

Received 13 October 2016 Accepted 5 November 2016

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; lithium; silver; amidinate; alkynylamidinate; co-crystal.

CCDC references: 1515190; 1515191

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN 3 ACCESS

Crystal and molecular structures of two silver(I) amidinates, including an unexpected co-crystal with a lithium amidinate

Sida Wang, Nicole Harmgarth, Phil Liebing and Frank T. Edelmann*

Chemisches Institut der Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany. *Correspondence e-mail: frank.edelmann@ovgu.de

The silver(I) amidinates bis $[\mu - N^1, N^2$ -bis(propan-2-vl)benzamidinato- $\kappa^2 N^1 : N^2$]disilver(I), $[Ag_2(C_{13}H_{19}N_2)_2]$ or $[Ag{PhC(N^iPr)_2}]_2$ (1), and bis(μ -N¹, N²-dicyclohexyl-3-cyclopropylpropynamidinato- $\kappa^2 N^1: N^2$)disilver(I), $[Ag_2(C_{18}H_{27}N_2)_2]$ or $[Ag[cyclo-C_3H_5-C=C-C(NCy)_2]]_2$ (2a), exist as centrosymmetric dimers with a planar $Ag_2N_4C_2$ ring and a common linear coordination of the metal atoms in the crystalline state. Moiety 2a forms a co-crystal with the related lithium amidinate, namely bis(μ -N¹,N²-dicyclohexyl-3-cyclopropylpropynamidinato- $\kappa^2 N^1: N^2$)disilver(I) bis(μ - N^1, N^2 -dicyclohexyl-3-cyclopropylpropynamidinato- $\kappa^3 N^1 N^2 N^1$)bis(tetrahydrofuran- κO)lithium(I) toluene monosolvate. $[Ag_2(C_{18}H_{27}N_2)_2][Li_2(C_{18}H_{27}N_2)_2(C_4H_8O)_2] \cdot C_7H_8$ or $[Ag\{cyclo-C_3H_5-C=C-C_7H_8-C$ $C(NCy)_2$][Li{ $cyclo-C_3H_5-C=C-C(NCy)_2$ }(THF)]₂·C₇H₈, composed as 2a × $2b \times$ toluene. The lithium moiety 2b features a typical ladder-type dimeric structure with a distorted tetrahedral coordination of the metal atoms. In the silver(I) derivatives 1 and 2a, the amidinate ligand adopts a μ - κN : $\kappa N'$ coordination, while it is a μ - κN : κN '-coordination in the case of lithium derivative 2b.

1. Chemical context

Anionic N-chelating donor ligands such as amidinates, $[RC(NR)_2]^-$, and guanidinates, $[R_2NC(NR)_2]^-$, have gained tremendous importance in various fields of organometallic and coordination chemistry over the past two decades. Formally, amidinate anions are the nitrogen analogues of the carboxylate anions, while guanidinates are similarly related to the carbamates. However, in contrast to the carboxylates and carbamates, the steric properties of amidinates and guanidinates can be widely tuned through the use of different substituents, both at the outer nitrogen atoms as well as at the central carbon atom of the NCN unit. Both types of N-chelating ligands are often regarded as 'steric cyclopentadienyl equivalents' (Bailey & Pace, 2001; Collins, 2011; Edelmann, 2008, 2013). Meanwhile, amidinato and guanidinato complexes are known for virtually every metallic element in the Periodic Table ranging from lithium to uranium (Edelmann, 2008, 2009, 2012, 2013; Trifonov, 2010). Alkyl-substituted amidinate and guanidinate complexes of various metals have also been established as ALD and MOCVD precursors for the deposition of thin layers of metals, metal oxides, metal nitrides etc. (Devi, 2013). The most important starting materials in this field are lithium amidinates and guanidinates. Lithium amidinates are normally prepared in a straightforward manner by addition of lithium alkyls to N,N'-diorganocarbodiimides in a 1:1 molar ratio, while lithium guanidinates

are formed when lithium-N,N-dialkylamides are added to N,N'-diorganocarbodiimides (Stalke *et al.*, 1992; Aharonovich *et al.*, 2008; Chlupatý *et al.*, 2011; Nevoralová *et al.*, 2013; Hong *et al.*, 2013). On the other hand, silver(I) amidinates and guanidinates (Archibald *et al.*, 2000; Lim *et al.*, 2003; White-horne *et al.*, 2011; Lane *et al.*, 2014) are of significant importance as potential precursors for vapor deposition processes (Lim *et al.*, 2003; Whitehorne *et al.*, 2013; Nhitehorne *et al.*, 2011), as precursors for silver nanoparticles (Cure *et al.*, 2015), or as intermediates in silver-catalyzed amidination and guanylation reactions (Pereshivko *et al.*, 2011; Okano *et al.*, 2012; Li *et al.*, 2015).

We report here the structural characterization of two silver(I) amidinates, namely $[Ag{PhC(N^{i}Pr)_{2}}]_{2}$ (1), and the unexpected co-crystal (2), composed as $[Ag{cyclo-C_{3}H_{5}}-C\equiv C-C(NCy)_{2}]_{2}$ (2a) × $[Li{cyclo-C_{3}H_{5}}-C\equiv C-C(NCy)_{2}](THF)]_{2}$ (2b) × toluene (Cy = cyclohexyl).

2. Structural commentary

Silver(I) compound **1** (Fig. 1) and silver moiety **2a** (Fig. 2): Both silver(I) complexes exist as centrosymmetric dimers in the crystalline state. Compound **1** crystallizes without any solvent, and the molecular structure of moiety **2a** was determined from the co-crystal **2** (**2a** \times **2b** \times toluene). In both **1** and **2a**, each of the two N atoms of the amidinate ligand coordinates to one Ag atom (coordination mode μ - κN : $\kappa N'$), and the Ag atoms adopt an almost linear coordination [1: N-Ag-N $170.58 (7)^{\circ}$; **2a**: N-Ag-N 170.66 (5)°] by two N atoms of two symmetry-related amidinate ligands, leading to centrosymmetric dimers in each case. The Ag-N separations are very similar in both structures [1: 2.0959 (16) and 2.0965 (16) Å, 2a: 2.0908 (15) and 2.0916 (14) Å]. An sp^2 hybridization can be assigned to the N atoms since the coordination environment is almost trigonal-planar. The C-N separations within the amidinate NCN fragment are virtually equal [1: twice 1.322 (3) Å, **2a**: 1.329 (2) and 1.331 (2) Å], indicating a typical delocalization of the negative charge. Through the mentioned connectivity pattern, a strictly planar C2N4Ag2 eightmembered ring with a short $Ag \cdots Ag$ contact is built [1: 2.6604 (3) Å, 2a: 2.6838 (3) Å]. This constitution might be supported by some attractive $d^{10}-d^{10}$ interaction between the Ag atoms that have been frequently discussed in the literature (for a review, e.g. see: Jansen, 1987). The molecular structures of the here discussed compounds are closely related to those of the most previously described copper(I) and silver(I)amidinates, namely $[Cu_2 \{ RC(NR')_2 \}_2]$ (R, R' = Me, "Bu; Li et al., 2005) and $[M_2{\text{MeC}(\text{N}^i\text{Pr})_2}]$ (M = Cu, Ag). However, in the case of $Ag\{MeC(N^{i}Pr)_{2}\}$, also a trimeric structure $[Ag_3[MeC(N^iPr)_2]_3]$ was observed (Lim *et al.*, 2003). The bond lengths and angles involving the Ag atoms, viz. Ag-N and Ag-Ag distances and N-Ag-N angles, in the compounds discussed herein resemble those observed in the previously reported dimeric silver(I) amidinates. A dimerization or oligomerization under formation of linear N-M-N units is also typical for a broad ensemble of copper(I) and silver(I) complexes with other anionic nitrogen ligands, e.g. $[Cu_4(NR_2)_4]$ (e.g. R = Me, Gambarotta et al., 1987; R = Et, Hope & Power, 1984; $R = SiMe_3$, James *et al.*, 1998), $[Ag_4(N(SiMe_3)_2)_4]$ and $[Ag_3(N,N,N',N'-tetramethylpiperid$ yl)₃] (Hitchcock et al., 1996), [Cu₂Tl₂(ThioSila)₂] and $[Ag_4(ThioSila)_2(THT)_2]$ (ThioSila = $\{Me_2Si(N-C_6H_4-2 SPh_{2}^{2-}$, THT = tetrahydrothiophene; Liebing & Merzweiler,

Figure 1

The molecular structure of compound **1**. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity. [Symmetry code: (') 2 - x, 2 - y, 1 - z.]

The molecular structure of moiety **2a**, determined from the co-crystal **2**. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity. [Symmetry code: (') 2 - x, 2 - y, 1 - z.]

Figure 3

The molecular structure of moiety **2a**, determined from the co-crystal **2**. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity. [Symmetry code: ('') 2 - x, 1 - y, -z.]

2016). The silane diamide complexes $[M_4(\text{ThioSila})_2]$ comprise a planar Si₂N₄ M_2 ring that is structurally closely related to the C₂N₄ M_2 ring in the dimeric amidinate complexes.

