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The enteric nervous system (ENS) is important for the intestinal barrier to defend
and regulate inflammation in the intestine. The aim of this study was to investigate
the effect of pyrroloquinoline quinone (PQQ) on regulating neuropeptide secretion by
ENS neurons of rats challenged with lipopolysaccharide (LPS) to create enteritis. Thirty
Sprague Dawley rats were divided into five groups, namely, basal (CTRL), basal plus
LPS challenge (LPS), basal with 2.5 mg/kg b.w./day of PQQ plus challenge with LPS
(PQQ 2.5), basal with 5.0 mg/kg b.w./day PQQ plus challenge with LPS (PQQ 5), and
basal with 10.0 mg/kg b.w./day PQQ plus challenge with LPS (PQQ 10). After treatment
with basal diet or PQQ for 14 days, rats were challenged with LPS except for the CTRL
group. Rats were euthanized 6 h after the LPS challenge. Rats showed an increased
average daily gain in PQQ treatment groups (P < 0.05). Compared with the LPS group,
PQQ 5 and PQQ 10 rats showed increased villus height and villus height/crypt depth
of jejunum (P < 0.05). In PQQ treatment groups, concentrations of IL-1β and TNF-α in
serum and intestine of rats were decreased, and IL-10 concentration was increased in
serum compared with the LPS group (P < 0.05). Compared with the LPS group, the
concentration of neuropeptide Y (NPY), nerve growth factor (NGF), vasoactive intestinal
peptide (VIP), substance P (SP), calcitonin gene-related peptide (CGRP), and brain-
derived neurotropic factor (BDNF) in serum were decreased in PQQ treatment groups
(P < 0.05). Compared with the LPS group, ileal mRNA levels of BDNF, NPY, and NGF
were decreased in PQQ treatment groups (P < 0.05). Jejunal concentrations of SP,
CGRP, VIP, BDNF, NPY, and NGF were decreased in PQQ treatment groups compared
with the LPS group (P < 0.05). Compared with the LPS group, phosphor-protein
kinase B (p-Akt)/Akt levels in jejunum and colon were decreased in PQQ treatment
groups (P < 0.05). In conclusion, daily treatment with PQQ improved daily gain, jejunal
morphology, immune responses. PQQ-regulated enteric neurochemical plasticity of ENS
via the Akt signaling pathway of weaned rats suffering from enteritis.

Keywords: pyrroloquinoline quinone, enteric nervous system, neurochemical plasticity, Akt signaling pathway,
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INTRODUCTION

The intestine is the body organ with the largest membrane surface
area that serves to absorb nutrients and sense, and recognize
and defend against pathogens, antigens, toxins, and other
detrimental secretions. The intestine accomplishes these diverse
functions through coordinated effects of the enteroendocrine
system, the enteric nervous system (ENS), the gut immune
system, and the non-immune defense system of the intestine
(Ferraris et al., 1989; De Giorgio, 2006). Intestinal nerve
cells and glial cells in the ENS secrete neuropeptides and
immune factors to pass signals between the ENS and the
central nervous system (CNS). These signals influence mucosal
secretions and gastrointestinal peristalsis and affect rhythms
and hormone secretion in the CNS (Rao and Gershon, 2018;
Boesmans et al., 2019). The ENS plays an important role in
intestinal diseases, such as colitis, irritable bowel syndrome,
and inflammatory bowel disease (Lasrado et al., 2017; Resnikoff
et al., 2019; Jarret et al., 2020). The ENS, which includes
submucosal nerve plexus, myenteric nerve plexus, and glial
cells, usually is functional and structurally mature during the
early life of mammals (Montedonico et al., 2006; Parathan
et al., 2020). The capacity to regulate neuropeptides is called
neurochemical plasticity. Enteric neuroplasticity is an adaption
to intestinal contents and the intestinal microenvironment
and is pronounced during early development in mammals
(Moeser et al., 2017).

The phosphatidylinositol-3 kinase (PI3K)/protein kinase
B (Akt) signaling pathway regulates the activity ofglycogen
synthase kinase-3β (GSK-3β), Tau protein, and N-methyl-D-
aspartame receptor (NMDA), which promotes the development
of nerve cells and regeneration of synapses (Iqbal et al., 2016;
Majewska and Szeliga, 2017; Falcon et al., 2019). The PI3K/Akt
signaling pathway also plays an important regulatory role
in intestinal neurological diseases by reducing the oxidative
stress and apoptosis of nerve cells, improving the secretion of
neurotropic factors, regulating survival and differentiation of
nerve cells,and promoting the proliferation of intestinal nerve
cells and glial cells (Ichihara et al., 2004; Du et al., 2009;
Becker et al., 2013).

