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ABSTRACT: With the growing demand for gasoline and diesel fuel and the shortage of
conventional oil reserves, there has been extensive interest in upgrading technologies for
unconventional feedstocks such as heavy oil. Slurry bed reactors with high tolerance to
heavy oil have been extensively investigated. Among them, dispersive MoS2 is favored for
its excellent hydrogenation ability for heavy oil even under harsh reaction conditions such
as high pressure and high temperature, its ability to effectively prevent damage to
equipment from deposited coke, and its ability to meet the requirement of high catalyst
dispersion for slurry bed reactors. This paper reviews the relationship between the
structure and hydrogenation effectiveness of dispersive molybdenum disulfide, the
hydrogenation mechanism, and the improvement of its hydrogenation performance by
adding defects and compares the application of molybdenum disulfide in heavy oil
hydrogenation, desulfurization, deoxygenation, and denitrification. It is found that the
current research on dispersive molybdenum disulfide catalysts focuses mostly on the
reduction of stacking layers and catalytic performance, and there is a lack of research on
the lateral dimensions, microdomain regions, and defect sites of MoS2 catalysts. The relationship between catalyst structure and
hydrogenation effect also lags far behind the application of MoS2 in the precipitation of hydrogen, etc. Oil-soluble and water-soluble
MoS2 catalysts eventually need to be converted to a solid sulfide state to have hydrogenation activity. The conversion history of
soluble catalysts to solid-type catalysts and the key to their improved catalytic effectiveness remain unclear.

1. INTRODUCTION
In recent years, the growing demand for greener and lighter
fuels, the shortage of crude oil reserves, and the shrinking
conventional oil have created an urgent need to develop heavy
oil refining technologies to ensure national defense security
and national interests. In the field of petroleum catalyst
hydrogenation, most of the research has focused on the
advancement of refining technologies for low-quality industrial
products (e.g., depressurized residual oil, coal tar, etc.) as well
as unconventional oils (e.g., superheavy oil, oil sands, etc.),
which are considered as alternative energy sources.1 With the
rapid growth of global oil consumption, heavy or superheavy
oil refineries will be substituted for refineries.2,3

Heavy oils usually contain high concentrations of heter-
oatoms (S, N, and O), transition metals (V, Ni, Fe, and Si),
and complex molecules that are responsible for catalyst
deactivation and coking in heavy oil refining.4 Depending on
the polarity, heavy oils can be classified as saturates, aromatics,
resins, and asphaltenes. The ultimate goals of hydroconversion
of heavy crude oils are to reduce viscosity, remove
heteroatoms, inhibit coking, increase the H/C ratio required
for commercial products, and reduce hazards such as air
pollution and acid rain during fuel consumption.

Catalytic hydroconversion is a more efficient way to upgrade
heavy oil into liquid transportation fuels for modern refineries.
Various hydrogenation reactor technologies using a fixed-bed,
boiling-bed, moving-bed, and slurry-bed have been designed
for the hydroconversion of heavy oils. Hydroprocessing using
fixed-, boiling-, or moving-bed reactors often has the
disadvantage of coking and heavy metal deposition leading
to catalyst deactivation, especially for the hydroprocessing of
heavier feedstocks. In addition, there are critical issues such as
feed diffusion, pressure drop, and mass transfer in fixed-,
boiling-, or moving-bed reactors. Slurry-bed reactors can
overcome the limitations of these processes.5,6 Effective
catalysts for the conversion of heavy oils into high-value
products with lower boiling points by hydroconversion
processes have been extensively studied for more than 50
years. Among these catalysts, MoS2 is favored as one of the
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main active catalysts due to its superior hydrogenation ability
for heavy oils (including high sulfur content, impurities, and
heavy components) even under harsh reaction conditions such
as high pressure and high temperature and its ability to
effectively stop the damage caused by deposited coke to the
equipment. Although alumina-loaded Ni−Mo and Co−Mo
nonhomogeneous catalysts have been used in fixed-bed and
fluidized-bed reactors, unsupported Mo-based dispersion
catalysts are used in slurry-bed reactors because of their strong
resistance to deactivation, coking inhibition, and no diffusion
limitation of reactants

