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Aerobic exercise inhibits renal EMT
by promoting irisin expression in SHR

Minghao Luo,1,2 Suxin Luo,2 Yuzhou Xue,2 Qing Chang,1,3 Hui Yang,1 Wenyu Dong,1 Ting Zhang,4

and Shuyuan Cao1,4,5,*

SUMMARY

To determine the effect of aerobic exercise in different intensities on renal injury
and epithelial-mesenchymal transformation (EMT) in the kidney of spontaneously
hypertensive rats (SHR) and explore possible mechanisms, we subjected SHR to
different levels of 14-week aerobic treadmill training. We tested the effects of
aerobic exercise on irisin level, renal function, and EMTmodulators in the kidney.
We also treated angiotensin II-induced HK-2 cells with irisin and tested the
changes in EMT levels. The data showed low and moderate aerobic exercise
improved renal function and inhibited EMT through promoting irisin expression
in SHR. However, high-intensity exercise training had no effect on renal injury
and EMT in SHR but did significantly activate STAT3 phosphorylation in the
kidney. These results clarify the mechanisms of exercise in improving hyperten-
sion-related renal injury and suggest that irisin might be a therapeutic target
for patients with kidney injury.

INTRODUCTION

Hypertension, one of the most common chronic diseases, seriously endangers public health.1 Hyperten-

sion-associated damage affects multiple major organs, including the kidney, with hypertensive nephropa-

thy being a main cause of end-stage renal disease (ESRD).2,3 The basic pathological features of hyperten-

sive nephropathy include inflammation, glomerular sclerosis, tubular atrophy, and progressive interstitial

fibrosis.2 Renal fibrosis is characterized by increased extracellular matrix (ECM) production that results in

fibrotic tissue replacing normal kidney tissue and ultimately inducing renal failure.4–6 Treatments for

hypertensive nephropathy remain limited but include attempts to control blood pressure and delay its

progression to ESRD.7

Several recent studies have shown that exercise has beneficial effects in hypertensive nephropathy or

kidney failure, such as lowering blood pressure and alleviating renal fibrosis.8–14 However, the detailed

molecular mechanisms underlying these positive outcomes remain unclear. In experiments on spontane-

ously hypertensive rats (SHR), aerobic training progressively reduced blood pressure and downregulated

the vasoconstrictor axis of the renin-angiotensin system. Regular treadmill training for 8 weeks also

partially improved renal fibrosis in SHR via inhibiting the transforming growth factor-b (TGF-b) signaling

pathway.4 Another treadmill experiment in SHR demonstrated that 12 weeks of exercise effectively

reduced blood pressure and the renal inflammatory response through downregulating fibrosis

pathways.15

The epithelial-to-mesenchymal transition (EMT) is a crucial process for organ development and cancer

metastasis.16 The process also plays a key role in the development of renal fibrosis associated with several

diseases, including hypertensive nephropathy.17 During EMT, epithelial cells lose their epithelial features

and acquire a mesenchymal phenotype, contributing to renal tubular atrophy and extracellular matrix

(ECM) accumulation.18 Excessive mechanical stimulation or oxidative stress triggers renal tubule intersti-

tial transition, leading to renal tubule fibrosis as renal tubule cells transform into collagen-producing my-

ofibroblasts. Several studies have suggested that canonical mitogen-activated protein kinase (MAPK)

signaling is the main mechanism involved in EMT induction, besides, with various pathways linked,

including the signal transducer and activator of transcription 3 (STAT3), phosphoinositide 3-kinase/

protein kinase B (PI3K/AKT), and wingless/integrated (Wnt) pathways.17–21 Increasing evidence supports
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the idea that decreasing EMT inhibits these pathways to alleviate renal fibrosis and protect renal

function.22–25

Despite these promising findings, few studies have focused on the relationship between exercise training

and EMT. In this study, we aimed to determine whether aerobic exercise would suppress EMT and renal

injury in hypertensive nephropathy and explored the possible mechanisms.

