fosfomycin resistance mechanisms, fosA3 was identified in only two isolates (A004 and
C063) (Table 2). Amino acid substitutions or insertions in GlpT, UhpT, and MurA were found in
eight, one, and two fosfomycin-resistant isolates, respectively. Only one mutation, A16T in GlpT was
identified in multiple fosfomycin-resistant E. coli isolates belonging to the same genotype (ST1531-slv).
Only one isolate (C063) contained both fosA3 and amino acid alterations in GlpT and MurA. Neither
fosA3 nor amino acid alterations in three genes were identified in eight fosfomycin-resistant isolates.

To investigate the antimicrobial effects of fosfomycin and other antibiotics with in vitro time-kill
assays, we selected four E. coli isolates susceptible to fosfomycin, two susceptible to ciprofloxacin
and cefixime, and two resistant to ciprofloxacin and cefixime and producing ESBLs (Table 3). These
belonged to different STs, namely, ST216, ST144-slv, ST131, and ST1193. Two isolates producing ESBLs
were identified (A038 and C047), producing CTX-M-15 and CTX-M-14, respectively.
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Table 3. Characteristics of E. coli isolates selected for time-kill assays.

Isolate
No. ST a ESBL

Type b MIC (mg/L) c Site of
Infection d

Mode of
Acquisition

FOS CIP CFM CFX P/T AMK ETM COL TGC

C093 ST216 - 4 0.06 0.06 0.25 16/4 4 0.06 1 2 Cholangitis Community
S088 ST144-slv - 8 0.06 0.06 0.06 1/4 4 0.06 0.5 1 Cholangitis Community
A038 ST131 CTX-M-15 8 >64 >64 >64 16/4 4 0.06 1 4 UTI Community
C046 ST1193 CTX-M-14 16 >64 >64 >64 4/4 4 0.06 1 1 UTI Community

Control Strains

E. coli ATCC 25922 0.5 0.06 0.06 0.5 2/4 1 0.06 0.5 0.06
P. aeruginosa ATCC 27853 2 0.25 2 NAe 4/4 1 0.5 0.5 NA

a ST, sequence type. b ESBL, extended-spectrum-β-lactamase. c MIC, minimum inhibitory concentration; FOS, fosfomycin; CIP, ciprofloxacin; CFM, cefepime; CFX, cefixime; P/T,
piperacillin-tazobactam; AMK, amikacin; ETM, ertapenem; COL, colistin; TGC, tigecycline. d UTI, urinary tract infection. e NA, not available.
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While 1× and 0.5×MICs of cefixime and fosfomycin did not eradicate both susceptible E. coli
isolates (C093 and S088), 1× MIC of ciprofloxacin showed complete killing efficacy after 4 or 8 h
(Figure 1A,B). Using 0.5×MIC of ciprofloxacin also killed the isolates, but the killing efficacy was lower
than with 1×MIC. The combination of 0.5×MICs of fosfomycin and other antibiotics (ciprofloxacin
or cefixime) eradicated the isolates (Figure 1C,D). Interestingly, the combination of 0.5× MICs of
fosfomycin and cefixime showed a synergistic killing effect; while single regimens of each antibiotic
did not kill the susceptible isolates, using a combination of the two completely eradicated the isolates.

Antibiotics 2020, 9, x  8 of 13 

While 1× and 0.5× MICs of cefixime and fosfomycin did not eradicate both susceptible E. coli 
isolates (C093 and S088), 1× MIC of ciprofloxacin showed complete killing efficacy after 4 or 8 h 
(Figure 1A, B). Using 0.5× MIC of ciprofloxacin also killed the isolates, but the killing efficacy was 
lower than with 1× MIC. The combination of 0.5× MICs of fosfomycin and other antibiotics 
(ciprofloxacin or cefixime) eradicated the isolates (Figures 1C,D). Interestingly, the combination of 
0.5× MICs of fosfomycin and cefixime showed a synergistic killing effect; while single regimens of 
each antibiotic did not kill the susceptible isolates, using a combination of the two completely 
eradicated the isolates.  

 
Figure 1. Time-kill curves for ciprofloxacin, cefixime, and fosfomycin against susceptible E. coli 
isolates, C093 (ST216) and S088 (ST144-slv). (A and B), the results of 1× MICs of single antibiotics, (C 
and D), the results of 0.5× MICs of single and combination of antibiotics. CIP, ciprofloxacin; CFX, 
cefixime; FOS, fosfomycin. 

