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As a co-transcriptional process, RNA processing, including alternative splicing and
alternative polyadenylation, is crucial for the generation of multiple mRNA isoforms.
RNA processing mechanisms are widespread across all higher eukaryotes and
play critical roles in cell differentiation, organ development and disease response.
Recently, significant progresses have been made in understanding the mechanism
of RNA processing. RNA processing is regulated by trans-acting factors such as
splicing factors, RNA-binding proteins and cis-sequences in pre-mRNA, and increasing
evidence suggests that epigenetic mechanisms, which are important for the dynamic
regulation and state of specific chromatic regions, are also involved in co-transcriptional
RNA processing. In contrast, recent studies also suggest that alternative RNA
processing also has a feedback regulation on epigenetic mechanisms. In this review,
we discuss recent studies and summarize the current knowledge on the epigenetic
regulation of alternative RNA processing. In addition, a feedback regulation of RNA
processing on epigenetic regulators is also discussed.

Keywords: RNA processing, alternative splicing, alternative polyadenylation, epigenetics, DNA methylation,
histone modifications

INTRODUCTION

Messenger RNA production is a fantastically complex process in eukaryotes, including
transcription of mRNA precursors followed by capping, splicing, and polyadenylation. Alternative
RNA processing, including splicing and polyadenylation (AS/APA), leads to the formation of
distinct mRNA isoforms and explains how massive proteomic complexity can be accomplished with
the relatively few genes in higher eukaryotes (Elkon et al., 2013; Tian and Manley, 2016). AS/APA
are mechanisms widespread across all eukaryotic species, from yeast to humans and plants. Recent
advances based on a vast amount of high-throughput sequencing data indicate that nearly 95% of
multi-exon mammalian genes undergo alternative splicing (Pan et al., 2008; Barash et al., 2010)
and more than 70% of mammalian genes express APA isoforms (Derti et al., 2012; Hoque et al.,
2013). AS/APA have gained renewed and expanded consideration as crucial regulators of gene
expression and contribute to development and cellular differentiation and proliferation, neuron
activation and other biological processes (Hong et al., 2018; Xu and Zhang, 2018; Fan et al., 2018;
Yoshimi et al., 2019).
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Traditionally, alternative RNA processing has been thought
to be predominantly controlled by both cis-regulatory sequences
and trans-acting factors. In AS regulation, cis-regulatory
sequences include splicing enhancers and silencers, typically 10 nt
in length, the impact of which depends on their location and their
preferential splice sites (Cáceres and Kornblihtt, 2002; Cooper
et al., 2009). Trans-acting factors activate, whereas other factors
inhibit, the use of splice sites, by binding to splicing enhancers
and silencers (Jelen et al., 2007; Han et al., 2010). Similar to
AS, the combined effects of multiple trans-acting factors and cis
elements clearly determine the likelihood of diverse poly(A) site
usage (Movassat et al., 2016; Tian and Manley, 2016).

Despite the wide acceptance that these cis-regulatory
sequences and trans-acting factors regulate alternative RNA
processing, AS and APA are more complicated processes in
co-transcriptional events than originally anticipated. Here, we
review the implications of the recently exposed roles of epigenetic
mechanisms, such as DNA methylation, histone modifications,
histone variants, and some non-coding RNA (ncRNA) in
alternative RNA processing regulation. A feedback of alternative
RNA processing on epigenetic regulation was also discussed.

CHROMATIN-BASED REGULATION OF
ALTERNATIVE RNA PROCESSING

DNA Methylation and Alternative RNA
Processing
DNA methylation, resulting in 5’ methylation of cytosine (5mC),
is a conserved and heritable DNA modification that affects gene
expression in a genome-wide manner (Li and Zhang, 2014). The
impact of DNA methylation on gene expression varies depending
on its genomic contexts. The role of promoter DNA methylation
in gene expression has been well investigated, which is widely
believed to cause transcriptional inhibition of downstream genes
(Law and Jacobsen, 2010). Interestingly, recent studies in model
plant Arabidopsis revealed that two SU(VAR)3–9 homologs,
SUVH1 and SUVH3, bind to methylated DNA and recruit the
DNAJ proteins to enhance proximal gene expression, thereby
counteracting the repressive effects of transposon insertion
near genes (Harris et al., 2018; Xiao et al., 2019; Zhao et al.,
2019). Compared to DNA methylation in promoter regions, the
function of genic DNA methylation remains elusive (Ball et al.,
2009). During the last decade, several studies indicate that genic
DNA methylation has a positive effect on the expression of
associated genes and prevents spurious transcription initiation,
and it is present within a number of cancer-related genes and has
been regarded as a hallmark of human cancer (Baylin and Jones,
2011; Yang et al., 2014; Neri et al., 2017).