Lithium moiety **2b** (Fig. 3): The molecular structure of **2b** was determined from the above-mentioned co-crystal **2** (**2a** \times **2b** \times toluene). Like the silver components **1** and **2a**, the lithium moiety exists as a centrosymmetric dimer in the crystalline state. However, the molecular structure of **2b** is considerably different, featuring a centrosymmetric Li₂N₂ four-membered ring formed by μ -bridging coordination of one of the N atoms (N3). The Li-N distances within this ring are 2.033 (4)-2.261 (4) Å and therefore in the expected range. The coordination number of the mentioned N atom N3 is consequently raised to four and an sp^3 hybridization fits best to describe the bonding situation. The second N atom of the amidinate ligand (N4) is attached to only one Li atom with a shorter Li-N bond of 2.001 (4) Å, and its coordination environment is trigonal-planar like in the related silver

Figure 4

Crystal packing of dimeric silver(I) amidinate molecules in compound $\mathbf{1}$, viewed in a projection on (100).

Figure 5

Crystal packing of silver(I) amidinate (2a), lithium amidinate (2b) and disordered toluene molecules in the co-crystal 2, viewed in a projection on (100).

components. Through this μ - $\kappa N:\kappa N':\kappa N'$ -coordination mode of the amidinate ligands, a 'ladder' consisting of three fourmembered rings is formed. By coordination of a solvent THF molecule, a typical distorted tetrahedral coordination of the Li atom is completed. Just like in the case of the silver components **1** and **2a**, the C–N bond lengths within the amidinate moiety are very similar with 1.321 (2) and 1.335 (2) Å. The structural motif of ladder-type dimers is typical for this class of compounds and has frequently been observed for most of the previously characterized lithium amidinates and guanidinates (Stalke *et al.*, 1992; Snaith & Wright, 1995; Downard & Chivers, 2001, Brown *et al.*, 2008).

3. Supramolecular features

In both of the presented crystal structures, there are no specific intermolecular interactions. In compound **1** (Fig. 4), the closest intermolecular contacts exist between phenyl groups and isopropyl groups [min. $\text{HC} \cdots \text{CH}_3$ 3.79 (1) Å]. In the co-crystal **2** (Fig. 5), four silver amidinate molecules (**2a**) are situated on the centres of the four unit-cell edges perpendicular to (001) and four lithium amidinate molecules (**2b**) on the four edges perpendicular to (100). The four remaining unit-cell edges perpendicular to (100) are occupied by four disordered toluene molecules. The closest intermolecular contacts exist between the cyclopropyl moieties of the silver complex and the toluene methyl groups [C6 \cdots C44 3.48 (1) Å], followed by cyclopropyl-cyclopropyl contacts between silver amidinate and lithium amidinate molecules [C5 \cdots C24 3.57 (1) Å].

Table 1Experimental details.

	1	2
Crystal data		
Chemical formula	$[Ag_2(C_{13}H_{19}N_2)_2]$	$[Ag_2(C_{18}H_{27}N_2)_2][Li_2(C_{18}H_{27}N_2)_2(C_4H_8O)_2] - C_7H_8$
$M_{\rm r}$	622.34	1551.62
Crystal system, space group	Orthorhombic, Pbca	Triclinic, $P\overline{1}$
Temperature (K)	153	133
a, b, c (Å)	11.7112 (6), 15.9238 (6), 14.8703 (6)	10.5880 (3), 14.5620 (4), 14.9830 (5)
α, β, γ (°)	90, 90, 90	99.871 (2), 102.825 (2), 106.538 (2)
$V(\dot{A}^3)$	2773.1 (2)	2090.17 (11)
Z	4	1
Radiation type	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	1.43	0.52
Crystal size (mm)	$0.23 \times 0.21 \times 0.09$	$0.44 \times 0.29 \times 0.27$
Data collection		
Diffractometer	Stoe IPDS 2T	Stoe IPDS 2T
Absorption correction	Numerical (X-AREA and X-RED;	-
	Stoe & Cie, 2002)	
T_{\min}, T_{\max}	0.713, 0.874	-
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	9641, 3026, 2360	22444, 9099, 8214
R _{int}	0.030	0.043
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.639	0.639
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.024, 0.047, 0.99	0.028, 0.073, 1.03
No. of reflections	3026	9099
No. of parameters	150	461
No. of restraints	0	12
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \; ({ m e} \; { m \AA}^{-3})$	0.34, -0.29	0.40, -0.61

Computer programs: X-AREA and X-RED (Stoe & Cie, 2002), SHELXT2013 (Sheldrick, 2015a), SHELXL2016 (Sheldrick, 2015b), DIAMOND (Brandenburg, 1999) and publCIF (Westrip, 2010).

4. Synthesis and crystallization

[Ag₂{PhC(NⁱPr)₂]₂] (1) was obtained following a published procedure (Lim *et al.*, 2003). Therefore, an *in situ* prepared solution of the lithium derivative Li{PhC(NⁱPr)₂} (Sroor *et al.*, 2013) in THF was treated with a stoichiometric amount of silver(I) chloride at room temperature (Fig. 6). Afterwards the solvent was removed *in vacuo*, the residue was extracted with toluene and the insoluble matter filtered off. After addition of an excess of *n*-pentane to the filtrate, large colorless crystals formed within few days at room temperature. ¹H NMR (400.1 MHz, THF-*d*₈, 298 K): δ (p.p.m.) 7.45–7.04 (3×*m*, 10H, C*H* Ph), 3.21 (*sept*, 4H, C*H* ^{*i*}Pr), 1.05 (*d*, 24H, C*H*₃ ^{*i*}Pr). ¹³C NMR (100.6 MHz, THF-*d*₈, 298 K): δ (p.p.m.) 170.4 (NCN), 141.1 (*ipso-C* Ph), 128.6 (CH Ph), 127.3 (CH Ph), 126.7 (*para-*CH Ph), 49.3 (CH ^{*i*}Pr), 28.1 (CH₃ ^{*i*}Pr).

Synthesis of silver(I) amidinates from the related lithium derivatives.

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were fixed geometrically and refined using a riding model with $U_{iso}(H) =$ $1.2U_{eq}(C)$. C—H distances in CH₃ groups were constrained to 0.98 Å, those in CH₂ groups to 0.99 Å and those in CH groups to 1.00 Å. All CH₃ groups were refined as freely rotating around the C–C vector.

research communications

For compound **2**, the reflection (100) was partly obstructed by the beam stop and was therefore omitted from the refinement. The U_{ij} components of the C atoms of the THF molecule (C41–C44) were restrained to be similar for atoms closer than 1.7 Å (SIMU restraint in *SHELXL*; the s.u. applied was 0.01 Å²). The toluene molecule (C41–C44) is located on an inversion center. Consequently, the methyl group (C44) and the *para*-H atom (H64) are disordered over two positions and were refined with a constrained site occupancy factor of 0.5. The *ipso*-C and *para*-C atom (C42*A* and C42*B*) were refined to be equal (EXYZ and EADP restraints in *SHELXL*).

Acknowledgements

This work was supported financially by the Otto-von-Guericke-Universität Magdeburg. SW holds a PhD studentship from the China Scholarship Council (CSC).

References

- Aharonovich, S., Kapon, M., Botoshanski, M. & Eisen, M. S. (2008). Organometallics, **27**, 1869–1877.
- Archibald, S. J., Alcock, N. W., Busch, D. H. & Whitcomb, D. R. (2000). J. Cluster Sci. 11, 261–283.
- Bailey, P. J. & Pace, S. (2001). Coord. Chem. Rev. 214, 91-141.
- Brandenburg, K. (1999). *DIAMOND*. University of Bonn, Germany. Brown, D. J., Chisholm, M. H. & Gallucci, J. C. (2008). *Dalton Trans.* pp. 1615–1624.
- Chlupatý, T., Padělková, A., Lyčka, A. & Růžička, A. (2011). J. Organomet. Chem. 696, 2346–2354.
- Collins, S. (2011). Coord. Chem. Rev. 255, 118-138.
- Cure, J., Coppel, Y., Dammak, T., Fazzini, P. F., Mlayah, A., Chaudret, B. & Fau, P. (2015). *Langmuir*, **31**, 1362–1367.
- Devi, A. (2013). Coord. Chem. Rev. 257, 3332-3384.
- Downard, A. & Chivers, T. (2001). Eur. J. Inorg. Chem. pp. 2193-2201.
- Edelmann, F. T. (2008). Adv. Organomet. Chem. 57, 183-352.
- Edelmann, F. T. (2009). Chem. Soc. Rev. 38, 2253-2268.
- Edelmann, F. T. (2012). Chem. Soc. Rev. 41, 7657-7672.
- Edelmann, F. T. (2013). Adv. Organomet. Chem. 61, 55-374.