2. MOS2 CATALYST
MoS2 has numerous physicochemical properties and has
several potential applications such as tribology, hydrogen
precipitation reactions (HERs),7−11 lithium-ion batteries, and
microelectronics12,13 and as a major catalyst in heavy oil
refining processes.14 MoS2 crystals belong to the hexagonal
crystal system and have three different forms of configuration
such as 1T (a = 5.60 Å and c = 5.99 Å), 2H (a = 3.15 Å and c =
12.30 Å), and 3R (a = 3.17 Å and c = 18.38 Å).15,16 The 3R
phase exhibited better catalytic activity than the 2H and 1T
phases in hydrogen precipitation reactions,17 and the 2H phase
was mainly applied in heavy oil hydrogenation. The
thermodynamically stable and naturally occurring MoS2 is
2H (3% 3R content).18 Two of the substable states, 1T-MoS2
and 3R-MoS2, can be converted to the stable 2H-MoS2 form at
high temperatures. In the UV−vis spectrum, 2H-MoS2 shows
two significant peaks at (λ ∼ 580 nm) 2.1 eV and (λ ∼ 640
nm) 1.9 eV.19

The MoS2-catalyzed hydrogenation model, the Rim-edge
model, was first proposed by Daage. The Rim-edge (Figure 1)

model states that the basal atom is not reactive; the Rim atom
is the active center of the hydrogenation reaction and the
hydrodesulfurization reaction; and the Edge atom is the active
center of the hydrogenation reaction. As shown in Figure 1a,
when MoS2 catalysts have the same longitudinal dimensions,
MoS2 with smaller lateral dimensions can expose more edges
and exhibit higher catalytic hydrogenation activity. Figure 1b
shows that MoS2 catalysts with the same lateral dimensions
and different numbers of stacked layers show the same number
of exposed edges, but MoS2 catalysts with fewer stacked layers
show more catalytic activity (similar to mechanical stripping).
That is, not all exposed edges of the S−Mo−S atomic layer are
used as active sites for catalytic hydrogenation, while only the

Rim atom is used as catalytically active sites for PAH
hydrogenation. Therefore, it can be speculated that only the
Rim atom has stronger catalytic hydrogenation activity. The
MoS2 catalysts with theoretical minimum lateral size and
stacked layers of 2 have the highest hydrogenation activity.5,20

Hydrogen molecules can be adsorbed at the edge positions
of MoS2 and dissociate into hydrogen atoms bound to S2− or
Mo atoms, forming acidic SH groups and metal hydrides.21−23

Metal hydride species (e.g., Mo−H) are not thermodynami-
cally favored. Therefore, after the initial H2 dissociation,
hydride species can react with adjacent S2− to form additional
SH groups.24,25 Molecular hydrogen dissociation and atomic
hydrogen surface migration can occur in the edge planes of
MoS2 catalysts.

26,27

The catalytic hydrogenation activity of MoS2 catalysts is not
directly related to the physical properties of the BET surface
area. The BET surface area does not determine the catalytic
hydrogenation activity of MoS2 catalysts.

28 However, the MoS2
substrate surface has good lubricity and photocatalytic
activity.29

According to DFT calculations and STM studies, planar
molecules with π-bond−polycyclic aromatic hydrocarbons can
be adsorbed in parallel on the basal plane of MoS2 through
strong van der Waals interactions.30,31 Hydrogenation may
occur in the region located at the edge of the basal plane,
where the SH group provides hydrogen. Only the activated H
species at the Rim site can react with the polycyclic aromatic
hydrocarbons adsorbed on the basal plane.32 Due to the spatial
site resistance effect, the activated H species at the Edge
position is difficult to react with PAHs. Accordingly, the Rim
site can activate H2 and, at the same time, facilitate the reaction
between activated H species and PAH molecules due to its
accessibility. As the hydrogenation of PAHs proceeds, the deep
hydrogenation products are nonplanar. Compared to Edge
sites, macromolecules have a much smaller spatial site-blocking
effect on Rim sites.33,34 In addition, PAHs can be adsorbed on
the whole substrate; however, it is possible that only PAH
molecules on the edge of the substrate near the edge sites can
hydrogenate with SH at the edge sites, and the aromatic
molecules adsorbed at positions far from the edge cannot react
with SH. Therefore, the Rim position favors the adsorption of
PAHs and the desorption of the corresponding products
during catalytic hydrogenation.5 In addition, Iwata et al. found
that the addition of Ni, for example, enhanced the number of
inflection points in the substrate and greatly enhanced the
MoS2 catalytic hydrogenation activity.35