RESULTS

Effect of exercise training intensity on renal function and EMT of SHR kidney

Measures of renal function (kidney index, Scr, and BUN) were higher in the SHR-S group than in the WKY-S

group (p< 0.05, Figures 1A–1C). In addition, the kidney index, BUN, and Scr were lower in the SHR-L and

SHR-M groups (p< 0.05) than in the SHR-S group. However, high-intensity exercise did not improve renal

function in SHR (p> 0.05).

To examine the effect of aerobic exercise on EMT in SHR, we used immunofluorescence (Figure 1D) and

western blotting (Figure 1E) to measure a-SMA, vimentin (mesenchymal phenotype marker), and

E-cadherin levels (epithelial cell indicator) in kidney tissue. We also detected the EMT-related transcription

factor Snail1 (Figure 1F), which participates in mesenchymal reprogramming and prevents terminal differ-

entiation. The SHR-S group had significantly higher a-SMA, vimentin, and Snail1 expression than the

WKY-S, SHR-L, and SHR-M groups (p< 0.05). In addition, the SHR-S group had significantly lower

E-cadherin levels than the WKY-S, SHR-L, and SHR-M groups. Of interest, SHR-H and SHR-S groups did

not differ significantly in a-SMA, vimentin, E-cadherin, and Snail1 levels (p> 0.05).

Effect of exercise training intensity on p-AKT, p-ERK, p-p38, and p-STAT3 in SHR kidney

To determine the effect of exercise training on pathways involved in EMT, we measured renal p-AKT,

p-ERK, p-p38, and p-STAT3 levels with western blotting. The SHR-S group had markedly elevated renal

p-AKT, p-ERK, and p-p38 expression than the WKY-S group (p< 0.05, Figure 2A). In addition, the three

proteins had significantly lower expression in SHR-L and SHR-M groups than in the SHR-S group (p<

0.05). Thus, aerobic exercise attenuated activation of the MAPK and AKT signaling pathways in SHR

kidneys. However, SHR kidneys exhibited significantly higher p-STAT3 expression than normal rat kidneys

(p< 0.05, Figure 2B). Likewise, p-STAT3 levels were significantly higher in the SHR-L, SHR-M, and SHR-H

groups than in the SHR-S group (p< 0.05). Aerobic exercise had further increased p-STAT3 levels and

activated the STAT3 signaling pathway.

Aerobic exercise increased irisin level in SHR

The myokine irisin is secreted by muscles after exercise and has strong positive effects on ameliorating

cardiovascular disease and inhibiting renal fibrosis.26–32Fndc5 expression is regulated by PGC-1a.26

Here, we tested whether aerobic exercise also upregulates the irisin precursor FNDC5 and PGC-1a in

rat kidney, and the most commonly used skeletal muscle, gastrocnemius, in the study of myokine.

Compared with the WKY-S group, the SHR-S group had far lower FNDC5 and PGC-1a levels in the kidney

and gastrocnemius muscles (p< 0.05). The results of ELISA indicated that SHR-S also had significantly lower

serum irisin level than WKY-S (p< 0.05). In addition, aerobic exercise had a clear influence on irisin

and FNDC5. Results from western blotting indicated that FNDC5 expression in SHR-L, SHR-M, and

SHR-H kidneys were significantly higher than in SHR-S kidneys (p< 0.05; Figures 3A and 3B). Likewise,

ELISA showed that the SHR-L, SHR-M, and SHR-H groups had significantly higher irisin levels than the

SHR-S group (p< 0.05; Figure 3C).