- Gambarotta, S., Bracci, M., Floriani, C., Chiesi-Villa, A. & Guastini, C. (1987). J. Chem. Soc. Dalton Trans. pp. 1883–1888.
- Hitchcock, P. B., Lappert, M. F. & Pierssens, L. J.-M. (1996). Chem. Commun. pp. 1189–1190.
- Hong, J., Zhang, L., Wang, K., Chen, Z., Wu, L. & Zhou, X. (2013). Organometallics, 32, 7312–7322.
- Hope, H. & Power, P. P. (1984). Inorg. Chem. 23, 936-937.
- James, A. M., Laxman, R. K., Fronczek, F. R. & Maverick, A. W. (1998). *Inorg. Chem.* 37, 3785–3791.
- Jansen, M. (1987). Angew. Chem. Int. Ed. Engl. 26, 1098–1110.
- Lane, A. C., Vollmer, M. V., Laber, C. H., Melgarejo, D. Y., Chiarella, G. M., Fackler, J. P. Jr, Yang, X., Baker, G. A. & Walensky, J. R. (2014). *Inorg. Chem.* 53, 11357–11366.
- Li, Z., Barry, S. T. & Gordon, R. G. (2005). *Inorg. Chem.* 44, 1728–1735.
- Li, X., Li, Y.-L., Chen, Y., Zou, Y., Zhuo, X.-B., Wu, Q.-Y., Zhao, Q.-J. & Hu, H.-G. (2015). *RSC Adv.* **5**, 94654–94657.
- Liebing, P. & Merzweiler, K. (2016). Z. Anorg. Allg. Chem. 642, 500– 507.
- Lim, B. S., Rahtu, A., Park, J.-S. & Gordon, R. G. (2003). *Inorg. Chem.* **42**, 7951–7958.
- Nevoralová, J., Chlupatý, T., Padělková, A. & Růžička, A. (2013). J. Organomet. Chem. **745–746**, 186–189.
- Okano, A., James, R. C., Pierce, J. G., Xie, J. & Boger, D. L. (2012). J. Am. Chem. Soc. 134, 8790–8793.
- Pereshivko, O. P., Peshkov, V. A., Ermolat'ev, D. S., Van Hove, S., Van Hecke, K., Van Meervelt, L. & Van der Eycken, E. V. (2011). *Synthesis*, pp. 1587–1594.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Snaith, R. & Wright, D. S. (1995). In Lithium Chemistry, A Theoretical and Experimental Overview, edited by A. Sapse & P. von R. Schleyer. New York: Wiley.
- Sroor, F. M., Hrib, C. G., Hilfert, L. & Edelmann, F. T. (2013). Z. Anorg. Allg. Chem. 639, 2390–2394.
- Stalke, D., Wedler, M. & Edelmann, F. T. (1992). J. Organomet. Chem. 431, C1–C5.
- Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.
- Trifonov, A. A. (2010). Coord. Chem. Rev. 254, 1327-1347.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Whitehorne, T. J. J., Coyle, J. P., Mahmood, A., Monillas, W. H., Yap, G. P. A. & Barry, S. T. (2011). *Eur. J. Inorg. Chem.* pp. 3240–3247.

Acta Cryst. (2016). E72, 1786-1790 [https://doi.org/10.1107/S2056989016017680]

Crystal and molecular structures of two silver(I) amidinates, including an unexpected co-crystal with a lithium amidinate

Sida Wang, Nicole Harmgarth, Phil Liebing and Frank T. Edelmann

Computing details

For both compounds, data collection: *X-AREA* (Stoe & Cie, 2002); cell refinement: *X-AREA* (Stoe & Cie, 2002); data reduction: *X-AREA* and *X-RED* (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2013 (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2016* (Sheldrick, 2015b); molecular graphics: *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *publCIF* (Westrip, 2010).

(compound_1) Bis[μ -N¹,N²-bis(propan-2-yl)benzamidinato- $\kappa^2 N^1$:N²]disilver(I)

Crystal data	
$[Ag_{2}(C_{13}H_{19}N_{2})_{2}]$ $M_{r} = 622.34$ Orthorhombic, <i>Pbca</i> a = 11.7112 (6) Å b = 15.9238 (6) Å c = 14.8703 (6) Å V = 2773.1 (2) Å ³ Z = 4 F(000) = 1264	$D_x = 1.491 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 11797 reflections $\theta = 2.6-29.1^{\circ}$ $\mu = 1.43 \text{ mm}^{-1}$ T = 153 K Plate, colorless $0.23 \times 0.21 \times 0.09 \text{ mm}$
Data collection	
Stoe IPDS 2T diffractometer Radiation source: fine-focus sealed tube Detector resolution: 6.67 pixels mm ⁻¹ area detector scans Absorption correction: numerical (X-AREA and X-RED; Stoe & Cie, 2002) $T_{\min} = 0.713, T_{\max} = 0.874$	9641 measured reflections 3026 independent reflections 2360 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 27.0^{\circ}, \ \theta_{min} = 2.6^{\circ}$ $h = -12 \rightarrow 14$ $k = -17 \rightarrow 20$ $l = -18 \rightarrow 17$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.024$ $wR(F^2) = 0.047$ S = 0.99 3026 reflections 150 parameters 0 restraints Primary atom site location: heavy-atom method	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0238P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.34$ e Å ⁻³ $\Delta\rho_{min} = -0.29$ e Å ⁻³

Extinction correction: SHELXL2016 (Sheldrick, 2015b), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.00133 (9)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

				TT +/TT
	<i>x</i>	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.89250 (17)	0.84957 (11)	0.52126 (14)	0.0180 (4)
C2	0.84003 (17)	0.76359 (12)	0.53144 (14)	0.0192 (4)
C3	0.72930 (18)	0.75332 (14)	0.56240 (15)	0.0269 (5)
H1	0.684814	0.801041	0.577986	0.032*
C4	0.6834 (2)	0.67346 (15)	0.57063 (17)	0.0339 (6)
H2	0.607343	0.666906	0.591646	0.041*
C5	0.7464 (2)	0.60378 (15)	0.54883 (17)	0.0347 (6)
Н3	0.714312	0.549257	0.554655	0.042*
C6	0.8568 (2)	0.61370 (14)	0.51837 (17)	0.0347 (6)
H4	0.901066	0.565694	0.503496	0.042*
C7	0.9036 (2)	0.69336 (13)	0.50927 (16)	0.0279 (5)
Н5	0.979524	0.699645	0.487771	0.034*
C8	0.9646 (2)	0.83508 (14)	0.67386 (15)	0.0307 (5)
H6	0.926464	0.779127	0.668444	0.037*
C9	1.0893 (3)	0.82211 (19)	0.6933 (2)	0.0519 (8)
H7	1.097759	0.790334	0.749337	0.062*
Н9	1.126925	0.876767	0.699461	0.062*
H8	1.124389	0.790784	0.643782	0.062*
C10	0.9090 (3)	0.8841 (2)	0.7489 (2)	0.0657 (10)
H12	0.915326	0.852442	0.805200	0.079*
H10	0.828196	0.893125	0.734664	0.079*
H11	0.947262	0.938437	0.755509	0.079*
C11	0.8084 (2)	0.85689 (12)	0.37151 (15)	0.0255 (5)
H13	0.793586	0.795930	0.382647	0.031*
C12	0.6952 (2)	0.90348 (17)	0.3702 (2)	0.0431 (7)
H15	0.648800	0.883280	0.319816	0.052*
H16	0.709247	0.963797	0.363193	0.052*
H14	0.654535	0.893414	0.426792	0.052*
C13	0.8693 (3)	0.86641 (16)	0.28221 (16)	0.0398 (6)
H19	0.821450	0.843287	0.234130	0.048*
H18	0.942018	0.836057	0.284187	0.048*
H17	0.883690	0.926043	0.270543	0.048*
N1	0.95209 (16)	0.88054 (10)	0.58907 (12)	0.0225 (4)
N2	0.88089 (15)	0.88965 (10)	0.44393 (12)	0.0194 (4)
AG	1.04222 (2)	0.99411 (2)	0.58280 (2)	0.01974 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

U /11					
U	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0154 (10)	0.0156 (8)	0.0229 (10)	-0.0005 (7)	0.0023 (8)	-0.0010 (7)
0.0205 (11)	0.0201 (9)	0.0172 (10)	-0.0048 (8)	-0.0028 (8)	0.0025 (8)
0.0226 (13)	0.0312 (10)	0.0269 (11)	-0.0027 (9)	-0.0015 (9)	0.0032 (9)
0.0260 (12)	0.0422 (12)	0.0334 (14)	-0.0165 (10)	-0.0069 (10)	0.0108 (11)
0.0462 (15)	0.0267 (10)	0.0312 (13)	-0.0194 (10)	-0.0126 (12)	0.0066 (9)
0.0454 (15)	0.0207 (10)	0.0381 (14)	-0.0038 (10)	-0.0069 (12)	-0.0004 (10)
0.0317 (13)	0.0213 (9)	0.0308 (13)	-0.0027 (9)	0.0007 (10)	0.0003 (9)
0.0435 (15)	0.0276 (10)	0.0209 (11)	-0.0129 (11)	-0.0057 (11)	0.0074 (9)
0.057 (2)	0.0559 (17)	0.0424 (17)	0.0170 (14)	-0.0130 (15)	0.0194 (14)
0.068 (2)	0.101 (3)	0.0281 (15)	0.0053 (19)	0.0150 (17)	0.0124 (19)
0.0309 (12)	0.0185 (9)	0.0270 (12)	-0.0041 (9)	-0.0118 (10)	-0.0007 (8)
0.0332 (14)	0.0476 (14)	0.0484 (17)	0.0024 (12)	-0.0179 (13)	-0.0024 (13)
0.0567 (18)	0.0383 (12)	0.0243 (12)	-0.0063 (13)	-0.0097 (12)	-0.0104 (10)
0.0273 (9)	0.0213 (7)	0.0190 (9)	-0.0074 (7)	-0.0039 (8)	0.0036 (7)
0.0213 (9)	0.0169 (7)	0.0200 (9)	-0.0028 (7)	-0.0058 (7)	0.0006 (6)
0.02505 (8)	0.01632 (8)	0.01784 (8)	-0.00466 (6)	-0.00495 (6)	0.00110 (6)
	0.0154 (10) 0.0205 (11) 0.0226 (13) 0.0260 (12) 0.0462 (15) 0.0454 (15) 0.0317 (13) 0.0435 (15) 0.057 (2) 0.068 (2) 0.0309 (12) 0.0332 (14) 0.0567 (18) 0.0273 (9) 0.02505 (8)	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