3. MOS2 DEFECTS
Typically, 0D point defects of MoS2 mainly include vacancies
and heteroatom replacement defects. The presence of
vacancies distorts the lattice and thus effectively modulates
the electrical structure and chemical properties of the material.
The formation energies of several vacancies, including Mo
vacancies (VMo), S vacancies (VS), and mixed Mo and S
vacancies (VMoS3), were calculated based on density func-
tional theory by Barik et al. The results show that VS has the
lowest formation energy, which is consistent with the
frequently observed experimental results. Heteroatom doping
by introducing substituted atoms is a common strategy for
altering the microscopic morphology, structure, and electrical
properties of MoS2 materials. Heteroatoms include both
metallic and nonmetallic elements.36

Figure 1. MoS2 model: (a) the same stacked layers and different
lateral dimensions, (b) the same lateral dimensions and different
stacked layers, and (c) Rim-edge model.
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The extended layer spacing of layered MoS2 nanosheets is
defined as two-dimensional planar defect engineering. The
reduction of stacked layers can greatly enhance their
hydrogenation properties and improve structural stability
during cycling. Typically, the introduction of small molecules,
ions, particles, etc. can significantly improve the interlayer
distance. About 60% of the interlayer expansion is caused by
the introduction of oxygen from Mo precursors or by the
insertion of NH4+ ions released by thiourea decomposition
compared to pristine 2H-MoS2.

36

4. MOS2 IN HEAVY OIL HYDROGENATION
Heavy oils are mainly composed of irregularly structured
macromolecular compounds with structures including, for
example, paraffin, naphthenes, and aromatic hydrocarbons with
different physicochemical properties (Table 1). Asphaltenes
are the heaviest aromatic component of heavy oils but are the
least reactive in destructive hydrogenation reactions, with a
percentage of 8−15%. The rapid hydrogenation of asphaltenes
is a key step in the conversion of heavy oils into clean fuels.28

According to the Yen Mullins model,45,46 asphaltene molecules
form asphaltene nanoaggregates through intermolecular forces
with aggregates of 6. These nanoaggregates can further
aggregate to form aggregates of 8. The asphaltene molecular
structure is usually considered a “continental” or “archipelagic”
model.28

Asphaltenes cause the following problems during the
thermal treatment of heavy oils: (1) Asphaltenes not only
adversely affect the overall rate of the HDT reaction but also
limit the maximum degradation during the thermal treatment
of heavy oils. (2) During catalytic hydrogenation, asphaltene
stability decreases, which in turn leads to a shift to coke
resulting in catalyst deactivation and, in severe cases, clogging
of the reactor.47

Heavy oil macromolecules are easily activated at a higher
reaction temperature, which is conducive to asphaltene
hydrocracking and asphaltene composition changes with the
increase in reaction temperature. In this process, the side
chains of asphaltene molecules are easily removed, and the
remaining thickened aromatic rings form larger molecules
through dehydrogenation and condensation, thus generating
coke.4 It is easy to activate at higher reaction temperatures,
which is conducive to hydrolysis and cracking reactions. When
the reaction temperature reached 410 °C, nearly 60% of the
asphaltene in the feedstock was converted. This not only
indicates that high reaction temperature is beneficial to