For the two ESBL-producing E. coli isolates, ertapenem and piperacillin-tazobactam were also 
tested in addition to fosfomycin (Figure 2). While 1× MIC of ertapenem completely killed both ESBL-
producing isolates, 1× MIC of fosfomycin decreased the growth of both isolates within 2 or 4 h, after 
which they started growing again (Figures 2A,B). In contrast, 1× MIC of piperacillin-tazobactam 
produced different results between the two ESBL-producing isolates. Although the combinations of 
0.5× MICs of fosfomycin with ertapenem or piperacillin-tazobactam completely eradicated both 
ESBL-producing isolates after 24 h, 0.5x MIC of ertapenem and fosfomycin also completely killed 
them after 4 h (Figures 2C,D). The combinations of 0.5× MICs of fosfomycin and ertapenem or 
piperacillin-tazobactam completely eradicated both ESBL-producing isolates after 24 h.  

Figure 1. Time-kill curves for ciprofloxacin, cefixime, and fosfomycin against susceptible E. coli isolates,
C093 (ST216) and S088 (ST144-slv). (A and B), the results of 1×MICs of single antibiotics, (C and D),
the results of 0.5×MICs of single and combination of antibiotics. CIP, ciprofloxacin; CFX, cefixime;
FOS, fosfomycin.

For the two ESBL-producing E. coli isolates, ertapenem and piperacillin-tazobactam were also
tested in addition to fosfomycin (Figure 2). While 1× MIC of ertapenem completely killed both
ESBL-producing isolates, 1×MIC of fosfomycin decreased the growth of both isolates within 2 or 4 h,
after which they started growing again (Figure 2A,B). In contrast, 1×MIC of piperacillin-tazobactam
produced different results between the two ESBL-producing isolates. Although the combinations
of 0.5×MICs of fosfomycin with ertapenem or piperacillin-tazobactam completely eradicated both
ESBL-producing isolates after 24 h, 0.5x MIC of ertapenem and fosfomycin also completely killed
them after 4 h (Figure 2C,D). The combinations of 0.5× MICs of fosfomycin and ertapenem or
piperacillin-tazobactam completely eradicated both ESBL-producing isolates after 24 h.
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single and combination of antibiotics. ETM, ertapenem; P/T, piperacillin-tazobactam; FOS, fosfomycin.

3. Discussion

In this study, the fosfomycin resistance rate was estimated to be 6.7%, which is somewhat higher
than that previously reported in South Korea [14–17]. This study identified different genotypes
among 19 fosfomycin-resistant E. coli isolates, suggesting that most of these isolates might emerge
sporadically. The most prevalent clonal group in these isolates was CC131 and CC14. It is known that
ST131 is tightly associated with the production of the CTX-M-type ESBL and with fluoroquinolone
resistance, and is therefore commonly acknowledged as a significant threat to public health [18–20].
The fosfomycin-resistant E. coli CC131 isolates in this study were all MDR, except for one. Since the
genetic alterations of fosfomycin resistance-associated genes were not identical among the CC131
isolates, it does not appear that all fosfomycin resistant strains belonging to CC131 have spread clonally.
In addition, ST1193, found in four fosfomycin-resistant isolates, may not be spread clonally. Although
it is still unclear whether fosfomycin resistance preferably occurs in certain genetic backgrounds, it is
worth investigating whether ST131 or ST1193 increase the risk of developing fosfomycin resistance.

We investigated the presence of genetic mutations in several genes (fosA, fosC, glpT, uhpT, and
murA) that are commonly associated with fosfomycin resistance [6,21]. Diverse genetic alterations in
these genes were found, including the insertion of two amino acids in GlpT. This supports the idea that
fosfomycin resistance in E. coli isolates might occur independently between each other. Additionally,
the fosfomycin-modifying enzyme FosA3, a metalloenzyme acquired through plasmid-transfer [9],
was identified in only two isolates, although the fosA gene has been reported to be prevalent in
Asia [22]. This suggests that the horizontal transfer of fosfomycin resistance genes through mobile
elements is not common in South Korea. However, no genetic alterations in GlpT, UhpT, and MurA
were found in many isolates, particularly isolates belonging to CC131. Further fosfomycin resistance
mutations reported in other studies, such as those in cyaA and ptsI resulting in lower cAMP levels and
downregulation of fosfomycin transporters [23,24], may be associated to some fosfomycin-resistant E.
coli isolates. Further unknown mechanisms might also mediate fosfomycin resistance in E. coli.
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Some E. coli studies have shown a synergistic effect of fosfomycin in combination with
other antibiotics, such as carbapenems, colistin, aztreonam, netilmicin, and tigecycline, against
ESBL-producing strains [9]. In this study, the activity of antibiotic combinations based on fosfomycin
were evaluated by in vitro time-kill assay using multiple E. coli isolates. Different antibiotic combinations
were tested according to antibiotic susceptibility. For both antibiotic susceptible and ESBL-producing
E. coli isolates, fosfomycin alone did not show lower killing activity than other antibiotics, such
as ciprofloxacin against susceptible isolates and ertapenem against ESBL-producers. However, the
combination of fosfomycin with other antibiotics, including cefixime and piperacillin-tazobactam,
achieved complete bactericidal effects against susceptible isolates and ESBL-producing isolates,
respectively, even using 0.5×MIC. This suggests that antibiotic combinations of fosfomycin and other
antibiotics, even at low concentrations, could be a potential treatment option for infections caused by
E. coli.