Irisin improved ang II-induced EMT in HK-2 cells

To further verify the effect of irisin on hypertensive renal injury, we incubated HK-2 cells with irisin (1, 10, or

100 ng/mL) in the absence or presence of Ang II. We first confirmed that EMT was induced in response to

Ang II (1 mM, 24 h) (p< 0.05). Next, we observed that irisin significantly improved Ang II-induced morpho-

logical changes in HK-2 cells (Figure 4A). Moreover, at 10 and 100 ng/mL, irisin significantly blocked Ang

II-induced increases in a-SMA, vimentin, and Snail1 expression, as well as Ang II-induced decrease in

E-cadherin expression (p< 0.05; Figures 4B and 4C).

ll
OPEN ACCESS

2 iScience 26, 105990, February 17, 2023

iScience
Article



Effect of irisin on ang II-induced changes in p-AKT, p-ERK, p-p38, and p-STAT3 expression in

HK-2 cells

Compared with control cells, Ang II-treated HK-2 cells had increased p-AKT, p-ERK, and p-p38 expression

(p< 0.05, Figure 5A). Irisin treatment at 10 and 100 ng/mL significantly attenuated these Ang II-induced in-

creases in expression levels in HK-2 cells (p< 0.05). Thus, irisin appears to have blocked activation of the

MAPK and AKT signaling pathways in Ang II-induced HK-2 cells. However, irisin also increased p-STAT3

levels in Ang II-treated HK-2 cells at all tested concentrations (p< 0.05, Figure 5B).

Figure 1. Effect of aerobic exercise at different intensities on renal function and epithelial-mesenchymal

transformation (EMT) of the SHR kidney

(A–F) Effects of low-, medium-, and high-intensity aerobic exercise on (A) kidney index, (B) blood urea nitrogen (BUN),

(C) serum creatinine (Scr), and EMT of the SHR kidney were tested. The occurrence of EMT was confirmed with

immunofluorescence (D) and western blotting (E, F) to measure E-cadherin, a-SMA, vimentin, and Snail1 expression in the

kidney. Data are presented as means G SD n = 8, *p< 0.05, **p< 0.01, ***p< 0.001.
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Correlation between Stat3 and Fndc5 in CCLE and GTEx databases

The results of our bioinformatics analysis first demonstrated a positive association between Stat3 and

Fndc5 expression (Pearson’s r = 0.12, p< 0.0001) in different cell lines (n = 1017) (Figure 6A). Further explo-

ration the Stat3 and Fdnc5 relationship across multiple organs (Figure 6B) revealed that the two genes were

most highly correlated in kidney tissue (Pearson’s r = 0.81, p< 0.0001). Stat3 expression was also positively

correlated with Fndc5 transcriptional expression (Pearson’s r = 0.24, p< 0.0001).

DISCUSSION

In this study, we investigated whether treadmill exercise at varying intensities (30–40% VO2max, 45–55%

VO2max, 60–70% VO2max) influenced renal function and EMT in SHR kidneys and then explored potential

Figure 2. Effect of aerobic exercise at different intensities on MAPK, AKT, and STAT3 signaling pathways of the

SHR kidney

(A and B) Western blotting was performed to measure (A) p-AKT, p-ERK, p-p38, and (B) p-STAT3 levels. Data are

presented as means G SD n = 8, *p< 0.05, **p< 0.01, ***p< 0.001.

Figure 3. Effect of aerobic exercise at different intensities on irisin level in SHR

(A and B) Western blotting was performed to measure PGC-1a and FNDC5 expression in (A) gastrocnemius and

(B) kidney.

(C) ELISA of serum irisin levels. Data are presented as means G SD n = 8, *p< 0.05, **p< 0.01, ***p< 0.001.
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mechanisms. We found that low- and medium-intensity, but not high-intensity, training improved renal

function and EMT in SHR. In addition, exercise at all three intensities downregulated the activation of

MAPK and AKT signaling pathways in SHR kidneys while activating the STAT3 pathway. Aerobic exercise

also promoted irisin synthesis and release, which ameliorated Ang II-induced EMT of HK-2 cells in vitro.

Our results in vitro suggested irisin significantly activated the STAT3 pathway; meanwhile, the results of

our bioinformatics analysis first demonstrated a positive association between Stat3 and Fndc5 expression.

These results suggested that the beneficial effects of irisin may be related to the activation of STAT3.