1.322 (3)	С9—Н9	0.9800
1.322 (3)	С9—Н8	0.9800
1.508 (3)	C10—H12	0.9800
1.383 (3)	C10—H10	0.9800
1.386 (3)	C10—H11	0.9800
1.386 (3)	C11—N2	1.467 (3)
0.9500	C11—C13	1.514 (4)
1.371 (4)	C11—C12	1.520 (3)
0.9500	C11—H13	1.0000
1.379 (4)	C12—H15	0.9800
0.9500	C12—H16	0.9800
1.389 (3)	C12—H14	0.9800
0.9500	C13—H19	0.9800
0.9500	C13—H18	0.9800
1.461 (3)	C13—H17	0.9800
1.502 (4)	N1—AG	2.0959 (16)
1.509 (4)	N2—AG ⁱ	2.0965 (16)
1.0000	AG-N2 ⁱ	2.0965 (16)
0.9800	AG—AG ⁱ	2.6604 (3)
122.53 (17)	C8—C10—H12	109.5
118.50 (18)	C8—C10—H10	109.5
118.92 (18)	H12—C10—H10	109.5
119.2 (2)	C8—C10—H11	109.5
119.38 (19)	H12—C10—H11	109.5
121.45 (19)	H10—C10—H11	109.5
	$\begin{array}{c} 1.322 \ (3) \\ 1.322 \ (3) \\ 1.322 \ (3) \\ 1.508 \ (3) \\ 1.383 \ (3) \\ 1.386 \ (3) \\ 1.386 \ (3) \\ 1.386 \ (3) \\ 0.9500 \\ 1.371 \ (4) \\ 0.9500 \\ 1.379 \ (4) \\ 0.9500 \\ 1.389 \ (3) \\ 0.9500 \\ 1.389 \ (3) \\ 0.9500 \\ 1.389 \ (3) \\ 0.9500 \\ 1.461 \ (3) \\ 1.502 \ (4) \\ 1.509 \ (4) \\ 1.0000 \\ 0.9800 \\ \end{array}$	$1.322 (3)$ $C9-H9$ $1.322 (3)$ $C9-H8$ $1.508 (3)$ $C10-H12$ $1.383 (3)$ $C10-H10$ $1.386 (3)$ $C10-H11$ $1.386 (3)$ $C10-H11$ $1.386 (3)$ $C11-H13$ $1.371 (4)$ $C11-C12$ 0.9500 $C11-H13$ $1.371 (4)$ $C12-H15$ 0.9500 $C11-H13$ $1.379 (4)$ $C12-H15$ 0.9500 $C13-H18$ $1.389 (3)$ $C12-H14$ 0.9500 $C13-H19$ 0.9500 $C13-H19$ 0.9500 $C13-H17$ $1.502 (4)$ $N1-AG$ $1.509 (4)$ $N2-AG^i$ 1.0000 $AG-AG^i$ $122.53 (17)$ $C8-C10-H12$ $118.92 (18)$ $H12-C10-H10$ $119.2 (2)$ $C8-C10-H11$ $119.38 (19)$ $H12-C10-H11$ $121.45 (19)$ $H10-C10-H11$

C2—C3—C4	120.0 (2)	N2-C11-C13	109.64 (19)
C2—C3—H1	120.0	N2-C11-C12	109.90 (19)
C4—C3—H1	120.0	C13—C11—C12	110.5 (2)
C5—C4—C3	120.9 (2)	N2—C11—H13	108.9
С5—С4—Н2	119.6	C13—C11—H13	108.9
С3—С4—Н2	119.6	С12—С11—Н13	108.9
C4—C5—C6	119.3 (2)	C11—C12—H15	109.5
С4—С5—Н3	120.4	C11—C12—H16	109.5
С6—С5—Н3	120.4	H15—C12—H16	109.5
C5—C6—C7	120.5 (2)	C11—C12—H14	109.5
С5—С6—Н4	119.8	H15—C12—H14	109.5
С7—С6—Н4	119.8	H16—C12—H14	109.5
C2—C7—C6	120.2 (2)	C11—C13—H19	109.5
С2—С7—Н5	119.9	C11—C13—H18	109.5
С6—С7—Н5	119.9	H19—C13—H18	109.5
N1—C8—C9	109.4 (2)	C11—C13—H17	109.5
N1-C8-C10	109.8 (2)	H19—C13—H17	109.5
C9—C8—C10	110.4 (2)	H18—C13—H17	109.5
N1—C8—H6	109.1	C1—N1—C8	121.76 (16)
С9—С8—Н6	109.1	C1—N1—AG	123.63 (13)
С10—С8—Н6	109.1	C8—N1—AG	114.54 (13)
С8—С9—Н7	109.5	C1—N2—C11	121.76 (17)
С8—С9—Н9	109.5	C1—N2—AG ⁱ	123.15 (13)
Н7—С9—Н9	109.5	C11—N2—AG ⁱ	115.04 (12)
С8—С9—Н8	109.5	N1—AG—N2 ⁱ	170.58 (7)
Н7—С9—Н8	109.5	N1—AG—AG ⁱ	85.12 (5)
Н9—С9—Н8	109.5	N2 ⁱ —AG—AG ⁱ	85.52 (5)
N1—C1—C2—C7	-87.4 (3)	N2—C1—N1—AG	-2.7 (3)
N2—C1—C2—C7	90.1 (3)	C2—C1—N1—AG	174.65 (14)
N1—C1—C2—C3	92.7 (3)	C9—C8—N1—C1	122.8 (2)
N2—C1—C2—C3	-89.8 (3)	C10—C8—N1—C1	-116.0 (3)
C7—C2—C3—C4	-0.2 (3)	C9—C8—N1—AG	-54.4 (2)
C1—C2—C3—C4	179.7 (2)	C10—C8—N1—AG	66.9 (3)
C2—C3—C4—C5	0.3 (4)	N1-C1-N2-C11	-176.00 (19)
C3—C4—C5—C6	0.0 (4)	C2-C1-N2-C11	6.6 (3)
C4—C5—C6—C7	-0.4 (4)	N1-C1-N2-AG ⁱ	1.4 (3)
C3—C2—C7—C6	-0.2 (3)	$C2$ — $C1$ — $N2$ — AG^{i}	-175.99 (14)
C1—C2—C7—C6	179.9 (2)	C13—C11—N2—C1	-137.0 (2)
C5—C6—C7—C2	0.5 (4)	C12—C11—N2—C1	101.3 (2)
N2-C1-N1-C8	-179.6 (2)	C13—C11—N2—AG ⁱ	45.4 (2)
C2-C1-N1-C8	-2.2 (3)	C12—C11—N2—AG ⁱ	-76.2 (2)

Symmetry code: (i) -x+2, -y+2, -z+1.

(compound_2) Bis(μ -N¹, N²-dicyclohexyl-3-cyclopropylpropynamidinato- $\kappa^2 N^1$: N²) disilver(I) bis(μ -N¹, N²dicyclohexyl-3-cyclopropylpropynamidinato- $\kappa^3 N^1$, N^2 : N^1) bis(tetrahydrofuran- κO) lithium(I) toluene monosolvate

 $k = -18 \rightarrow 18$

 $l = -19 \rightarrow 19$

Crystal data

$[Ag_{2}(C_{18}H_{27}N_{2})_{2}][Li_{2}(C_{18}H_{27}N_{2})_{2}(C_{4}H_{8}O)_{2}]\cdot C_{7}H_{8}$	Z = 1
$M_r = 1551.62$	F(000) = 826
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.233 {\rm ~Mg} {\rm ~m}^{-3}$
a = 10.5880 (3) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 14.5620 (4) Å	Cell parameters from 27393 reflections
c = 14.9830 (5) Å	$\theta = 2.1 - 29.2^{\circ}$
$\alpha = 99.871(2)^{\circ}$	$\mu = 0.52 \text{ mm}^{-1}$
$\beta = 102.825 \ (2)^{\circ}$	T = 133 K
$\gamma = 106.538 (2)^{\circ}$	Rod, colorless
V = 2090.17 (11) Å ³	$0.44 \times 0.29 \times 0.27 \text{ mm}$
Data collection	
Stoe IPDS 2T	8214 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.043$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 27.0^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
Detector resolution: 6.67 pixels mm ⁻¹	$h = -12 \rightarrow 13$

Detector resolution: 6.67 pixels mm⁻¹ area detector scans 22444 measured reflections 9099 independent reflections

Refinement

-j	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.028$	Hydrogen site location: inferred from
$wR(F^2) = 0.073$	neighbouring sites
S = 1.03	H-atom parameters constrained
9099 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0398P)^2 + 0.4823P]$
461 parameters	where $P = (F_o^2 + 2F_c^2)/3$
12 restraints	$(\Delta/\sigma)_{\rm max} = 0.003$
Primary atom site location: heavy-atom method	$\Delta \rho_{\rm max} = 0.40 \ {\rm e} \ {\rm \AA}^{-3}$
•	$\Delta \rho_{\rm min} = -0.61 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.72575 (17)	0.93982 (12)	0.41483 (12)	0.0218 (3)	
C2	0.57831 (19)	0.90959 (12)	0.37327 (13)	0.0246 (3)	
C3	0.45722 (19)	0.89050 (13)	0.34225 (14)	0.0288 (4)	
C4	0.3132 (2)	0.87385 (16)	0.30639 (16)	0.0372 (4)	
H1	0.250264	0.804282	0.293635	0.045*	
C5	0.2590 (3)	0.9540 (2)	0.33985 (19)	0.0530 (6)	
Н3	0.166275	0.933659	0.349156	0.064*	