Pyrroloquinoline quinone (PQQ), a water-soluble quinone
compound, was discovered as a redox cofactor of methanol
dehydrogenase in pseudomonas TP1 and other Gram-negative
bacteria (Duine et al., 1979; Duine, 1991). We demonstrated
previously that dietary supplementation with PQQ could
regulate intestinal morphology, mucosal barrier function, colonic
microbiota, and antioxidant status to reduce diarrhea and
improve the growth performance of weaned pigs (Yin et al., 2019;
Huang et al., 2020, 2021; Ming et al., 2021). PQQ is a potent
neuroprotective nutrient in the CNS and peripheral nerves,
which can mitigate sciatic nerve injury, reduce neurotoxin-
induced neurotoxicity, and promote neuronal cell regeneration
(Liu et al., 2005; Hara et al., 2007; Shanan et al., 2019). PQQ
treatment can ameliorate signs of memory impairment in aging
mice and schizophrenic rats via reducing the expression of
phosphorylation Akt and maintaining the GSK-3β level in the
hippocampus (Zhou X. Q. et al., 2018; Zhou et al., 2020).

We hypothesized that PQQ treatment could influence the
ENS and regulate enteric neuroplasticity to improve intestinal
health. We tested this hypothesis in the enteritis rat model via
developed challenging rats with lipopolysaccharide (LPS). We
detected neuropeptides in serum and intestine and Akt signaling
pathway expression in the intestine to determine if PQQ could
regulate enteric neuroplasticity via the Akt signaling pathway.

MATERIALS AND METHODS

Animals and Experimental Treatment
All experimental protocols in this study were approved by the
Animal Subjects Committee of China Agricultural University
(Beijing, China) and carried out based on the National Research
Council’s Guide for the Care and Use of Laboratory Animals
(AW01211202-1-2). Sprague Dawley male rats (n = 30, 21 days
old) were purchased from SPF (Beijing) Biotechnology Co. Ltd.,
and were housed in a pathogen-free animal room with a 12/12 h
light-dark cycle at 23◦C. After 3 days of acclimatization, rats were
divided randomly into 5 groups (n = 6 per treatment group),
namely, (1) basal unchallenged (CTRL), (2) LPS challenged
(LPS), (3) 2.5 mg/kg b.w./day low dose of PQQ and challenged
with LPS (PQQ 2.5), (4) 5.0 mg/kg b.w./day medium dose of
PQQ and challenged with LPS (PQQ 5), and (5) 10.0 mg/kg
b.w./day high dose of PQQ and challenged with LPS (PQQ
10) (Lu et al., 2015). PQQ·Na2 (purity, ≥98%; Changmao
Biochemical Engineering Co. Ltd., Changzhou, China) dissolved
in physiological saline was administrated intragastrically for
14 days. All rats were weighed every day and had free access
to water and food. After the supplementation period, rats were
injected with LPS [4 mg/kg b.w., isolated from Escherichia
coli (serotype 055: B5) (Zani et al., 2008), purchased from
Sigma, United States] except rats in the CTRL group on day
15. All rats were euthanized by intraperitoneal injection with
pentobarbitone sodium (50 mg/kg b.w.) (Mohamed et al., 2020)
at 6 h after the LPS dose.

Sample Collection
After euthanasia, serum samples were collected from the
abdominal veins of rats and separated into serum and stored at
−20◦C for further analysis. Jejunal and colonic tissues (1 cm2)
were excised and stored in 4% paraformaldehyde solution (40%
formaldehyde solution dissolved in phosphate-buffered saline
(PBS)) for analysis of intestinal morphology. Notably, 2 cm
segments from the middle of the jejunum, ileum, and colon were
collected in freezing tubes which were frozen rapidly in liquid
nitrogen and stored at −80◦C for further analysis.

Jejunal Morphology
After fixation with 4% paraformaldehyde solution for 24 h, tissue
samples were dehydrated and embedded in paraffin. Jejunal
sections (5 µm) were stained with hematoxylin and eosin. Villus
height (VH), crypt depth (CD), and villus height/crypt depth
ratio (VCR) were viewed and evaluated using a microscope
(Eclipse CI, Nikon) and imaging software (DS-U3, Nikon). Data
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were collected from at least 10 well-oriented villi and crypts from
5 slides per sample.

Cytokines of Serum and Intestinal
Segments
Cytokines, including interleukin (IL)-1β, IL-6, IL-10, and tumor
necrosis factor (TNF)-α, were determined in serum, jejunum,
ileum, and colon using enzyme-linked immunoassay (ELISA)
kits (Beijing Kang Iia Hong Yuan Biological Technology Co.,
Ltd., Beijing, China) according to the manufacturer’s instructions
and quantified using a Multiskan Microplate Reader (Thermo
Fisher Scientific, United States). Absorbance for kits was all set
at 450 nm, and the minimal detections were 31.25 pg/ml for IL-
1β and IL-6, 15.63 pg/ml for IL-10, and 9.38 pg/ml for TNF-α.
The intra- and inter-assay coefficients of variation (CV) were
<10% for each assay.

Quantitative Real-Time Polymerase
Chain Reaction
Total RNA was extracted from the snap-frozen ileal tissue
using RNAiso Plus (9109, TaKaRa Bio, Inc., Japan)/chloroform
extraction. Complementary DNA (cDNA) was synthesized using
the PrimeScript RT Reagent Kit with gDNA Eraser (RR047A,
TaKaRa Bio, Inc., Japan). Quantitative real-time polymerase
chain reaction PCR (RT-PCR) was conducted using the Roche
Light Cycler R© System (Roche, South San Francisco, CA, Canada).
The primer sequences are shown in Supplementary Table 1.
Target genes were detected by normalizing with β-actin and
calculating using the 2−11CT method (Pfaffl et al., 2002).