Arterial hypertension is the second cause of ESRD after diabetes mellitus. Kidney dysfunction and hyper-

tension often interact, with nephropathies causing hypertension and high blood pressure damaging the

kidney.1–3 This study is the first to explore how aerobic exercise intensity influences hypertensive-nephrop-

athy-induced EMT. We provided evidence linking the effect of exercise to irisin, a myokine that causes pos-

itive outcomes in various diseases. Although classically described as nephroangiosclerosis and hyalinosis

of the glomerular tuft, hypertensive nephropathy also affects the interstitium with the development of

tubular-interstitial fibrosis (TIF), which ultimately leads to ESRD. Multiple mechanisms can induce TIF,

including EMT, an organ-development process that has been observed in several diseases.7

Several in vitro studies have demonstrated that EMTmay be a commonmechanism underlying TIF, with the

process being driven by factors known to induce hypertension, fibrosis, or both.5,17 For example, Ang II in-

duces EMT in cell culture models. In this study, we used HK-2 cells to identify EMT as a morphological

change from the typical cobblestone pattern of epithelial cells to elongated, spindle-shapedmesenchymal

cells. The transition was accompanied by a reduction in the expression level of the epithelial marker

E-cadherin with an increase in the expression levels of mesenchymal markers a-SMA and vimentin.25,33

We recently provided evidence that aged SHR exhibits EMT induction in the kidney through observing

the aforementioned changes in epithelial and mesenchymal markers. A common hypothesis is that EMT

Figure 4. Effect of irisin on Ang II-induced EMT in HK-2 cells

HK-2 cells were incubated with 1, 10, or 100 ng/mL irisin in the absence or presence of Ang II (1 mM).

(A) Changes to morphology.

(B) E-cadherin, a-SMA, and vimentin protein expression.

(C) Snail1 protein expression. Data are presented as means G SD n = 6, *p< 0.05, **p< 0.01, ***p< 0.001.
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allows epithelial cells to escape from a stressful, unfavorable microenvironment. This mesenchymal reprog-

ramming prevents terminal differentiation and appears to be favored when certain transcription factors

(e.g., Twist, Zeb1, and Snail1) are overexpressed.18 Several studies indicate that Snail1 overexpression,

for example, causes epithelial plasticity, myofibroblast accumulation, and inflammation. In this study, we

observed that moderate aerobic exercise inhibits enhanced Snail1 expression in the SHR kidney.16,17

Scheduled exercise in patients with hypertension reduces the risk of cardiovascular death and all-cause

death.12,34–36 Because aerobic exercise is more effective than impedance or stretching exercises for

improving symptoms in patients with hypertension, we focused on exploring the effects of varying aerobic

training intensity. We obtained maximum aerobic velocity (VO2max) via measuring exercise speed with a

typical progressive exercise test developed for rats. After determining that 40 m/min was 100% of

maximum aerobic speed (that is, speed at VO2max), we formulated low-, medium-, and high-intensity

exercise training for SHR.

Previous studies have shown that exercise training inhibits EMT through down-regulating the fibrotic

pathway.22,37,38 Moderate swimming inhibited TGF-b1-induced EMT in mice transplanted with hepatocel-

lular carcinoma cells.39 Moreover, incremental load training improved renal fibrosis in old mice through

regulation of the TGF-b1/TAK1/MMK3/p38MAPK signaling pathway and inducing autophagy activation,

which in turn reduced ECM synthesis and delayed EMT.22 Exercise training also promotes H2S production

while inhibiting the TGF-b1/Smad and LRP-6/b-catenin signaling pathways, EMT, and pulmonary fibrosis.38

Based on these previous findings, here, we focused on canonical pathways involved in EMT induction,

specifically MAPK, AKT, and STAT3 signaling.