H2	0.325410	1.015476	0.385331	0.064*
C6	0.2683 (3)	0.9347 (2)	0.24215 (18)	0.0517 (6)
H4	0.340640	0.984016	0.226610	0.062*
Н5	0.181473	0.902183	0.190427	0.062*
C7	0.68836 (18)	0.77293 (12)	0.43251 (13)	0.0250 (3)
H6	0.591076	0.771776	0.420229	0.030*
C8	0.6996 (2)	0.70587 (14)	0.34709 (15)	0.0364 (5)
H8	0.796825	0.710104	0.356146	0.044*
H7	0.670205	0.728808	0.289972	0.044*
C9	0.6106 (3)	0.59800 (16)	0.3322 (2)	0.0523 (7)
H9	0.512424	0.592466	0.315540	0.063*
H10	0.625175	0.555915	0.278802	0.063*
C10	0.6448(3)	0 56124 (16)	0.4195(2)	0.0543(7)
H12	0.739052	0.558114	0.431136	0.065*
H11	0 580377	0 493464	0 409075	0.065*
C11	0.6355(2)	0.62794 (16)	0.50555 (18)	0.002
H13	0.665684	0.604587	0.562243	0.052*
H14	0.538532	0.624002	0.497493	0.052*
C12	0.7243(2)	0.021002 0.73533(15)	0.52052 (16)	0.032
H16	0.7213(2)	0.777303	0.52652 (10)	0.043*
H15	0.822439	0.740615	0.536326	0.043*
C13	0.022(19)	1.09818(12)	0.330320 0.38343(12)	0.0228(3)
H17	0.651330	1.058023	0.30343 (12)	0.0228 (3)
C14	0.031330 0.6799(2)	1.030023 1 14824 (14)	0.327710 0.45820(14)	0.027
H18	0.758111	1.146566	0.514822	0.037*
H10	0.614428	1.100500	0.314822	0.037*
C15	0.014420 0.6084(2)	1.077199	0.477102(17)	0.037
H21	0.0004(2) 0.525174	1.21748 (10)	0.42102(17) 0.368054	0.0398 (3)
H20	0.529174	1.170210	0.300054	0.048*
C16	0.379014 0.7020(2)	1.231023	0.4/1001 0.38732(16)	0.048°
U10	0.7029 (2)	1.29458 (15)	0.38732 (10)	0.0400 (3)
H22	0.780227	1.339007	0.441950	0.048*
П23 С17	0.031093 0.7502(2)	1.334737 1.24632(14)	0.339347	0.048°
U17	0.7595 (2)	1.24032 (14)	0.31411(13) 0.207605	0.0330 (4)
H23	0.820/13	1.290302	0.297603	0.042*
П24 С18	0.063240	1.209012	0.253944 0.25122(14)	0.042°
	0.8288 (2)	1.17012(15) 1.142022	0.55155 (14)	0.0295 (4)
П27 Ц26	0.839313	1.145052	0.300877	0.035*
H20	0.911190	1.214/25	0.403125 0.06027 (12)	0.035°
C19 C20	0.940/1(19)	0.04290(12) 0.72125(12)	0.00927(13) 0.12212(12)	0.0234(4)
C20	0.92323 (19)	0.72135(13) 0.78702(13)	0.13212(13) 0.17000(12)	0.0261(4)
C21	0.90549 (19)	0.78792 (13)	0.17990 (13)	0.0255(4)
C22	0.88536 (19)	0.8/128(13)	0.23412 (13)	0.0259 (4)
H28	0.88/939	0.8/1143	0.301222	0.031^{*}
C23	0.7900 (2)	0.91816 (15)	0.18509 (15)	0.0342 (4)
H30	0.724110	0.889465	0.116586	0.041*
H29	0.734145	0.944081	0.220953	0.041*
C24	0.9408 (2)	0.97115 (14)	0.21517 (16)	0.0355 (4)
H31	0.978425	1.029887	0.269721	0.043*

H32	0.988391	0.975263	0.165338	0.043*
C25	1.03702 (19)	0.59030 (12)	0.20584 (12)	0.0248 (3)
H33	1.054854	0.660915	0.237426	0.030*
C26	0.9230 (2)	0.52439 (15)	0.23685 (15)	0.0338 (4)
H34	0.840624	0.544594	0.221742	0.041*
H35	0.897781	0.454947	0.200854	0.041*
C27	0.9664 (2)	0.53054 (16)	0.34234 (15)	0.0401 (5)
H36	0.983959	0.598669	0.378675	0.048*
H37	0.890966	0.485109	0.358858	0.048*
C28	1.0950 (3)	0.50317 (16)	0.36923 (15)	0.0405 (5)
H39	1.075296	0.433155	0.337186	0.049*
H38	1.123447	0.510441	0.438347	0.049*
C29	1.2107 (2)	0.56912 (18)	0.34099 (15)	0.0417 (5)
H41	1.291641	0.547196	0.355210	0.050*
H40	1.237522	0.637984	0.378925	0.050*
C30	1.1689 (2)	0.56665 (15)	0.23579 (14)	0.0324 (4)
H42	1.244177	0.615136	0.221918	0.039*
H43	1.156115	0.500118	0.198041	0.039*
C31	0.8585 (2)	0.70279 (15)	-0.06282 (14)	0.0359 (4)
H44	0.882137	0.765597	-0.013568	0.043*
C32	0.7040 (3)	0.6540(2)	-0.0967 (2)	0.0536 (6)
H45	0.669609	0.640626	-0.042284	0.064*
H46	0.680299	0.589873	-0.142688	0.064*
C33	0.6331 (4)	0.7193 (3)	-0.1434 (3)	0.0720 (9)
H48	0.532751	0.683588	-0.167797	0.086*
H47	0.648538	0.780594	-0.095703	0.086*
C34	0.6882 (4)	0.7455 (3)	-0.2231 (2)	0.0704 (9)
H50	0.661290	0.684754	-0.274381	0.084*
H49	0.646067	0.791608	-0.248707	0.084*
C35	0.8414 (3)	0.7924 (2)	-0.1931 (2)	0.0610 (7)
H51	0.867929	0.857776	-0.148375	0.073*
H52	0.873055	0.803077	-0.249146	0.073*
C36	0.9122 (3)	0.72721 (18)	-0.14558 (17)	0.0465 (5)
H54	0.895094	0.665048	-0.192628	0.056*
Н53	1.012784	0.762288	-0.122444	0.056*
C37	0.6472 (3)	0.4020 (2)	-0.0033 (3)	0.0705 (8)
H55	0.680375	0.468615	-0.014340	0.085*
H56	0.613828	0.407387	0.053486	0.085*
C38	0.5371 (4)	0.3329 (4)	-0.0867 (3)	0.0974 (13)
H58	0.445435	0.330165	-0.079680	0.117*
H57	0.546322	0.354115	-0.145022	0.117*
C39	0.5549 (4)	0.2359 (3)	-0.0907 (3)	0.1037 (14)
H60	0.505404	0.199991	-0.051531	0.124*
H59	0.522228	0.194648	-0.156541	0.124*
C40	0.7025 (4)	0.2623 (2)	-0.0526 (3)	0.0784 (10)
H62	0.723819	0.214845	-0.016809	0.094*
H61	0.746114	0.260588	-0.104635	0.094*
C41	0.5148 (4)	0.9502 (2)	-0.08088 (19)	0.0607 (8)