Determination of the Concentration of
Neuropeptides
Neuropeptides including neuropeptide Y (NPY), nerve growth
factor (NGF), vasoactive intestinal peptide (VIP), substance
P (SP), calcitonin gene-related peptide (CGRP), and brain-
derived neurotropic factor (BDNF) were determined in serum
using assay kits according to the manufacturer’s instructions
(Supplementary Table 2). These same neuropeptides were
determined in the jejunum, ileum, and colon.

Immunohistochemistry
Fixed jejunum and colon tissues were embedded in
paraffin and cut into sections (5 µm) followed by
deparaffinization and rehydration. Tissue sections were placed
in ethylenediaminetetraacetic acid (EDTA) antigen retrieval
buffer (pH 8.0) to retrieve the antigen. Endogenous peroxidase
activity was blocked with 3% H2O2 under dark conditions at
room temperature and was then washed with PBS (PBS, pH
7.4). Bovine serum albumin (BSA, 5%) was added to tissues.
Primary antibodies (Supplementary Table 3) diluted in PBS
were incubated with tissue sections overnight at 4◦. Tissue
sections were covered with secondary antibodies for 50 min
at room temperature, and positive expression for protein gene
product 9.5 (PGP9.5), SP, CGRP, BDNF, NPY, and NGF was dyed
brown with diaminobenzidine (DAB). Hematoxylin was used
as a counterstain for nuclei dyed blue. Ganglia immunoreactive

for neuropeptides was calculated in percentage in the total
area of neurons.

Western Blot Assay
Jejunal and colonic tissues were ground in liquid nitrogen
and lysed using radioimmunoprecipitation assay (RIPA) buffer
with protease and phosphatase inhibitors. After sonication and
centrifugation, protein concentration in the supernatant was
quantified using a bicinchoninic acid (BCA) protein assay kit
(02912E, CWbiotech, Beijing, China). Supernatant with 30 µg
proteins from each sample was separated in sodium dodecyl
sulfate (SDS) polyacrylamide gels and then transferred to
polyvinylidene fluoride (PVDF) membranes (0.45 µm, Millipore,
United States). Membranes were blocked and incubated with
the primary antibodies of phosphatidylinositol 3-kinase (PI3K,
#4257, Cell Signaling Technology, Danvers, MA, United States),
protein kinase B (Akt, #9272, Cell Signaling Technology),
phosphor-Akt (p-Akt, #9271, Cell Signaling Technology), and
β-actin (#4970, Cell Signaling Technology) overnight at 4◦C.
The membranes were incubated with secondary antibodies (111-
035-003, Jackson, United States) for 1 h at room temperature
and reacted with electrochemiluminescence (ECL, WBKLS0500,
Millipore, United States). The intensity of protein bands was
analyzed using the ImageJ software.

Statistical Analysis
All data were analyzed with a one-way analysis of variance
(ANOVA) using SAS (version 9.2, United States). Differences
among mean values were evaluated using the Duncan’s multiple
range test. The individual rat was the experimental unit for
traits of interest. Values are expressed as means and considered
statistically different if P ≤ 0.05. Figures were created using
GraphPad Prism 9.

RESULTS

Average Daily Gain
Compared with CTRL and LPS groups, rats assigned to PQQ
5 and PQQ 10 groups expressed increased average daily gain
(ADG) (P < 0.05, Figure 1). Rats assigned to the PQQ 5 group
showed the greatest difference in ADG compared with both
CTRL and LPS groups.

Jejunal Morphology
Rats challenged with LPS had non-distinct jejunal villus
compared with the CTRL group (Figure 2). Rats in PQQ 2.5,
PQQ 5, and PQQ 10 groups exhibited more complete and taller
jejunal villus compared with the LPS group. Compared with the
CTRL group, LPS treatment decreased jejunal VH and VCR in
rats (P < 0.05, Table 1). Compared with the LPS group, PQQ
5 and PQQ 10 groups increased VH and VCR of the jejunum
(P < 0.05). Neither LPS nor PQQ treatments affected CD.

Cytokines in Serum and Intestine
Compared with the CTRL group, concentrations of IL-1β, IL-6,
and TNF-α increased, and IL-10 decreased in the serum of rats
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FIGURE 1 | Average daily gain of weaned rats (n = 6). (A) Body weight of rats was recorded with feeding time. (B) Average daily gain(ADG) of rats was evaluated by
body weight. CTRL, control treatment; lipopolysaccharide (LPS), control and LPS treatment; pyrroloquinoline quinone (PQQ) 2.5, intragastric administration with
2.5 mg/kg b.w./day PQQ·Na2 treatment; PQQ 5, intragastric administration with 5.0 mg/kg b.w./day PQQ·Na2treatment; PQQ 10, intragastric administration with
10.0 mg/kg b.w./day PQQ·Na2 treatment. *Means significant difference with the CTRL group (P ≤ 0.05); #means significant difference with the LPS group (P ≤ 0.05).