asphaltene hydrocracking but also indicates that asphaltene
composition changes with the increase in reaction temperature.
At high temperatures, part of the alkyl side chains of asphaltene
macromolecules are removed, and the remaining thickened
aromatic rings react with each other through dehydrogenation
and condensation to form larger molecules, thus increasing
coke and gas generation.4 Meanwhile, the conversion of sulfur
and oxygen follows an almost linear trend as the reaction
temperature increases. The sulfur content decreases due to the
destruction of the sulfur bridges on the alkyl chains. However,
the nitrogen content in asphaltenes first decreases and then
does not change significantly. Nitrogen compounds in
asphaltene structure are one of the most difficult heteroatoms
to deal with. The HDT of these compounds is not favorable to
thermodynamics and therefore has high stability.4 Due to the
small decomposition energy of the C−S bond, HDS is easier
than HDN,2,48 and the decomposition energy of the C−S bond
is smaller than that of other bonds in crude oil molecules.
Therefore, these are the first bonds to break down, resulting in
a decrease in crude oil viscosity and an increase in API
gravity.37 XRD, 1H NMR, and XPS analysis of asphaltene
showed that with the increase of temperature the molecular
weight of asphaltene decreased; the aromaticity increased; and
the space between the layers and chains of asphaltene
decreased (asphaltene structure became denser). With the
increase in reaction temperature, the content of S and
molecular weight of asphaltene decreased first, while the
content of N decreased first and then changed a little.4 A
comparison of different crude oil samples revealed a relatively
uniform distribution of different sulfur molecular groups in
heavy oils, and compared to monocyclic and bicyclic aromatics,
tricyclic aromatics have a higher tendency to adsorb in
hydrotreating catalysts and therefore will strongly compete
with sulfur compounds for catalyst sites.49 Partial hydro-
genation of polycyclic aromatic hydrocarbons in heavy oil
hydrogenation produces aromatic compounds attached to
saturated rings, which are converted sequentially to monocyclic
aromatic hydrocarbons by cracking. In the case of residual oil
conversion, hydrocracking helps to obtain low boiling point
distillates as well as hydrodesulfurization and hydrodenitroge-
nation.48

There are two main forms of MoS2 catalyst in the slurry bed:
solid powder catalyst and dispersion catalyst. The dispersion of
solid powder catalysts in crude oil is poor, and it is difficult to
provide efficient catalytic hydrogenation. This is overcome by
dispersion catalysts. However, from an economic point of view,

Table 1. Summary of Literature on Heavy Oil Hydrogenation

Type Oil Catalytic conditions Catalysts Effects Source

Solids Iranian heavy oil 200 °C, 6.0 MPa, 24 h SiO2-C/MoS2 81% reduction in viscosity and a 7.7° increase
in API

37

Solids Light-circulating oil 375 °C, 10.3 MPa Dispersed MoS2 - 38
Solids Pineapple oil and palm

oil
330 °C, 5.0 MPa, 1.5 h−1 NiMo/γ-Al2O3, Deoxygenation rate: 94.6 39

Solids Dibenzothiophene 320 °C, 3.0 MPa, 1 h MoS2/SiO2/Fe3O4 Conversion rate: 80% 40
Water-
soluble

Light cycle oil + bio-oil 360 °C, 7.9 MPa, 0.72 h−1 Ammonium secamolybdate
tetrahydrate

Oxygen removal rate: 90% 41

Solids Straight-run gasoline 350 °C, 5.5 MPa, 750 rpm,
3 h

Dispersed MoS2 HDS: 56%. Commercial CoMo/Al2O3:
52−53%

42

Solids Nitrobenzene 3.0 MPa, 100 °C, 6 h Dispersed MoS2 100% conversion (commercial catalyst 52%) 43
Solids Anthracene/

phenanthrene
350 °C, 6−8.0 MPa, 4 h Dispersed MoS2 Conversion rate: 56.8, 68.9 5

Solids Thiophene/pyridine 300 °C, 1 h MoCoS/MoNiS Conversion rate: 80% and 50% 44

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.3c02029
ACS Omega 2023, 8, 18400−18407

18402

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c02029?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


oil-soluble precursors in dispersed catalysts, including
molybdenum naphthenate and molybdenum diethyl caproate
(molybdenum caprylate), are suitable for the recovery process
rather than the primary method. The main function of the
catalyst required by the slurry process is not hydrodesulfuriza-
tion (HDS) but hydrogenation (HYD). At present, the
performance of oil-soluble catalysts is close to the maximum.
Under the same conditions, hydrogenation of heavy oil
without a catalyst can increase the content of asphaltene by
15−20%.35