H65	0.523425	0.914834	-0.137403	0.073*	
C42A	0.6311 (4)	1.0072 (2)	-0.00946 (18)	0.0573 (7)	0.5
C42B	0.6311 (4)	1.0072 (2)	-0.00946 (18)	0.0573 (7)	0.5
H64	0.719917	1.012313	-0.016020	0.069*	0.5
C43	0.6154 (4)	1.0569 (2)	0.07242 (19)	0.0604 (7)	
H63	0.694287	1.096225	0.123303	0.072*	
C44	0.7893 (6)	1.0222 (4)	-0.0176 (4)	0.0552 (13)	0.5
H67	0.851023	1.031026	0.044882	0.066*	0.5
H68	0.821343	1.080825	-0.041261	0.066*	0.5
H66	0.788893	0.963722	-0.061378	0.066*	0.5
N1	0.77781 (15)	0.87526 (10)	0.44791 (10)	0.0232 (3)	
N2	0.80123 (15)	1.03151 (10)	0.41855 (10)	0.0228 (3)	
N3	0.99709 (17)	0.57779 (11)	0.10369 (10)	0.0262 (3)	
N4	0.9242 (2)	0.63837 (12)	-0.02199 (11)	0.0335 (4)	
AG	0.98689 (2)	0.91010 (2)	0.51539 (2)	0.02283 (5)	
LI	0.9428 (4)	0.4339 (2)	0.0324 (3)	0.0376 (8)	
0	0.75344 (18)	0.35921 (12)	0.00793 (13)	0.0502 (4)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0194 (8)	0.0237 (8)	0.0225 (8)	0.0091 (6)	0.0054 (6)	0.0037 (6)
C2	0.0249 (9)	0.0215 (8)	0.0282 (8)	0.0090 (7)	0.0071 (7)	0.0068 (7)
C3	0.0243 (9)	0.0273 (8)	0.0339 (9)	0.0084 (7)	0.0072 (7)	0.0078 (7)
C4	0.0201 (9)	0.0420 (11)	0.0444 (12)	0.0061 (8)	0.0043 (8)	0.0117 (9)
C5	0.0333 (12)	0.0762 (17)	0.0590 (15)	0.0316 (12)	0.0130 (11)	0.0194 (13)
C6	0.0328 (12)	0.0764 (17)	0.0522 (14)	0.0245 (12)	0.0060 (10)	0.0296 (13)
C7	0.0216 (8)	0.0224 (8)	0.0331 (9)	0.0071 (7)	0.0096 (7)	0.0103 (7)
C8	0.0399 (11)	0.0230 (9)	0.0437 (11)	0.0020 (8)	0.0210 (9)	0.0042 (8)
C9	0.0569 (15)	0.0252 (10)	0.0702 (17)	-0.0004 (10)	0.0374 (13)	-0.0006 (10)
C10	0.0546 (15)	0.0255 (10)	0.104 (2)	0.0185 (10)	0.0504 (15)	0.0257 (12)
C11	0.0429 (13)	0.0381 (11)	0.0662 (15)	0.0175 (10)	0.0275 (11)	0.0327 (11)
C12	0.0337 (11)	0.0366 (10)	0.0427 (11)	0.0111 (9)	0.0129 (9)	0.0206 (9)
C13	0.0212 (8)	0.0217 (8)	0.0249 (8)	0.0100 (7)	0.0025 (6)	0.0045 (6)
C14	0.0336 (10)	0.0322 (9)	0.0304 (9)	0.0182 (8)	0.0102 (8)	0.0066 (7)
C15	0.0431 (12)	0.0388 (11)	0.0472 (12)	0.0278 (10)	0.0158 (10)	0.0080 (9)
C16	0.0504 (13)	0.0281 (9)	0.0447 (12)	0.0238 (9)	0.0084 (10)	0.0066 (8)
C17	0.0446 (12)	0.0247 (9)	0.0381 (10)	0.0161 (8)	0.0089 (9)	0.0104 (8)
C18	0.0317 (10)	0.0237 (8)	0.0372 (10)	0.0131 (7)	0.0115 (8)	0.0106 (7)
C19	0.0282 (9)	0.0203 (8)	0.0275 (9)	0.0087 (7)	0.0095 (7)	0.0024 (7)
C20	0.0314 (10)	0.0227 (8)	0.0265 (8)	0.0105 (7)	0.0099 (7)	0.0074 (7)
C21	0.0274 (9)	0.0234 (8)	0.0273 (9)	0.0090 (7)	0.0096 (7)	0.0072 (7)
C22	0.0310 (9)	0.0234 (8)	0.0253 (8)	0.0112 (7)	0.0117 (7)	0.0031 (7)
C23	0.0333 (10)	0.0332 (10)	0.0404 (11)	0.0183 (8)	0.0125 (9)	0.0050 (8)
C24	0.0366 (11)	0.0224 (8)	0.0512 (12)	0.0110 (8)	0.0192 (9)	0.0080 (8)
C25	0.0300 (9)	0.0204 (8)	0.0236 (8)	0.0091 (7)	0.0085 (7)	0.0022 (6)
C26	0.0302 (10)	0.0368 (10)	0.0374 (10)	0.0110 (8)	0.0146 (8)	0.0107 (8)
C27	0.0507 (13)	0.0404 (11)	0.0387 (11)	0.0178 (10)	0.0248 (10)	0.0140 (9)

C28	0.0592 (14)	0.0392 (11)	0.0284 (10)	0.0218 (10)	0.0138 (10)	0.0110 (8)
C29	0.0391 (12)	0.0524 (13)	0.0327 (10)	0.0189 (10)	0.0044 (9)	0.0098 (9)
C30	0.0301 (10)	0.0401 (10)	0.0289 (9)	0.0143 (8)	0.0096 (8)	0.0078 (8)
C31	0.0546 (13)	0.0294 (9)	0.0297 (9)	0.0227 (9)	0.0119 (9)	0.0084 (8)
C32	0.0553 (16)	0.0652 (16)	0.0641 (16)	0.0338 (13)	0.0295 (13)	0.0382 (14)
C33	0.068 (2)	0.096 (2)	0.085 (2)	0.0532 (19)	0.0291 (17)	0.0537 (19)
C34	0.077 (2)	0.088 (2)	0.0618 (17)	0.0413 (19)	0.0155 (16)	0.0424 (17)
C35	0.084 (2)	0.0543 (15)	0.0544 (15)	0.0230 (15)	0.0245 (15)	0.0324 (13)
C36	0.0538 (15)	0.0424 (12)	0.0468 (13)	0.0146 (11)	0.0181 (11)	0.0183 (10)
C37	0.0471 (16)	0.0643 (18)	0.095 (2)	0.0133 (14)	0.0204 (16)	0.0159 (17)
C38	0.0507 (19)	0.154 (4)	0.078 (2)	0.026 (2)	0.0113 (17)	0.028 (2)
C39	0.059 (2)	0.096 (3)	0.104 (3)	-0.016 (2)	0.014 (2)	-0.021 (2)
C40	0.070 (2)	0.0409 (14)	0.098 (2)	-0.0083 (14)	0.0217 (18)	-0.0008 (15)
C41	0.100 (2)	0.0539 (15)	0.0398 (13)	0.0408 (16)	0.0238 (15)	0.0118 (11)
C42A	0.092 (2)	0.0514 (14)	0.0405 (13)	0.0388 (15)	0.0191 (14)	0.0177 (11)
C42B	0.092 (2)	0.0514 (14)	0.0405 (13)	0.0388 (15)	0.0191 (14)	0.0177 (11)
C43	0.090 (2)	0.0562 (15)	0.0389 (13)	0.0335 (15)	0.0151 (14)	0.0113 (11)
C44	0.059 (3)	0.068 (3)	0.045 (3)	0.026 (3)	0.017 (2)	0.021 (2)
N1	0.0202 (7)	0.0207 (7)	0.0289 (7)	0.0077 (6)	0.0051 (6)	0.0073 (6)
N2	0.0196 (7)	0.0214 (7)	0.0281 (7)	0.0098 (6)	0.0036 (6)	0.0070 (6)
N3	0.0341 (8)	0.0220 (7)	0.0235 (7)	0.0120 (6)	0.0087 (6)	0.0031 (6)
N4	0.0515 (11)	0.0293 (8)	0.0265 (8)	0.0233 (8)	0.0118 (7)	0.0069 (6)
AG	0.01875 (7)	0.02032 (7)	0.02912 (8)	0.00771 (5)	0.00391 (5)	0.00737 (5)
LI	0.042 (2)	0.0290 (16)	0.0412 (19)	0.0127 (15)	0.0145 (16)	0.0037 (14)
0	0.0445 (10)	0.0380 (8)	0.0559 (10)	0.0024 (7)	0.0143 (8)	0.0005 (7)

Geometric parameters (Å, °)

C1—N1	1.329 (2)	С26—Н35	0.9900
C1—N2	1.331 (2)	C27—C28	1.515 (3)
C1—C2	1.450 (2)	С27—Н36	0.9900
C2—C3	1.194 (3)	С27—Н37	0.9900
C3—C4	1.433 (3)	C28—C29	1.517 (3)
C4—C5	1.501 (3)	C28—H39	0.9900
C4—C6	1.505 (3)	C28—H38	0.9900
C4—H1	1.0000	C29—C30	1.531 (3)
C5—C6	1.473 (4)	C29—H41	0.9900
С5—Н3	0.9900	C29—H40	0.9900
С5—Н2	0.9900	C30—H42	0.9900
С6—Н4	0.9900	C30—H43	0.9900
С6—Н5	0.9900	C31—N4	1.455 (2)
C7—N1	1.467 (2)	C31—C32	1.512 (4)
С7—С8	1.520 (3)	C31—C36	1.529 (3)
C7—C12	1.526 (3)	C31—H44	1.0000
С7—Н6	1.0000	C32—C33	1.536 (3)
С8—С9	1.533 (3)	C32—H45	0.9900
С8—Н8	0.9900	C32—H46	0.9900
С8—Н7	0.9900	C33—C34	1.501 (4)