FIGURE 2 | Jejunal morphology by H and E stains. (A) Control treatment; (B) control and LPStreatment; (C) intragastric administration with 2.5 mg/kg b.w./day
PQQ·Na2 treatment; (D) intragastric administration with 5.0 mg/kg b.w./day PQQ·Na2 treatment; and (E) intragastric administration with 10.0 mg/kg b.w./day
PQQ·Na2 treatment. Scale bars in pictures are 200 µm.

TABLE 1 | Jejunal villous morphology of weaned rats (n = 6).1

Items Treatments

SEM P-values
CTRL LPS PQQ 2.5 PQQ 5 PQQ 10

VH, µm 434.20 373.44* 389.78 472.57# 436.88# 10.99 0.02

CD, µm 113.79 120.79 121.82 122.60 112.33 2.52 0.60

VCR 3.86 3.12* 3.23* 3.92# 3.92# 0.11 0.03

1CTRL, control treatment; LPS, control and LPS treatment; pyrroloquinoline quinone (PQQ) 2.5, intragastric administration with 2.5 mg/kg b.w./day PQQ·Na2 treatment;
PQQ 5, intragastric administration with 5.0 mg/kg b.w./day PQQ·Na2 treatment; PQQ 10, intragastric administration with 10.0 mg/kg b.w./day PQQ·Na2 treatment. VH,
villus height; CD, crypt depth; VCR, villus height/crypt depth. *Means significant difference with the CTRL group (P ≤ 0.05); #means significantdifference with the LPS
group (P ≤ 0.05).
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challenged with LPS (P < 0.05, Figure 3). Feeding PQQ at 2.5, 5.0,
and 10.0 mg/kg b.w. to rats decreased (P < 0.05) concentrations
of IL-1β and TNF-α, and increased concentration of IL-10 in
serum compared with the LPS group. With a similar pattern,
concentrations of IL-1β and TNF-α in jejunum, ileum, and colon
were increased (P < 0.05) in the LPS group compared with the
CTRL group. Concentrations of IL-1β and TNF-α in jejunum,
ileum, and colon of rats were decreased (P < 0.05)compared with
rats assigned to the LPS group.

Concentration of Neuropeptides in
Serum
Compared with the CTRL group, concentrations of NPY, NGF,
VIP, SP, and CGRP were increased (P < 0.05, Figure 4)
in the serum of rats in the LPS group. There were no
significant differences in BDNF between LPS and CTRL groups.
Concentrations of NPY, NGF, VIP, SP, CGRP, and BDNF were
decreased (P < 0.05) with PQQ intake compared with the LPS
group. Feeding PQQ at 5.0 mg/kg b.w. decreased concentrations
of NPY, NGF, VIP, and CGRP more than 2.5 or 10.0 mg/kg b.w.
when compared with the LPS group.

mRNA Abundance of Neuropeptides in
the Ileum
Compared with the CTRL group, mRNA concentrations for NPY
and NGF were increased (P < 0.05, Figure 5) in the LPS group.
Compared with the LPS group, mRNA concentrations for BDNF
and NGF were decreased (P < 0.05) in PQQ 2.5, and mRNA
concentration for NPY decreased (P < 0.05) in PQQ 5.

Concentration of Neuropeptides in
Jejunum, Ileum and Colon
Compared with the CTRL group, concentrations of all detected
neuropeptides were increased (P < 0.05, Table 2) in the jejunum
and ileum of rats in the LPS group. Compared with the LPS
group, concentrations of CGRP, VIP, NPY, and NGF were
decreased (P < 0.05) in PQQ-fed groups in the jejunum, and
SP and BDNF concentrations were decreased (P < 0.05) in
PQQ 5 and PQQ 10 groups. In the ileum, concentrations of all
neuropeptides measured were decreased (P < 0.05) in all PQQ-
fed groups. In the colon, VIP concentration was increased, and
BDNF concentration was decreased in the LPS group compared
with the CTRL group (P < 0.05). Compared with the LPS group,
colonic SP concentration was decreased (P < 0.05) in PQQ 10,
CGRP concentration was increased (P < 0.05) in PQQ 5, VIP
concentration was decreased (P < 0.05) in PQQ 2.5 and PQQ 5,
BDNF concentration was increased (P < 0.05) in PQQ 5, NPY
concentration was increased (P < 0.05) in PQQ 10, and NGF
concentration was increased in PQQ 5.

Immunostaining of Neuropeptides in
Jejunum and Colon
Compared with the CTRL group, the percentage of ganglia
immunoreactive for PGP9.5 in the jejunum was decreased
(P < 0.05, Table 3) in the LPS group and showed a lighter
PGP9.5-positive area dyed with brown (Figure 6). Compared

with the LPS group, the PGP9.5 immunoreactive percentage of
ganglia in the jejunum of rats was increased (P < 0.05, Table 3) in
the PQQ 5 group. Compared with the CTRL group, NGF-positive
surface area in the jejunum was increased (P < 0.05, Table 3) and
dyed darker (Figure 6) in the LPS group.