In the hydrogenation of heavy oil, the hydrogenation of
polycyclic aromatic hydrocarbons (PAHs) is carried out in
successive steps. The first ring hydrogenation kinetics of PAHs
is favorable. This result indicates that the hydrogenation rate of
the subsequent rings is slower, and the last ring hydrogenation
is more difficult compared to the first ring hydrogenation. In
the case of anthracene, for example, AN can be hydrogenated
first to the preliminary AH2, and the reaction is kinetically very
easy even without a catalyst. However, deep hydrogenation will
become increasingly difficult. The MoS2 catalyst with the
smallest lateral size and the smallest stacking layer exhibited
the highest catalytic activity for the hydrogenation of
phenanthrene and naphthalene. According to the GC-MS
results, the hydrogenation of polycyclic aromatic hydrocarbons
(PAHs) proceeds sequentially: PAHs are first hydrogenated to
preliminary products and then further hydrogenated to full
saturation. Only trace amounts of hydrocracking products
could be detected.5 The hydrogenation reaction occurs mainly
for bicyclic aromatic hydrocarbons, which are reduced to
monocyclic compounds; monocyclic and polycyclic aromatic
hydrocarbons are almost not hydrogenated. This phenomenon
confirms the weak hydrogenation ability of the carrier-free
catalysts.38 Kadiev et al. found through DFT calculation that
the catalytic hydrogenation conversion catalyst containing
molybdenum and nickel was conducive to reducing the
content of asphaltene and resin in the reconversion products.
In contrast to the case of molybdenum, benzene molecules are
chemically adsorbed to nickel by double bonds.47 The addition
of nickel atoms can improve the stability of the hydrogenated
intermediate and promote the hydrogenation of heavy oil.50

The mechanism of residue slurry bed hydrocracking is
similar to viscosity-reducing cracking in the presence of free
radical H2, and the main reactions in these processes are free
radical reactions, including cracking and condensation.
Although the addition of molybdenum catalysts is effective in
suppressing coking,51 increasing the catalyst dosage does not
always improve the catalytic effect. Li et al. derived the highest
Mo4+ concentration and colloidal stability of the system after
sulfidation for Mo-based catalyst concentrations up to 300
ppm, resulting in the lowest coke yield and highest catalytic
hydrogenation performance in the reduced viscous residue
passion.52

Persi et al. obtained water-soluble Ni−Mo catalysts by
preparing mixed solutions at room temperature, resulting in
the reduction of crude oil S content from 5.5 to 3.1% and N
content from 750 to 392 ppm. The increase of aromatic and
saturated hydrocarbon compounds at the expense of
asphaltenes and resins increased the volume of gasoline and
diesel to 8 and 14%, respectively.48 Liu et al. dissolved the
catalyst precursor cetyltrimethylammonium heptamolybdate
The resin fraction decreased from 25.21 wt % to 3.54 wt %,
and the C7-asphalt content decreased from 6.82 wt % to
almost zero. The yield of liquid products increased from 75.03

wt % to 96.43 wt %.53 Abdullahi et al. performed catalytic
cracking of Oman thick oil with an oil-soluble NiMo viscosity
reduction catalyst and glycerol as a hydrogen donor, and the
maximum viscosity was reduced by 69% in a 30 h reaction at
277 °C.54 Since carrier-free MoS2 is a hydrocracking catalyst
without cracking capacity, heavy oil decomposes by thermal
cracking during hydroconversion using a dispersion catalyst.14

5. MOS2 IN HEAVY OIL DECONTAMINATION
Due to the burning of light fuels, sulfur dioxide (SO2) and
nitrogen oxides (NOx) are prone to environmental problems
such as acid rain. Due to the requirement for environmental
protection, most countries have increasingly strict control over
the heteroatom content in fuel oil.55,56

Carrier-free Mo catalysts were evaluated for hydrodeoxyge-
nation using model compounds such as phenol, methyl phenol,
and methoxyphenyl.57,58 These carrier-free Mo catalysts were
found to favor the direct deoxygenation pathway.59 Hydro-
treating of hydrothermal liquefied bio-oil using carrier-free
catalysts showed hydroxyl removal rates comparable to those
of commercial NiMo/γ-Al2O3. Hydrodeoxygenation leads to a
decrease in oxygen content and a decrease in acidity. After
hydrotreating, the atomic O/C ratio decreased significantly,
while the effective H/C of the feed mixture increased slightly
from 1.07 to 1.26 to 1.23−1.31. The significant decrease in O/
C can be attributed to hydrodeoxygenation, and the slight
increase in the H/C ratio implies limited ring saturation of the
oil product.41 Carrier-free MoS2 catalysts with low stacking are
more selective for the hydrogenation of C−OH bonds in
phenol molecules, while MoS2 with high stacking is more
favorable for the hydrogenation of aromatic rings.59 Co-MoS2
with nanoflower morphology exhibited higher p-cresol
conversion performance (rate constant of 0.37 h−1) compared
to Co-MoS2 with nanotube morphology (rate constant of 0.23
h−1). The reason for the improved catalytic performance of
Co-MoS2 with nanoflower morphology can be attributed to the
presence of various exposed edges and the synergistic effect
between Co- and MoS2-based nanomaterials.60,61 These
studies were analyzed using the atom-vacancy interface
model and found that isolated cobalt atoms promote hydrogen
activation and that the underlying sulfur atoms promote
carbon−oxygen fracture and vacancy regeneration.62 Zhang et
al. hydro-deoxidized fatty acids and triglycerides to produce
diesel fuel. Based on the equilibrium constant of the reverse
water-vapor transfer reaction, it is indicated that CO will be the
main gaseous product of the hydrodecarbonization reaction.39