A recent study showed that PGC-1a in muscle increases FNDC5 expression and thus circulatory irisin

levels.26 Irisin is generally detectable in animal plasma (including in humans), and its levels are elevated

by exercise.26,28 Irisin upregulation appears to have strong therapeutic potential in cardiovascular disease

and related disorders.29,30 Furthermore, irisin is associated with renal function, proteinuria, and various

complications in patients with ESRD, with its presence inhibiting renal fibrosis, alleviating renal injury,

and improving renal function.31,32

Our results suggest that aerobic exercise significantly increased PGC-1a and FNDC5 levels in skeletal mus-

cle of SHR, as well as increased serum irisin concentration. Notably, high-intensity exercise had little effect

on FNDC5 expression in SHR kidneys. Long-term high-intensity training increases lactic acid concentration

Figure 5. Effects of irisin on Ang II-induced changes to MAPK, AKT, and STAT3 signaling pathways in HK-2 cells

(A and B) HK-2 cells were incubated with 1, 10, or 100 ng/mL irisin in the absence or presence of Ang II (1 mM). Western

blotting was used to measured (A) p-AKT, p-ERK, p-p38, and (B) p-STAT3 levels. Data are presented as meansG SD n = 6,

*p< 0.05, **p< 0.01, ***p< 0.001.
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Figure 6. Correlation between Stat3 and Fndc5 in CCLE and GTEx databases

(A) Stat3 was positively correlated with Fndc5 expression across different cell lines (n = 1017) in CCLE (Pearson’s r = 0.12,

p< 0.0001).

(B) After examining data from different organs in GTEx, Stat3 and Fndc5 expression was found to have the highest

correlation in kidney tissue (Pearson’s r = 0.81, p< 0.0001). Stat3 expression was also positively correlated with Fndc5

transcript levels (Pearson’s r = 0.24, p< 0.0001).
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through anaerobic metabolism, thus reducing the amount of hydrogen ions (pH < 6.8).40,41 As lactic

acid increases and pH decreases, genes involved in mitochondrial biogenesis (e.g., PGC-1a) are

downregulated. In this study, PGC-1a expression increased significantly in the skeletal muscle and

decreased in the kidney after high-intensity exercise compared with that after medium- and low-intensity

exercise.

Our study agrees with previous findings of improved renal function and renal fibrosis in hypertensive rats

after aerobic exercise. Here, medium-intensity training improved renal function more than low-intensity

training, mainly reflected in changes to Ang II-induced EMT. However, after a certain level of intensity,

aerobic exercise did not improve renal function in hypertensive rats.

The different level of oxidative stress in HICT and MICT on vascular injury in hypertension was also found in

our previous study. This is also a possible indication that the results of high-intensity exercise in this study

are different from those of other intensities. Training can have positive or negative effects on oxidative

stress, depending on intensity, duration, and type. For example, intense exercise causes oxidative stress.42

Our previous study showed that high-intensity training triggered NO production and could damage vascu-

lature. Similarly, other studies suggest that high-intensity exercise leads to eNOS uncoupling and causes

abnormal eNOS function.42 Thus, high-intensity training may increase iNOS and NO production, with the

resultant NO being converted to peroxynitrite (ONOO-), a free radical involved in oxidative stress. We

speculated that a threshold may exist between medium- and high-intensity training to explain the differ-

ential effect on oxidative stress.

STAT3 is a member of the JAK-STAT pathway that regulates inflammation and fibrosis. STAT3 inhibition

reduces type I collagen, fibronectin, vimentin, and a-SMA levels in fibrotic renal cells. Many studies have

shown that inhibition of the STAT3 signaling pathway reduces renal inflammatory response and renal

interstitial fibrosis.43–45 Our in vivo experiments demonstrated that although high-intensity exercise had

no effect on renal EMT, it significantly activated STAT3. In vitro experiments then confirmed that irisin

upregulates p-STAT3 and activates the STAT3 pathway. This relationship between irisin and STAT3 was

also verified with a bioinformatics analysis. Therefore, irisin activation of the STAT3 pathway may be the

mechanism that causes high-intensity exercise to have a different effect on hypertensive renal injury

than lower intensity exercise. However, the exact mechanism of these effects from exercise remains elusive

and is a topic for future research.

In conclusion, the results of this study suggest that exercise exerts distinct effects on renal function in SHR

depending on intensity. Low- and medium-intensity exercise significantly ameliorated renal damage and

inhibited EMT in SHR through promoting irisin expression. High-intensity training had no effect on renal

dysfunction or EMT in SHR, possibly because it activated STAT3.