In the colon, SP-positive surface area increased (P < 0.05,
Table 3) in the LPS group compared with the CTRL group. PQQ
treatments decreased (P < 0.05, Table 3) SP-positive surface area
in the colon compared with the LPS group. Colonic CGRP, NPY,
and NGF were increased in the PQQ 5 group compared with the
LPS group (P < 0.05, Table 3) and dyed darker (Figure 7) in
the PQQ 5 group.

Activation of the Akt Pathway in Jejunum
and Colon
Compared with the CTRL group, p-Akt/Akt was increased in
LPS groups both in the jejunum and colon ofrats (P < 0.05,
Figures 8A,B). Compared with the LPS group, p-Akt/Akt was
decreased (P < 0.05, Figure 8A) in the jejunum of rats both
in PQQ 2.5 and PQQ 5 groups. Additionally, p-Akt/Akt was
decreased in the colon of rats in the PQQ 5 group compared with
the LPS group (P < 0.05, Figure 8B). The abundance of PI3K was
not affected by any treatments in both the jejunum and colon.

DISCUSSION

Pyrroloquinoline quinone is a natural antioxidant that has
been used in the treatment of osteoporosis, muscle atrophy,
radiation poisoning, and arthritis and promotes the growth of
the organisms by regulating oxidation, repairing DNA damage,
reducing apoptosis, and maintaining mitochondrial function
(Kasahara and Kato, 2003; Huang et al., 2017; Wu et al., 2017; Xu
et al., 2018; Geng et al., 2019; Jiang et al., 2019). We previously
demonstrated that dietary PQQ could increase ADG and gain
to feed ratio and reduce diarrhea incidence in weaned pigs (Yin
et al., 2019; Huang et al., 2021; Ming et al., 2021). In this study,
daily treatment with 5.0 mg/kg and 10.0 mg/kg PQQ increased
ADG of rats compared with rats not supplemented with PQQ.

We developed the enteritis model by challenging rats with
LPS and verified the existence of enteritis by evaluating jejunal
morphology and cytokines in serum and intestine. LPS is a
component of Gram-negative bacteria that can damage the
intestinal barrier cause immune dysfunction, initiate apoptosis of
intestine epithelial cells, and develop enteritis (Yoshioka et al.,
2009; Li et al., 2018; Dong et al., 2020). In this study, rats
challenged with LPS developed inflamed intestines as evidenced
by damaged jejunal morphology, increased concentrations of IL-
1β, IL-6, and TNF-α in serum and IL-1β and TNF-α in intestine,
and decreased IL-10 in serum. These observations confirmed that
rats challenged with LPS developed intestinal inflammation.

Intestinal morphology and immune function improved
with PQQ supplementation of LPS-challenged rats. Intestinal
damage reduces absorption and metabolism of nutrients and
compromises the integrity of the intestinal barrier (Baumgart
and Carding, 2007; Turner, 2009; Wang et al., 2015; Zhou
et al., 2018). Intestinal morphology can be improved in weaned
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TABLE 2 | Neuropeptide concentration in intestinal segments of weaned rats (n = 6).1

Items Treatments

SEM P-values
CTRL LPS PQQ 2.5 PQQ 5 PQQ 10

Jejunum

SP (pg/mg) 5.98 8.10* 7.30* 6.28# 5.95# 0.32 <0.01

CGRP (pg/mg) 8.53 11.02* 10.22*# 8.63# 8.68# 0.24 <0.01

VIP (pg/mg) 56.56 82.00* 53.60# 65.55# 46.89# 4.47 <0.01

BDNF (pg/mg) 9.84 14.80* 13.03* 10.61# 9.88# 0.92 0.01

NPY (ng/mg) 13.14 17.58* 10.96# 13.07# 10.32*# 0.77 <0.01

NGF (pg/mg) 6.15 9.77* 7.24*# 6.33# 6.05# 0.17 <0.01

Ileum

SP (pg/mg) 4.96 7.82* 5.03# 5.07# 5.35*# 0.10 <0.01

CGRP (pg/mg) 14.62 19.34* 15.63# 14.42# 15.87# 0.45 <0.01

VIP (pg/mg) 31.44 44.58* 27.72*# 32.09# 34.42*# 0.98 <0.01

BDNF (pg/mg) 27.69 42.70* 32.01*# 35.43*# 34.83*# 0.95 <0.01

NPY (ng/mg) 6.62 8.53* 6.01*# 6.42# 7.31*# 0.20 <0.01

NGF (pg/mg) 4.72 7.83* 5.00# 4.43# 5.99*# 0.19 <0.01

Colon

SP (pg/mg) 14.61 15.33 15.21 16.66 12.30*# 0.64 0.01

CGRP (pg/mg) 19.17 18.09 18.45 22.41*# 16.74 0.86 <0.01

VIP (pg/mg) 71.69 103.69* 87.62*# 72.60# 100.42* 4.43 <0.01

BDNF (pg/mg) 74.59 38.75* 39.55* 63.84# 50.57* 3.75 <0.01

NPY (ng/mg) 15.3 13.86 15.55 13.28* 20.73*# 0.68 <0.01

NGF (pg/mg) 12.98 11.85 11.11* 14.24# 11.88 0.68 0.03

1SP, substance P; CGRP, calcitonin gene-related peptide; VIP, vasoactive intestinal peptide; BDNF, brain-derived neurotropic factor; NPY, neuropeptide Y; NGF,
nerve growth factor. CTRL, control treatment; lipopolysaccharide (LPS), control and LPS treatment; PQQ 2.5, intragastric administration with 2.5 mg/kg b.w./day
PQQ·Na2 treatment; PQQ 5, intragastric administration with 5.0 mg/kg b.w./day PQQ·Na2 treatment; PQQ 10, intragastric administration with 10.0 mg/kg b.w./day
PQQ·Na2 treatment.
*Means significant difference with the CTRL group (P ≤ 0.05); #means significantdifference with the LPS group (P ≤ 0.05).