Recent studies reveal a strong correlation between DNA
methylation and alternative splicing. Yang et al. (2014)
showed that gene body DNA demethylation mediated by
DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine results
in reduced efficiencies of transcription elongation or splicing. In
human cells, Shukla et al. (2011) reported that a DNA-binding
protein, called CCCTC-binding factor (CTCF), can promote

inclusion of weak upstream exons by mediating local RNA
polymerase II pausing. In this case, DNA methylation inhibits
CTCF binding to CD45 exon 5, which enables Pol II to transcribe
more rapidly, giving rise to an exon 5 exclusion (Ong and Corces,
2014). More recently, Nanavaty et al. (2020) further revealed
that CTCF is a bifunctional regulator which influences both
alternative splicing and alternative polyadenylation. Removal
of DNA methylation enables CTCF binding and recruitment
of the cohesin complex, which in turn form chromatin loops
to promote proximal polyadenylation site usage. These works
clearly demonstrate that DNA methylation has an important
participation in RNA processing regulation. While, limited
information is currently available regarding how DNA binding
proteins disturb the elongation of Pol II. It reminded us that
there maybe are other factors influencing Pol II elongation in
CTCF-mediated AS regulation, like the cohesin complex.

Unlike CTCF protein which binds to unmethylated DNA, a
growing number of studies have shown that the methyl cytosine-
guanine dinucleotide (CpG) binding protein 2 (MeCP2) binds
to methylated regions to influence AS. MeCP2 is the earliest
reported multifunctional protein that contains both methyl-
CpG-binding domains and transcriptional repressor domains
(Nan et al., 1997). Acting as a chromatin adaptor, MeCP2 is
attracted to 5mC on alternative exons, triggering its interaction
with histone deacetylases (HDACs), which modulate alternative
splicing (Maunakea et al., 2013). As we delve deeper into
the function of MeCP2, it is becoming clear that MeCP2
recruiting splicing factors to regulate mRNA splicing is also a
nearly ubiquitous mechanism in animals (Cheng et al., 2017;
Wong et al., 2017).

In plants, the available information regarding whether
gene body DNA methylation affects AS and the extent of
this mediation is currently limited. The first study of DNA
methylation-related functions in splicing was reported in
maize (Regulski et al., 2013). More recently, the cytosine
methyltransferase OsMET1 was found to affect global AS events
in rice, in which a total of 6319 more events were identified
with the met1 mutant compared with those associated with the
wild-type strain (Wang et al., 2016). However, deeper research
combining DNA methylation and AS/APA in plant is lacking.
Whether it has the similar regulatory mechanism with mammals
needs to be further elucidated.

Histone Modification-Mediated
Regulation of Alternative RNA
Processing
Chromatin structure is dominated by nucleosome density
and positioning, as well as by histone modifications and
DNA methylation (Duan et al., 2018). In contrast to DNA
methylation, more than 50 diverse modifications have been
identified on histone tails. Different modifications are linked
with distinct functions, such as transcriptional activation or
inhibition (Henikoff and Shilatifard, 2011). Recent reports
indicate that histone modifications are also involved in the
regulation of RNA processing. In fact, the involvement of histone
modification in regulation of RNA processing was found earlier
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than DNA methylation (Luco et al., 2010). Similar to DNA
methylation, absence of histone marks results in chromatin
structure changes, immediately affecting Pol II elongation and
alternative RNA processing.

Histone H3 lysine 36 trimethylation (H3K36me3) mark is an
active mark and is abundant in actively transcribed gene bodies
(Liu et al., 2010). It has been shown that dysfunction of SETD2,
an H3K36me3 methyltransferase, induced changes in 186 AS
events (Yuan et al., 2017). In humans, the MORF-related gene
on chromosome 15 (MRG15) is a well-established model system
to study the interplay between histone modifications and the
splicing machinery. The H3K36me3 mark influences splicing
by impacting the recruitment of splicing regulators through a
chromatin-binding protein, that is, MRG15. In this mechanism,
the H3K36me3 mark serves as anchors for MRG15 binding,

which in turn recruits the splicing regulator polypyrimidine
tract-binding (PTB) to pre-mRNA (Figure 1A). The H3K36me3–
MRG15–PTB complex forms a chromatin-splicing adaptor
system regulating numerous splicing events, including FGFR2
splicing, which is essential for tumor growth and invasion of lung
cancer (Sanidas et al., 2014; Naftelberg et al., 2015).