This study investigated fosfomycin resistance in clinical E. coli isolates from South Korea. The
fosfomycin resistance rate was 6.7%, and the rates were significantly lower in UTI isolates. The
fosfomycin-resistant isolates showed diverse genotypes and genetic variations in genes associated
with fosfomycin resistance, indicating sporadic emergence of fosfomycin resistance in South Korea.
Although fosfomycin monotherapy was not superior to other antibiotics in its killing activity against
susceptible and ESBL-producing E. coli isolates, its combination with other antibiotics, even at low
concentrations, resulted in a synergistic effect.

4. Materials and Methods

4.1. Bacterial Isolates

A total of 283 nonduplicated E. coli clinical isolates (243 from blood and 40 from urine) were
collected from patients from January to June 2018 from three tertiary-care hospitals in South Korea: the
Samsung Medical Center (SMC, 114 isolates), the Samsung Changwon Hospital (SCH, 107 isolates),
and the Korea University Ansan Hospital (KUAH, 62 isolates). Species identification was performed
using a VITEK-2 system (BioMérieux, Hazelwood, MO, USA).

4.2. Antimicrobial Susceptibility Testing

In vitro antimicrobial susceptibility testing was performed in all E. coli isolates according to the
Clinical and Laboratory Standard Institute (CLSI) guidelines [25]. An agar dilution method with
glucose-6-phophate was used for fosfomycin, and a broth microdilution method was applied for
the other eight antimicrobial agents that were tested: ciprofloxacin, cefixime, cefepime, ertapenem,
piperacillin-tazobactam, amikacin, colistin, and tigecycline. E. coli ATCC 25922 and Pseudomonas
aeruginosa ATCC 27853 were used as control strains. The antimicrobial susceptibility testing was
performed in duplicate.

4.3. Genotyping

Multilocus sequence typing (MLST) analysis was performed to determine the genotypes of
fosfomycin-resistant E. coli isolates as previously described [26]. The sequence type (ST) and clonal
complex (CC) were determined based on the database available at https://pubmlst.org/escherichia/,
and those not matching exactly with STs assigned in the database were designated as single-, double-,
and triple-locus variants (slv, dlv, and tlv) of the most closely related STs.

4.4. Fosfomycin Resistance Mechanisms

Polymerase chain reaction (PCR) and sequencing were performed for fosfomycin-resistant E. coli
isolates to identify the following genes associated with fosfomycin resistance: murA, glpT, uhpT, fosA3,
and fosC2. The primers used for amplification and sequencing were based on previous studies [13,27,28].

https://pubmlst.org/escherichia/
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4.5. In vitro Time-Kill Assays

The activity of fosfomycin and other antibiotics was evaluated by time-kill assays using an
inoculum of 1 × 106 CFU/mL of E. coli. Fosfomycin, ciprofloxacin, and cefixime were evaluated
against two ESBL-nonproducing E. coli isolates (C093 and S088), while fosfomycin, ertapenem, and
piperacillin-tazobactam were evaluated against ESBL-producing isolates (A038 and C046). ESBL
production was identified using a double-disc synergy test and was confirmed by PCR for blaCTX-M [29].
Antibiotic dilutions were prepared in 10 ml of PBS adjusted to final concentrations of 0.5× and 1× the
MIC of the test strains. Efficacy of the combination of fosfomycin and other antibiotics was evaluated
using concentrations of 0.5×MICs. PBS without antibiotics served as a growth control; PBS without E.
coli served as a negative control. Bacterial growth was quantified after 0, 2, 4, 8, and 24 h incubation
at 37 ◦C by plating 10-fold dilutions on sheep blood agar. Colony forming unit (CFU) counts were
determined for killing curves of antibiotics. Antimicrobials were considered bactericidal when a ≥ 3
log10 decrease in CFU/mL was reached compared with the initial inoculate.

4.6. Definition of Infection Onset

An infection occurring in the community or up to 48 h after hospital admission was defined as
community-onset, whereas one occurring more than 48 h after admission was defined as hospital-onset.
Patients who were referred from LTCF were considered as LTCF-onset. The site of infection was
classified as urinary tract or non-urinary tract because of the heterogeneity of infection sites.

4.7. Statistical Analysis

To compare the two groups, Pearson χ2 tests and Fisher’s exact tests were used for categorical
variables, and student’s t-test and Mann–Whitney U tests were used for continuous variables
where appropriate. All statistical tests were two-tailed, and P values ≤ 0.05 were considered
statistically significant.
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