TABLE 3 | Percentage of ganglia immunoreactive for neuropeptides in the total area by immunohistochemical staining (n = 6, %).1

Items Treatments

SEM P-values
CTRL LPS PQQ 2.5 PQQ 5

Jejunum

PGP9.5 16.88 6.70* 10.79 16.80# 1.47 0.03

SP 0.30 0.43 0.29 0.26 0.03 0.26

CGRP 0.10 0.20 0.09 0.19 0.02 0.25

BDNF 0.49 0.37 0.38 0.32 0.03 0.23

NPY 0.30 0.45 0.59 0.28 0.06 0.26

NGF 2.83 4.11* 4.41* 4.00* 0.19 0.01

Colon

PGP9.5 20.06 16.42 16.38 24.77 2.07 0.46

SP 0.06 0.14* 0.04# 0.07# 0.01 0.00

CGRP 0.09 0.08 0.10 0.18# 0.02 0.23

BDNF 0.77 0.40 0.42 0.52 0.08 0.42

NPY 0.44 0.36 0.28 0.61# 0.05 0.05

NGF 3.45 2.48 3.16 5.19# 0.41 0.13

1PGP9.5, protein gene product 9.5; CGRP, calcitonin gene-related peptide; NGF, nerve growth factor. CTRL, control treatment; LPS, control and LPS treatment; PQQ
2.5, intragastric administration with 2.5 mg/kg b.w./day PQQ·Na2 treatment; PQQ 5, intragastric administration with 5.0 mg/kg b.w./day PQQ·Na2 treatment; PQQ 10,
intragastric administration with 10.0 mg/kg b.w./day PQQ·Na2 treatment.
*Means significant difference with the CTRL group (P ≤ 0.05); #means significantdifference with the LPS group (P ≤ 0.05).
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FIGURE 3 | Cytokine level in serum and intestinal segments of weaned rats. (A) IL-1β level in serum (n = 6); (B) IL-6 level in serum (n = 6); (C) IL-10 level in serum
(n = 5); (D) TNF-α level in serum (n = 6); (E) IL-1β level in jejunum, ileum and colon (n = 6); and (F) TNF-α level in jejunum, ileum and colon (n = 6). CTRL, control
treatment; LPS, control and LPS treatment; PQQ 2.5, intragastric administration with 2.5 mg/kg b.w./day PQQ·Na2 treatment; PQQ 5, intragastric administration
with 5.0 mg/kg b.w./day PQQ·Na2 treatment; PQQ 10, intragastric administration with 10.0 mg/kg b.w./day PQQ·Na2 treatment. *Means significant difference with
the CTRL group (P ≤ 0.05); #means significant difference with the LPS group (P ≤ 0.05).

rats when they were supplemented with PQQ (Zhang et al.,
2019). Our previous study showed that dietary supplementation
with PQQ can increase intestinal VH and VCR in weaned
pigs (Yin et al., 2019). In this study, PQQ treatment increased
jejunal VH and VCR compared with rats challenged with LPS.
PQQ has anti-inflammatory effects and can reduce arthritis by
inhibiting the production of pro-inflammatory cytokines such
as TNF-α and IL-6 (Harris et al., 2013; Liu et al., 2016). In our
previous study, PQQ supplementation reduced gut inflammation
which improved intestinal health and growth of weaned pigs
(Yin et al., 2019; Huang et al., 2020). In this study, PQQ
supplementation decreased concentrations of pro-inflammatory
cytokines in serum and intestine and increased concentrations
of the anti-inflammatory cytokine and IL-10 in serum, which
confirmed that PQQ regulates immune responses.

Pyrroloquinoline quinone can regulate enteric nervous
damage induced by LPS challenge. The ENS regulates intestinal
secretions, peristalsis, and immunity through endocrine
substances and neuropeptides secreted by myenteric neurons,
submucosal neurons, and glial cells (Rao and Gershon, 2018;
Boesmans et al., 2019). Normally, the neuropeptides are

divided into inhibitory neurotransmitters and excitatory
neurotransmitters to control intestinal relaxation and
contraction, respectively (Rao and Gershon, 2018). When the
intestine suffers pressure, mucosal damage, and inflammation,
the ENS can release neuropeptides to regulate intestinal
peristaltic and immune factors (Jakob et al., 2020). PGP 9.5
is a neuroendocrine marker and is reduced with intestinal
inflammation and damage (Resnikoff et al., 2019; Heymans et al.,
2020). In this study, the immunoreactive percentage of PGP9.5
in the jejunum was decreased by LPS treatment and increased
by PQQ treatment, suggesting that PQQ reduced the damage of
jejunal neurons caused by LPS.