Limitations of the study

This study did not discuss the mechanisms by which high intensity exercise failed to improve hypertensive

nephropathy, but simply demonstrated changes in STAT3 without intervening with STAT3. Besides, this

manuscript addresses the effect of aerobic exercise in a spontaneously hypertensive rats context. However,

it remains to be tested whether such therapeutic effect is general and extendable to at the clinical level.

Whether the exercise prescription in rats is applicable to humans remains to be further verified.
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Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact Shuyuan Cao (shuyuan_cao@hospital.cqmu.edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

All raw data reported in this paper will be shared by the lead contact upon request. Data S1–S6, original raw

data, related to Figures 1, 2, 3, 4, 5, and 6. Data S7, original code related to GTEx. Data S8, original code

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

a-SMA Proteintech Group 14395-1-AP

Vimentin Proteintech Group 10366-1-AP

E-cadherin Proteintech Group 20874-1-AP

Snail1 Proteintech Group 13099-1-AP

PGC-1a Proteintech Group 66369-1-Ig

HRP-conjugated goat anti-mouse Proteintech Group SA00001-1

HRP-conjugated goat anti-rabbit Proteintech Group SA00001-2

p-AKT-Ser473 Cell Signaling Technology #4060

p-ERK-Thr202/Tyr204 Cell Signaling Technology #4370

p-p38-Thr180/Tyr182 Cell Signaling Technology #4511

p-STAT3-Tyr705 Cell Signaling Technology #9145

FNDC5 AiFang AF301717

b-actin Bioss bs-0061R

Fluorescence-conjugated secondary antibody Beyotime P0180

Organisms/strains experimental models

HK-2 ATCC CRL-2190

SHR rats Vital River Laboratory Code:121

WKY rats Vital River Laboratory Code:122

Treadmill SANS Biological Technology SA101C

Chemicals, peptides, and recombinant proteins

Irisin MedChemExpress HY-P70664

Angiotensin II MedChemExpress HY-13948

Critical commercial assays

Creatinine Assay Kit Nanjing Jiancheng Bioengineering Institute C011-2-1

Urea Assay Kit Nanjing Jiancheng Bioengineering Institute C013-2-1

Irisin ELISA Kit Elabscience E-EL-R2625c

Software and algorithms

GraphPad Prism 8 GraphPad Software NA

R 4.0.0 R Core Team, 2020 NA
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related to CCLE. Any additional information required to reanalyze the data reported in this paperis avail-

able from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals

Thirty-two Eight-week-old healthy male SHR and eight age-matched Wistar-Kyoto (WKY) rats (n = 8) were

purchased from the Vital River Laboratory (Beijing, China) and placed under standard pathogen-free

conditions with controlled temperature (22 G 2�C) and 12/12 h light/dark cycle. Subjects were allowed

ad libitum access to water and food. Animal experiments were carried out in accordance with the National

Animal Protection and Use Guidelines and approved by the Animal Ethics Committee of Chongqing

Medical University. Rats exercised on a specialized treadmill (SA101C; SANS Biological Technology,

Jiangsu, China) connected to software that continuously monitors speed. The treadmill exercise followed

protocols described in previous studies.46–48 Initially, all rats were subjected to an adaptation period

comprising 5 days of 60 min running sessions at 8 m/min, between 15:00 and 17:00. Maximal velocity

(m/min) and exhaustion time (s) were then determined with a maximum-capacity running test. The

actual trials took 14 weeks (2 days of rest per week), with rats exercising at 30–40% (14 m/min), 45–55%

(20 m/min), and 60–70% (26 m/min) of maximum exercise capacity for 60 min, also during 15:00–17:00.

Treadmill inclination was set to 0.

Rats were separated into three groups for different exercise intensities (n = 8): SHR low-intensity aerobic

exercise training (SHR-L), SHR medium-intensity aerobic exercise training (SHR-M), and SHR high-intensity

aerobic exercise training (SHR-H). The WKY sedentary (WKY-S) and SHR sedentary (SHR-S) control groups

did not participate in training. After exercise training, rats were euthanized to collect tissue and serum,

which were stored at �80�C until subsequent analysis.