C9—C10	1.506 (4)	С33—Н48	0.9900
С9—Н9	0.9900	С33—Н47	0.9900
C9—H10	0.9900	C34—C35	1.497 (5)
C10—C11	1.516 (4)	C34—H50	0.9900
C10—H12	0.9900	С34—Н49	0.9900
C10—H11	0.9900	C35—C36	1.540 (4)
C11—C12	1.526 (3)	С35—Н51	0.9900
C11—H13	0.9900	С35—Н52	0.9900
C11—H14	0.9900	С36—Н54	0.9900
С12—Н16	0.9900	С36—Н53	0.9900
С12—Н15	0.9900	С37—О	1.426 (4)
C13—N2	1.472 (2)	C37—C38	1.479 (5)
C13—C18	1.521 (3)	С37—Н55	0.9900
C13—C14	1.521 (2)	С37—Н56	0.9900
С13—Н17	1.0000	C38—C39	1.470 (6)
C14—C15	1.530 (3)	С38—Н58	0.9900
C14—H18	0.9900	C38—H57	0.9900
С14—Н19	0.9900	C39—C40	1.450 (5)
C15—C16	1.513 (3)	C39—H60	0.9900
C15—H21	0.9900	C39—H59	0.9900
C15—H20	0.9900	C40—O	1.419 (3)
C16—C17	1.522 (3)	C40—H62	0.9900
C16—H22	0.9900	C40—H61	0.9900
C16—H23	0.9900	C41—C42B	1.371 (4)
C17—C18	1.529 (2)	C41—C42A	1.371 (4)
С17—Н25	0.9900	C41—C43 ⁱⁱ	1.388 (5)
С17—Н24	0.9900	С41—Н65	0.9500
C18—H27	0.9900	C42A—C43	1.383 (4)
C18—H26	0.9900	C42A—C44	1.661 (6)
C19—N4	1.321 (2)	C42B—C43	1.383 (4)
C19—N3	1.335 (2)	C42B—H64	0.9500
C19—C20	1.466 (2)	C43—C41 ⁱⁱ	1.388 (5)
C19—LI ⁱ	2.428 (4)	С43—Н63	0.9500
C20—C21	1.189 (3)	С44—Н67	0.9800
C21—C22	1.437 (2)	C44—H68	0.9800
C22—C23	1.503 (3)	C44—H66	0.9800
C22—C24	1.507 (3)	N1—AG	2.0908 (15)
С22—Н28	1.0000	N2—AG ⁱⁱⁱ	2.0916 (14)
C23—C24	1.486 (3)	N3—LI	2.033 (4)
С23—Н30	0.9900	N3—LI ⁱ	2.261 (4)
С23—Н29	0.9900	N4—LI ⁱ	2.001 (4)
C24—H31	0.9900	AG-N2 ⁱⁱⁱ	2.0917 (15)
С24—Н32	0.9900	AG—AG ⁱⁱⁱ	2.6838 (3)
C25—N3	1.459 (2)	LI—O	1.906 (4)
C25—C30	1.523 (3)	LI—N4 ⁱ	2.001 (4)
C25—C26	1.528 (3)	LI—N3 ⁱ	2.261 (4)
С25—Н33	1.0000	LI—C19 ⁱ	2.428 (4)
C26—C27	1.524 (3)	LI—LI ⁱ	2.440 (7)

C26—H34	0.9900		
N1—C1—N2	123.71 (15)	С26—С27—Н37	109.4
N1—C1—C2	118.48 (15)	Н36—С27—Н37	108.0
N2—C1—C2	117.81 (15)	C27—C28—C29	110.48 (17)
C3—C2—C1	175.75 (19)	С27—С28—Н39	109.6
C2—C3—C4	176.6 (2)	С29—С28—Н39	109.6
C3—C4—C5	118.31 (19)	С27—С28—Н38	109.6
C3—C4—C6	118.78 (19)	C29—C28—H38	109.6
C5—C4—C6	58.69 (17)	H39—C28—H38	108.1
C3—C4—H1	116.3	C28—C29—C30	111.95 (18)
C5—C4—H1	116.3	C28—C29—H41	109.2
C6—C4—H1	116.3	C30—C29—H41	109.2
C6-C5-C4	60.81 (16)	C28—C29—H40	109.2
С6—С5—Н3	117.7	C30—C29—H40	109.2
C4—C5—H3	117.7	H41—C29—H40	107.9
C6-C5-H2	117.7	$C_{25} = C_{30} = C_{29}$	112.68 (16)
C4-C5-H2	117.7	$C_{25} = C_{30} = H_{42}$	109.1
H3_C5_H2	114.8	$C_{29} = C_{30} = H_{42}$	109.1
C_{5}	60 50 (16)	$C_{25} = C_{30} = H_{43}$	109.1
C5-C6-H4	117 7	$C_{29} = C_{30} = H_{43}$	109.1
C_{4} C_{6} H_{4}	117.7	$H_{42} = C_{30} = H_{43}$	107.8
$C_{4} = C_{0} = H_{4}$	117.7	$M = C_{31} = C_{32}$	107.8
C4 C6 H5	117.7	N4 C31 C36	110.30(18) 100.30(18)
	11/./	$C_{22} = C_{21} = C_{26}$	109.39(10) 100.72(10)
$\mathbf{H}_{\mathbf{H}}^{\mathbf{H}} = \mathbf{C}_{\mathbf{H}}^{\mathbf{H}} \mathbf{H}_{\mathbf{H}}^{\mathbf{H}}$	114.0 110.02(14)	$C_{32} - C_{31} - C_{30}$	109.75 (19)
N1 = C7 = C12	110.92(14) 110.20(15)	$N4 = C_{31} = H_{44}$	108.9
N1 = C7 = C12	110.30(15) 110.42(16)	C_{32} C_{31} H_{44}	108.9
C8-C7-C12	110.42 (10)	Сзо—Сз1—н44	108.9
NI - C / - H6	108.4	$C_{31} = C_{32} = C_{33}$	111.7 (2)
C8 - C / - H6	108.4	C31—C32—H45	109.3
С12—С/—Н6	108.4	C33—C32—H45	109.3
C7—C8—C9	111.51 (17)	C31—C32—H46	109.3
C/C8H8	109.3	С33—С32—Н46	109.3
С9—С8—Н8	109.3	H45—C32—H46	107.9
С7—С8—Н7	109.3	C34—C33—C32	110.7 (2)
C9—C8—H7	109.3	С34—С33—Н48	109.5
H8—C8—H7	108.0	C32—C33—H48	109.5
C10—C9—C8	111.6 (2)	С34—С33—Н47	109.5
С10—С9—Н9	109.3	С32—С33—Н47	109.5
С8—С9—Н9	109.3	H48—C33—H47	108.1
C10—C9—H10	109.3	C35—C34—C33	112.6 (3)
C8—C9—H10	109.3	C35—C34—H50	109.1
H9—C9—H10	108.0	C33—C34—H50	109.1
C9—C10—C11	111.62 (18)	C35—C34—H49	109.1
C9—C10—H12	109.3	C33—C34—H49	109.1
C11—C10—H12	109.3	H50—C34—H49	107.8
С9—С10—Н11	109.3	C34—C35—C36	111.3 (2)
C11—C10—H11	109.3	С34—С35—Н51	109.4

H12—C10—H11	108.0	C36—C35—H51	109.4
C10-C11-C12	111.61 (18)	C34—C35—H52	109.4
C10-C11-H13	109.3	C36—C35—H52	109.4
С12—С11—Н13	109.3	H51—C35—H52	108.0
С10—С11—Н14	109.3	C31—C36—C35	111.1 (2)
C12—C11—H14	109.3	C31—C36—H54	109.4
H13—C11—H14	108.0	C35—C36—H54	109.4
C7—C12—C11	111.45 (18)	C31—C36—H53	109.4
C7-C12-H16	109 3	C35—C36—H53	109.4
$C_{11} - C_{12} - H_{16}$	109.3	Н54—С36—Н53	108.0
C7-C12-H15	109.3	0-C37-C38	100.0 104.5(3)
$C_{11} - C_{12} - H_{15}$	109.3	$0 - C_{37} - H_{55}$	110.8
H16-C12-H15	109.9	$C_{38} - C_{37} - H_{55}$	110.8
N_{2} C13 C18	110.41 (14)	0-C37-H56	110.8
$N_2 - C_{13} - C_{14}$	110.41(14) 111.62(14)	C_{38} C_{37} H56	110.8
C_{18} C_{13} C_{14}	109.78(15)	H55-C37-H56	108.9
N2 C13 H17	109.76 (15)	C_{39} C_{38} C_{37}	100.9
$N_2 - C_{13} - H_{17}$	108.3	$C_{39} = C_{38} = C_{37}$	105.0 (5)
$C_{10} - C_{13} - H_{17}$	108.3	$C_{39} = C_{30} = H_{30}$	110.0
C12 - C14 - C15	100.3	$C_{20} = C_{28} = H_{28}$	110.0
C_{13} C_{14} C_{13} C_{14} C_{13} C_{14} C_{13} C_{14} C_{14} C_{15} C_{16} C	111.17 (10)	$C_{27} = C_{28} = H_{57}$	110.6
C15 - C14 - H18	109.4	$C_{3}/-C_{3}0-H_{3}/$	110.0
C12 - C14 - H18	109.4	H38-C38-H37	108.8
C15_C14_H19	109.4	C40 - C39 - C38	102.6 (3)
	109.4	C40—C39—H60	111.3
	108.0	C38—C39—H60	111.3
C16—C15—C14	111.29 (18)	C40—C39—H59	111.3
C16—C15—H21	109.4	С38—С39—Н59	111.3
C14—C15—H21	109.4	Н60—С39—Н59	109.2
C16—C15—H20	109.4	O—C40—C39	108.0 (3)
C14—C15—H20	109.4	O—C40—H62	110.1
H21—C15—H20	108.0	С39—С40—Н62	110.1
C15—C16—C17	111.32 (17)	OC40H61	110.1
C15—C16—H22	109.4	С39—С40—Н61	110.1
C17—C16—H22	109.4	H62—C40—H61	108.4
C15—C16—H23	109.4	C42B—C41—C43 ⁱⁱ	121.4 (3)
C17—C16—H23	109.4	C42A—C41—C43 ⁱⁱ	121.4 (3)
H22—C16—H23	108.0	C42A—C41—H65	119.3
C16—C17—C18	111.25 (17)	C43 ⁱⁱ —C41—H65	119.3
C16—C17—H25	109.4	C41—C42A—C43	118.0 (3)
C18—C17—H25	109.4	C41—C42A—C44	123.4 (3)
С16—С17—Н24	109.4	C43—C42A—C44	118.5 (3)
C18—C17—H24	109.4	C41—C42B—C43	118.0 (3)
H25—C17—H24	108.0	C41—C42B—H64	121.0
C13—C18—C17	111.56 (16)	C43—C42B—H64	121.0
C13—C18—H27	109.3	C42B—C43—C41 ⁱⁱ	120.6 (3)
C17—C18—H27	109.3	C42A—C43—C41 ⁱⁱ	120.6 (3)
C13—C18—H26	109.3	C42A—C43—H63	119.7
C17—C18—H26	109.3	C41 ⁱⁱ —C43—H63	119.7