Enteric neurochemical plasticity was regulated with
PQQ treatment by regulating immunoreactive neurons and
concentrations of neuropeptides. Neurochemical plasticity
is the variable or modifiable changes of the nervous system
elicited by adaptation to the environment. During the early
development of rats, the ENS matures gradually and has the
strongest neurochemical plasticity (Rza̧p et al., 2020). As
the first isolated neuropeptide and known as the prototypic
tachykinin (TK), SP stimulates systemic pain and vasodilation,
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FIGURE 4 | Ileal neuropeptide mRNA expression levels of weaned rats (n = 6). SP, substance P; CGRP, calcitonin gene-related peptide; BDNF, brain-derived
neurotropic factor; NPY, neuropeptide Y; NGF, nerve growth factor. CTRL, control treatment; LPS, control and LPS treatment; PQQ 2.5, intragastric administration
with 2.5 mg/kg b.w./day PQQ·Na2 treatment; PQQ 5, intragastric administration with 5.0 mg/kg b.w./day PQQ·Na2 treatment; PQQ 10, intragastric administration
with 10.0 mg/kg b.w./day PQQ·Na2 treatment. *Means significant difference with the CTRL group (P ≤ 0.05); #means significant difference with the LPS group
(P ≤ 0.05).

FIGURE 5 | Neuropeptide levels in serum of weaned rats. NPY, neuropeptide Y (n = 6); NGF, nerve growth factor (n = 5); VIP, vasoactive intestinal peptide (n = 6); SP,
substance P (n = 5); CGRP, calcitonin gene-related peptide (n = 5); BDNF, brain-derived neurotropic factor (n = 5). CTRL, control treatment; LPS, control and LPS
treatment; PQQ 2.5, intragastric administration with 2.5 mg/kg b.w./day PQQ·Na2 treatment; PQQ 5, intragastric administration with 5.0 mg/kg b.w./day PQQ·Na2

treatment; PQQ 10, intragastric administration with 10.0 mg/kg b.w./day PQQ·Na2 treatment. *Means significant difference with the CTRL group (P ≤ 0.05); #means
significant difference with the LPS group (P ≤ 0.05).

regulates immunity, promotes contraction as an excitatory
neurotransmitter, and inhibits the secretion of digestive juices
in the intestine (Euler and Gaddum, 1931; Holzer, 1998; Engel
et al., 2012; Nässel et al., 2019). The concentration of SP is
enhanced in the blood of rats suffering from colitis (Holzer,
1998). As a systemic vasodilator, CGRP simulates pain and
regulates intestinal immunity similar to SP (Holzer, 1998; Engel
et al., 2012; Lai et al., 2020). Sensory neurons in the gut of
mice release CGRP to defend against Salmonella infection, and
neurogenic inflammation challenged with LPS can promote

CGRP release via activation of Toll-like receptor 4 (TLR4) in
sensory neurons (Meseguer et al., 2014; Lai et al., 2020). As
an inhibitory neurotransmitter and neuroprotective agent in
the intestine, VIP is also an immunomodulator (Gonzalez-Rey
and Delgado, 2005; Arciszewski et al., 2008). Rat myenteric
neurons challenged with LPS increase the expression of VIP
(Arciszewski et al., 2008). Except for promoting differentiation,
development, and survival of neurons, BDNF regulates the
sensitivity of the colon and rectum to constipation (Delafoy
et al., 2006). It is synthesized by sensory neurons to mediate

Frontiers in Neuroscience | www.frontiersin.org 8 May 2022 | Volume 16 | Article 878541

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-878541 May 3, 2022 Time: 10:33 # 9

Shi et al. PQQ Regulated Enteric Neurochemical Plasticity

FIGURE 6 | Immunohistochemical staining of jejunal neurons (n = 6). PGP9.5, protein gene product 9.5; SP, substance P; CGRP, calcitonin gene-related peptide;
BDNF, brain-derived neurotropic factor; NPY, neuropeptide Y; NGF, nerve growth factor. CTRL, control treatment; LPS, control and LPS treatment; PQQ 2.5,
intragastric administration with 2.5 mg/kg b.w./day PQQ·Na2 treatment; PQQ 5, intragastric administration with 5.0 mg/kg b.w./day PQQ·Na2 treatment; PQQ 10,
intragastric administration with 10.0 mg/kg b.w./day PQQ·Na2 treatment. Scale bar = 100 µm.