Comparing the variation of CO and CO2 concentrations, it was
found that the decarboxylation effect of molybdenum disulfide
is slightly higher (1−5 times) than the decarbonylation
effect.41

Hydrodesulfurization can be considered the most efficient
technique to remove sulfur from oil, resulting in clean
hydrocarbons.63−68 In this context, MoS2 proved to be an
effective catalytic material for the hydrodesulfurization
reaction. Nickel nanoparticles deposited on the surface of
molybdenum disulfide were used as an efficient catalytic
material for the hydrodesulfurization of nickel and its
derivatives.69−71 Ni-MoS2-based nanocomposites were synthe-
sized by a solution chemistry method through a two-step
approach. The particle size of the composites was determined
based on MoS2/Ni ratio, concentration, and temperature. 50.2
wt % of the catalytic system exhibited the highest catalytic
performance with 99%, 98%, and 94% conversion of
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thiophene, benzothiophene, and dibenzothiophene, respec-
tively.72 Del Valle et al. concluded that exfoliated MoS2 is more
HDS active than crystalline MoS2. The catalytic activity of
crystalline MoS2 exfoliated MoS2, and MoS2 was prepared from
molybdenum naphthenate and ammonium heptamolybdate for
the same HDS reactions. When crystallized and stripped MoS2
was used, the yield of biphenyl was higher than that of
tetrahydrodibenzomethine for all dibenzothiophene trans-
formations. In addition, higher yields of trihydrodibenzothio-
phene were obtained when the other two catalysts were used.
In the HDS of dibenzothiophene, MoS2 derived from
ammonium heptamolybdate exhibited higher catalytic activity
than MoS2 derived from molybdenum naphthenate.73

Seyyedmajid et al. prepared the magnetic catalyst MoS2/
SiO2/Fe3O4 by mixed micellar polymerization and hydro-
thermal synthesis, and the addition of surfactants CTAC and
SDS during the preparation resulted in MoS2 crystals of small
size. Its high dispersion in the catalyst resulted in more than
twice the desulfurization performance without the addition of
surfactants,40 and the direct desulfurization activity (DDS) of
molybdenum disulfide was found to be much higher than the
hydrodesulfurization (HDS) activity.40 Quantum chemical
techniques have shown that the chemisorption of hydrogen
molecules on valence-unsaturated Mo atoms leads to H−H
bond breakage and migration of H atoms to other valence-
unsaturated Mo and S atoms. The study of the interaction of
H2S molecules with Mo2S4 and Mo3S6 clusters shows that the
chemisorption of H2S molecules occurs on valence-unsaturated
Mo atoms, followed by the extraction and migration of H
atoms on the cluster surface, with unsaturated S atoms playing
the role of donors and hydrogen carriers. The results showed
that sulfur-containing compounds (mercaptans, thiophenes,
and dibenzothiophenes) are also chemisorbed via S atoms on
valence-unsaturated Mo atoms located on the surface of MoS2
clusters.74 Hydrotreating of this complex feedstock was
performed in an intermittent reactor using dispersed MoS2
catalysts. The reactivity of different sulfides in light cycle oil
followed the trend of benzothiophene > 1-methyl benzothio-
phene≫ 2-methyl benzothiophene > 3-methyl benzothio-
phene > 4-methyl benzothiophene ≫ dibenzothiophene ≈ 1-
methyldibenzothiophenol ≈ 2-methyldibenzothiophenol ≈ 3-
methyldibenzothiophenol. The removal of nitrogen com-
pounds from LCO followed the trend of aniline > indole >
carbazole.38 Both theoretical calculations and experimental
studies have shown that the ligand-unsaturated Mo sites on the
surface of MoS2 catalysts are active species in hydro-
desulfurization catalysis. For example, density flooding theory
studies suggest that the unsaturated molybdenum atoms
exposed on the MoS2 surface are responsible for the high
activity of the HDS reaction.75 Experimental results confirmed
that the coordinated unsaturated Mo species are the active
centers of molybdenum sulfide catalysts loaded on Al2O3 and
TiO2 for the hydrodesulfurization of thiophene and the
hydrogenation of butadiene. Also, XPS results show that
nano-MoS2 shows a redshift of 0.2 eV compared to commercial
MoS2. This indicates that nano-MoS2 has a higher amount of
low Mo valence state, which implies a more coordinated
unsaturated Mo site on the MoS2 microfluidic surface.43 Guo
et al. synthesized MoCoS and MoNiS monolayers as catalysts
for HDS and HDN in one step. The monolayer structure of
MoS2 ensures better activity for basic catalysts due to the high
density of active centers. In HDS and HDN, the monolayer
metal oxide semiconductor shows enhanced catalytic activity