Cell culture

Human renal proximal tubule epithelial cells (HK-2) were purchased from the American Tissue Culture

Collection (VA, USA) and cultured in DMEM (Gibco; Invitrogen, USA) supplemented with 10% FBS and

1% penicillin/streptomycin (Invitrogen, USA) at 37�C with 5% CO2. To confirm the effect of irisin on renal

tubular epithelium in vitro, HK-2 cells were incubated for 24 h with 1, 10, or 100 ng/mL of the protein

(MedChemExpress, Shanghai, China) in the absence or presence of 1 mM angiotensin II (Ang-II;

MedChemExpress). Cell morphology was observed under a light microscope (Leica Microsystems,

Germany).

METHOD DETAILS

Western blotting

The chopped kidney and gastrocnemius tissue and cells were washed with ice-cold PBS, and lysed in lysis buffer

supplemented with 1% protease and phosphatase inhibitors (Sigma, USA) on ice for 60 minutes. The lysate su-

pernatantwas collected after centrifugation at 12,000 rpm for 15minat 4�C. The concentrationof the supernatant
was determined via Bradford protein assay (Thermo Fisher Scientific, USA). Thenmixedwith 5X SDS-PAGE sam-

ple loading buffer (BeyotimeBiotechnology, China) toprepare western blotting protein sample. 40 mgof protein

was then used for western blotting.49–52 Proteins were separated with 10% SDS-PAGE and transferred onto

PVDF membranes. After blocking with 5% non-fat milk for 2hat 37�C, membranes were incubated with primary

antibodies overnight at 4�C and then with horseradish peroxidase (HRP)-conjugated secondary antibodies at

37�C for 2 h. Bands were detected using chemiluminescence detection reagent (Beyotime, Shanghai, China).

Band gray values were analyzed in Image Lab 6.0, and target protein levels were calculated as the ratio of their

gray values to the internal control protein (b-actin).

Immunofluorescence staining

Rat kidneys were harvested, frozen in Tissue-Tek OCT media, and sliced sequentially into 10 mm sections

using a cryostat. Sections were permeabilized with 0.1% Triton X-100 in phosphate-buffered saline (PBS) for

20 min and then blocked with 5% donkey serum for 1 h and incubated with rabbit anti-E-cadherin (1:100;

20874-1-AP; Proteintech) overnight at 4�C. Next, sections were incubated for 5 min with 40,6-diamidino-

2-phenylindole (DAPI) and then for 2 h with fluorescence-conjugated secondary antibodies (Beyotime,

Shanghai, China) in a dark room at room temperature. Slices were visualized under a fluorescence micro-

scope (Leica Microsystems, Germany).
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Bioinformatics analysis

Total transcripts per million (TPM) expression profiles were obtained from the Cancer Cell Line Encyclo-

pedia (CCLE) and Genotype-Tissue Expression (GTEx).53,54 Log-normalized Stat3 and Fndc5 expression

was qualified through Gencode V19 annotation. Stat3 and Fndc5 transcript values were analyzed with

Pearson’s correlation tests across multiple cell lines and organs using R version 4.0.0 (R Foundation for

Statistical Computing). Significance was set at p< 0.05 (two-tailed).

QUANTIFICATION AND STATISTICAL ANALYSIS

All experimental data are expressed as means G standard deviation (SD). Normality of the distribution of

data were assessed by Shapiro-Wilk normality test. To calculate the comparisons between 2 groups,

normally or nonnormally distributed data were compared using Unpaired 2-tailed Student t tests or

Mann-Whitney U tests, respectively. To calculate the comparisons between multiple groups (R3 groups),

normally or nonnormally distributed data were compared using one-way analysis of variance (ANOVA)

followed by Bonferroni post hoc test or Kruskal-Wallis test followed by the Dunn post hoc test, respectively,

in GraphPad version 8.0. Significance was set at p< 0.05.
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