inflammatory pain and regulate the sensitivity of visceral
afferents in rats suffering from colitis (Matayoshi et al., 2005;
Qiao et al., 2008). With systemic stress, NPY is released,
regulates endocrine, behavior, stress, anxiety, appetite, and
circadian rhythms, and functions in defecation and food intake
(Adrian et al., 1983; Zhou et al., 2008). The level of NPY is
increased in the hypothalamus and serum of mice suffering
from colitis (Hassan et al., 2014; Reichmann et al., 2015).
NGF is a nutrient protein for nerve cells and promotes the
repair of damaged nerve fibers (Bilderback et al., 1999). At
the site of inflammation, NGF concentration is increased, and
cytokines promote the synthesis of NGF by neurons and other
cells such as epithelial and endothelial cells (März et al., 1999;
Minnone et al., 2017). In this study, concentrations of these

neuropeptides were increased in serum and small intestine
of rats in the LPS group. The increased levels were reduced
with PQQ treatment. The optional PQQ dose approved to be
5.0 mg/kg b.w. The concentrations of IL-1β and TNF-α display a
similar pattern to neuropeptides, suggesting that neuropeptides
regulated immune factors concentrations. In the colon, SP and
VIP concentrations showed the same trends as observed in the
jejunum. This might be due to the main site of inflammation
challenged with LPS. Additionally, P and VIP play the main role
of immunomodulators in the nervous system. Treatments with
PQQ increased concentrations of BDNF, NPY, and NGF in the
colon which might be related to their neurotropic effects and
the damage caused by the LPS challenge. These neuropeptides
function in stress and neurotropic. When the intestine is
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FIGURE 7 | Immunohistochemical staining of colonic neurons (n = 6). PGP9.5, protein gene product 9.5; SP, substance P; CGRP, calcitonin gene-related peptide;
BDNF, brain-derived neurotropic factor; NPY, neuropeptide Y; NGF, nerve growth factor. CTRL, control treatment; LPS, control and LPS treatment; PQQ 2.5,
intragastric administration with 2.5 mg/kg b.w./day PQQ·Na2 treatment; PQQ 5, intragastric administration with 5.0 mg/kg b.w./day PQQ·Na2 treatment; PQQ 10,
intragastric administration with 10.0 mg/kg b.w./day PQQ·Na2 treatment. Scale bar = 100 µm.

damaged, the neuropeptides secreted by the ENS aim to promote
neuronal survival and maintain normal functions (Holzer, 1998;
Arciszewski et al., 2008; Qiao et al., 2008). We deduced that
PQQ played a different role in different pathological states,
and we would investigate further. In conclusion, the results
reported in this study suggest that PQQ influenced the release

of neuropeptides which regulated the small intestine. We
conclude that PQQ regulated enteric neurochemical plasticity
of SP-, CGRP-, VIP-, BDNF-, NPY-, and NGF-immunoreactive
neurons of weaned rats.

Expression of p-Akt decreased in jejunum and colon with
PQQ supplementation. Akt can be phosphorylated by PI3K.
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FIGURE 8 | Abundance of the Akt pathway in jejunal and colonic tissues of weaned rats (n = 6). (A) p-Akt, Akt, and PI3K abundances to β-actin in jejunum; (B)
p-Akt, Akt, andPI3K abundances to β-actin in the colon. PI3K, phosphatidylinositol-3 kinase; Akt, protein kinase B; CTRL, control treatment; LPS, control and LPS
treatment; PQQ 2.5, intragastric administration with 2.5 mg/kg b.w./day PQQ·Na2 treatment; PQQ 5, intragastric administration with 5.0 mg/kg b.w./day PQQ·Na2

treatment; PQQ 10, intragastric administration with 10.0 mg/kg b.w./day PQQ·Na2 treatment. *Means significant difference with the CTRL group (P ≤ 0.05); #means
significant difference with the LPS group (P ≤ 0.05).

Activated Akt can reduce and improve the activity of glycogen
synthase kinase-3β (GSK-3β) by phosphorylation of Ser9 and
Tyr216 sites, respectively (Majewska and Szeliga, 2017). GSK-
3β is associated with cell survival and apoptosis, which can
promote peripheral nerve regeneration, improve regrowth of
synapses after peripheral nerve damage, and play a role in
neurodegenerative diseases (Kitagishi et al., 2014; Huang et al.,
2017). Activated GSK-3β can induce Tau perphosphate. Tau
protein, a microtube-related protein, mainly acts on the far end
of the axon, participates in axon transport, and interacts with
the microtube protein, Tubulin, to stabilize the microtube and
regulate NMDA receptor signaling pathways (Goedert et al.,
1996; Iqbal et al., 2016; Falcon et al., 2019). By regulating GSK-
3β and Tau protein, the PI3K/Akt signaling pathway affects a
variety of CNS diseases, such as Alzheimer’s disease, Parkinson’s
disease, and Huntington’s disease (Kitagishi et al., 2014; Rai
et al., 2019). PQQ inhibits apoptosis in the rat hippocampus
by regulating the Akt/GSK-3β pathway (Zhou et al., 2020). In
addition, PQQ can regulate memory via maintaining activation
of GSK-3β while reducing the expression of p-AKT (Zhou
X. Q. et al., 2018). In this study, PQQ reduced the magnitude
of increased p-Akt in jejunum and colon of rats caused by
LPS treatment which suggests that PQQ might regulate the
secretory functions and structure of the ENS via the Akt
signaling pathway.

In conclusion, based on ADG, jejunal morphology, immune
responses, and enteric neuropeptide expression, we conclude that
the intestinal health of weaned rats was damaged by the LPS
challenge. Dietary PQQ supplementation reduced inflammatory
injury and regulated neurochemical plasticity via the Akt
signaling pathway in the intestine of rats suffering from enteritis.
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