compared to the multilayer MoS. Rationally, cobalt-based MoS
catalysts show higher conversions than nickel-based MoS in
HDS, which is the counterpart of HDN.44

The unloaded MoCo(Ni)S catalysts also performed better in
HDS and HDN compared to the conventional loaded
catalysts.76−78 Therefore, the one-step synthesis of carrier-
free Mo(W)Co(Ni)S catalysts with well-defined structures has
great potential to improve their catalytic performance in HDS
and HDN reactions. Kun et al. studied the interaction effect
between HDS and HDN under the catalysis of different Mo
series catalysts,44 proving the superiority of nitrogen-
containing organic matter in hydrogenation.79−81 In the
presence of Ni, the adsorption effect of nitrogen-containing
organic matter on the catalyst will be better.82,83 The opening
rate of Ni-MoS2 under γ-Al2O3 loading is the best, while the
opening rate of Ni/MoS2 under unloading is the lowest. The
HDN reaction was temperature dependent: as the temperature
increased, due to the presence of Ni, the reaction with γ-Al2O3-
loaded Ni-MoS2 also showed a higher removal rate compared
to Al2O3-loaded Ni-MoS2.

84 For polymetallic catalysts, such as
Ni−Mo−W, the simultaneous presence of Mo and W in the
same slab hinders the growth of pro-Ni species and favors
nucleation, which allows the largest fraction of Ni to be bound.
In addition, the slow growth in the Z-direction leads to the
maximization of active sites around the particles. Compared to
bimetallic catalysts, trimetallic catalysts have the highest
concentration of active centers and larger specific perimeters,
leading to the highest rates of hydrodenitrogenation and
hydrodesulfurization.85

The differences in catalytic properties are caused not only by
the different properties of metals and auxiliary materials but
also by the purity of the feedstock. For example, K in the
feedstock causes an increase in the electronic charge on the
MoS2 material, raises the surface alkalinity, and blocks the Mo
and S edges, inhibiting the catalytic activity and limiting the
access of hydrogen to the MoS2 surface. In particular, the
decrease in HDS and HDO activity and the slight decrease in
hydrogenation activity are related.39

6. CONCLUSION
Slurry bed reactors have recently gained momentum in the
field of heavy oil hydrogenation because they overcome the
challenges of pressure drop and mass transfer limitations
present in conventional fixed-bed reactors and other reactors.
As one of the important hydrogenation catalysts in slurry beds,
the literature has focused on the reduction of the number of
MoS2 stacking layers, but there are a lack of studies on the
lateral dimensions, microdomain regions, and defect sites. The
relationship between molybdenum disulfide structure and
hydrogenation effect also lags far behind the application of
MoS2 in hydrogen precipitation, etc. The current studies
mostly focus on the variation of hydrogenation performance
but lack detailed studies on active hydrogen transfer, etc. In
slurry bed hydrogenation applications, oil-soluble molybdenum
is a hot topic of research, but all need to be converted to a solid
state to have hydrogenation activity. How does the conversion
of soluble molybdenum-based catalysts to solid molybdenum
disulfide during heavy oil hydrogenation positively affect the
effect of heavy oil hydrogenation? This question is still unclear
and poses a significant obstacle to reducing the cost of soluble
Mo precursors and affecting their industrialization.
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