H27—C18—H26	108.0	C42A—C44—H67	109.5
N4—C19—N3	118.85 (16)	C42A—C44—H68	109.5
N4—C19—C20	120.31 (16)	H67—C44—H68	109.5
N3—C19—C20	120.77 (16)	C42A—C44—H66	109.5
N4-C19-LI ⁱ	55.46 (13)	Н67—С44—Н66	109.5
N3—C19—LI ⁱ	66.70 (13)	H68—C44—H66	109.5
C20-C19-LI ⁱ	158.53 (15)	C1—N1—C7	119.72 (14)
C21—C20—C19	176.60 (19)	C1—N1—AG	122.90 (11)
C20—C21—C22	177.03 (19)	C7—N1—AG	117.28 (11)
C21—C22—C23	118.85 (16)	C1—N2—C13	119.09 (14)
C21—C22—C24	118.48 (16)	C1—N2—AG ⁱⁱⁱ	122.58 (11)
C23—C22—C24	59.15 (13)	C13—N2—AG ⁱⁱⁱ	118.05 (11)
C21—C22—H28	116.1	C19—N3—C25	118.58 (14)
C23—C22—H28	116.1	C19—N3—LI	123.43 (16)
C24—C22—H28	116.1	C25—N3—LI	111.73 (15)
C24—C23—C22	60.54 (13)	C19—N3—LI ⁱ	80.46 (14)
С24—С23—Н30	117.7	C25—N3—LI ⁱ	148.51 (16)
С22—С23—Н30	117.7	LI—N3—LI ⁱ	69.00 (17)
С24—С23—Н29	117.7	C19—N4—C31	119.98 (16)
С22—С23—Н29	117.7	C19—N4—LI ⁱ	91.58 (16)
H30—C23—H29	114.8	C31—N4—LI ⁱ	144.63 (18)
C23—C24—C22	60.31 (13)	N1—AG—N2 ⁱⁱⁱ	170.66 (5)
C23—C24—H31	117.7	N1—AG—AG ⁱⁱⁱ	85.27 (4)
C22—C24—H31	117.7	N2 ⁱⁱⁱ —AG—AG ⁱⁱⁱ	85.45 (4)
C23—C24—H32	117.7	O—LI—N4 ⁱ	118.78 (19)
$C_{22} = C_{24} = H_{32}$	117.7	O—LI—N3	114.34 (19)
H31—C24—H32	114.9	N4 ⁱ —LI—N3	124.4 (2)
N3-C25-C30	109.55 (15)	$O - LI - N3^{i}$	110.21(18)
N3—C25—C26	111.24 (15)	$N4^{i}$ LI $N3^{i}$	64.58 (12)
C30—C25—C26	110.27 (15)	N3—LI—N3 ⁱ	111.00 (17)
N3—C25—H33	108.6	O—LI—C19 ⁱ	112.66 (17)
С30—С25—Н33	108.6	$N4^{i}$ —LI—C19 ⁱ	32.96 (8)
С26—С25—Н33	108.6	$N3-LI-C19^{i}$	129.55 (18)
C27—C26—C25	112.17 (17)	$N3^{i}$ —LI—C19 ⁱ	32.85 (7)
C27—C26—H34	109.2	O-LI-LI ⁱ	131.6 (3)
C25—C26—H34	109.2	$N4^{i}$ I I I I	94.2 (2)
C27—C26—H35	109.2	N3—LI—LI ⁱ	59.91 (14)
$C_{25} = C_{26} = H_{35}$	109.2	$N3^{i}$ _LI_LI^{i}	51.08 (14)
H34-C26-H35	107.9	$C19^{i}$ U U^{i}	75 64 (17)
C_{28} C_{27} C_{26}	110,99 (17)	C40-0-C37	109.2(2)
C28—C27—H36	109.4	C40-0-U	109.2(2) 118.0(2)
С26—С27—Н36	109.4	C_{37} $ C_{37}$ $ C_{$	123 21 (19)
$C_{28} = C_{27} = H_{37}$	109.1		125.21 (15)
020-027-1157	107.4		
C3—C4—C5—C6	108.2 (2)	C44—C42A—C43—C41 ⁱⁱ	177.3 (3)
C3—C4—C6—C5	-107.4 (2)	N2-C1-N1-C7	-174.14 (16)
N1—C7—C8—C9	177.97 (19)	C2-C1-N1-C7	6.6 (2)
C12—C7—C8—C9	55.4 (2)	N2—C1—N1—AG	2.2 (2)

C7—C8—C9—C10	-55.3 (3)	C2—C1—N1—AG	-177.07 (12)
C8—C9—C10—C11	54.4 (3)	C8—C7—N1—C1	96.9 (2)
C9-C10-C11-C12	-54.5 (3)	C12—C7—N1—C1	-140.43 (17)
N1-C7-C12-C11	-178.41 (16)	C8—C7—N1—AG	-79.60 (17)
C8—C7—C12—C11	-55.5 (2)	C12—C7—N1—AG	43.06 (18)
C10-C11-C12-C7	55.2 (3)	N1-C1-N2-C13	-177.37 (16)
N2-C13-C14-C15	179.88 (16)	C2-C1-N2-C13	1.9 (2)
C18—C13—C14—C15	57.1 (2)	N1—C1—N2—AG ⁱⁱⁱ	-3.6 (2)
C13—C14—C15—C16	-56.7 (2)	C2—C1—N2—AG ⁱⁱⁱ	175.62 (12)
C14—C15—C16—C17	54.8 (2)	C18—C13—N2—C1	-153.85 (16)
C15—C16—C17—C18	-54.2 (2)	C14—C13—N2—C1	83.74 (19)
N2-C13-C18-C17	179.80 (15)	C18—C13—N2—AG ⁱⁱⁱ	32.10 (18)
C14—C13—C18—C17	-56.7 (2)	C14—C13—N2—AG ⁱⁱⁱ	-90.30 (16)
C16—C17—C18—C13	55.6 (2)	N4—C19—N3—C25	172.85 (17)
C21—C22—C23—C24	-107.76 (19)	C20-C19-N3-C25	-4.1 (3)
C21—C22—C24—C23	108.4 (2)	LI ⁱ —C19—N3—C25	153.26 (19)
N3—C25—C26—C27	175.81 (16)	N4—C19—N3—LI	-37.3 (3)
C30—C25—C26—C27	54.1 (2)	C20-C19-N3-LI	145.79 (19)
C25—C26—C27—C28	-57.2 (2)	LI ⁱ —C19—N3—LI	-56.9 (2)
C26—C27—C28—C29	56.8 (2)	$N4$ — $C19$ — $N3$ — LI^{i}	19.59 (19)
C27—C28—C29—C30	-55.1 (2)	C20-C19-N3-LI ⁱ	-157.33 (19)
N3—C25—C30—C29	-174.89 (16)	C30-C25-N3-C19	-140.43 (17)
C26—C25—C30—C29	-52.1 (2)	C26—C25—N3—C19	97.41 (19)
C28—C29—C30—C25	53.6 (2)	C30—C25—N3—LI	66.4 (2)
N4—C31—C32—C33	-177.9 (2)	C26—C25—N3—LI	-55.8 (2)
C36—C31—C32—C33	-56.9 (3)	C30-C25-N3-LI ⁱ	-18.6 (3)
C31—C32—C33—C34	56.0 (4)	C26-C25-N3-LI ⁱ	-140.7 (2)
C32—C33—C34—C35	-54.5 (4)	N3—C19—N4—C31	174.79 (18)
C33—C34—C35—C36	54.4 (4)	C20-C19-N4-C31	-8.3 (3)
N4—C31—C36—C35	178.0 (2)	LI ⁱ —C19—N4—C31	-163.3 (2)
C32—C31—C36—C35	56.1 (3)	$N3$ — $C19$ — $N4$ — LI^i	-21.9 (2)
C34—C35—C36—C31	-55.0 (3)	C20-C19-N4-LI ⁱ	154.99 (18)
O—C37—C38—C39	26.4 (4)	C32-C31-N4-C19	-90.0 (2)
C37—C38—C39—C40	-32.0 (4)	C36-C31-N4-C19	148.8 (2)
С38—С39—С40—О	26.0 (4)	C32-C31-N4-LI ⁱ	119.8 (3)
C43 ⁱⁱ —C41—C42A—C43	0.8 (4)	C36-C31-N4-LI ⁱ	-1.3 (4)
C43 ⁱⁱ —C41—C42A—C44	-177.2 (3)	С39—С40—О—С37	-10.2 (4)
C43 ⁱⁱ —C41—C42B—C43	0.8 (4)	C39—C40—O—LI	-157.6 (3)
C41—C42B—C43—C41 ⁱⁱ	-0.8 (4)	C38—C37—O—C40	-10.2 (4)
C41—C42A—C43—C41 ⁱⁱ	-0.8 (4)	C38—C37—O—LI	135.2 (3)

Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+1, -y+2, -z; (iii) -x+2, -y+2, -z+1.