In contrast to the H3K36me3–MRG15–PTB complex
which favors exclusion of alternative exons, diverse histone
modifications can lead to a diametrically opposite splicing
pattern. Heterochromatin protein 1 (HP1), which has three
isoforms in humans, HP1α, HP1β, and HP1γ, binds directly to
histone H3 lysine 9 trimethylation (H3K9me3; Bannister et al.,
2001). A previous study indicated that HP1γ forms an additional
link with chromatin, binding to the coding region where it
associates with pre-mRNA and favoring its transient retention

FIGURE 1 | A proposed model for chromatin-based epigenetic regulation of alternative RNA processing. (A) A proposed model of chromatin-based regulation of
alternative splicing in mammals. Adaptor proteins recognizes and binds to alternative exon, which is marked by epigenetic marks (such as 5mC and histone
modifications), to affect alternative splicing through two possible mechanisms: (1) Adaptor protein recruits chromatin regulators (such as chromatin remodelers,
cohesion complex, etc.) to change the chromatin status of alternative exon, leading to a stalling of Pol II elongation, which in turn favors the retention of alternative
exon. (2) Adaptor protein directly recruits splicing-related factors to promote the retention of alternative exon. (B) A proposed model of chromatin-based regulation of
alternative polyadenylation in plants. The ASI1-AIPP1-EDM2 (AAE) complex recognizes and binds to the intronic heterochromatin elements (such as 5mC and
H3K9me2) and corresponding pre-mRNA, favoring the passthrough of elongating Pol II, thereby promoting the usage of distal polyadenylation signal. When the AAE
complex is absent, Pol II elongation is slowed down at intronic heterochromatin region, which favors the usage of proximal polyadenylation signal. Different colored
boxes in (A) and (B) represent exons.
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on chromatin. The modification to the chromatin structures of
the CD44 gene slows the elongation rate of Pol II, which in turn
facilitates the recruitment of splicing factors such as U2AF65
and PRP8 to alternative exons, resulting in the inclusion of
alternative exons (Saint-André et al., 2011; Yearim et al., 2015).
Unsurprisingly, diverse adaptor proteins at H3K9me3 lead to
distinct splicing patterns. HP1α and HP1β bind to methylated
alternative exons and recruit the splicing factor serine/arginine-
rich splicing factor 3 (SRSF3), thus enhancing the role of as a
splicing silencer and reducing the number of induced alternative
exons (Yearim et al., 2015).

In plants, Arabidopsis encodes two homologs of human
MRG15, MRG1 and MRG2, which bind to H3K4me3/H3K36m3-
modifying histone marks and trigger temperature-induced
flowering via the florigen gene FT (Bu et al., 2014). However,
it seems like that MRG1/2 have diversified from their
animal homologs during evolution, yet they still maintain
their conserved H3K36me3-binding molecular function (Xu
et al., 2014; An et al., 2020; Guo et al., 2020). Recently, a
protein complex in Arabidopsis, called anti-silencing 1 (ASI1)-
ASI1 immunoprecipitated protein 1 (AIPP1)-enhanced downy
mildew 2 (EDM2) (AAE) complex, was identified targeting
genic heterochromatic elements to regulate APA (Duan et al.,
2017). In this complex, ASI1, also named IBM2 and SG1
(Saze et al., 2013; Coustham et al., 2014), is a plant-specific
chromatin regulator which bears chromatin- and RNA-binding
capacity through its bromo-adjacent homology (BAH) and RNA
recognition motif (RRM) domains, respectively (Wang et al.,
2013). EDM2 is a multifunctional chromatin regulator containing
two and half plant homeodomains (PHDs). Its PHD fingers
have the binding capacity of H3K9me2 and other histone
modifications (Lei et al., 2014). ASI1 and EDM2 associate in vivo
through an RRM motif-containing bridge protein AIPP1 (also
named EDM3; Duan et al., 2017). The AAE complex can
bind to intronic heterochromatin, most of which come from
insertions of epigenetically silenced transposable and repetitive
elements, promoting the usage of distal polyadenylation site
(Figure 1B). Dysfunctions of the AAE complex lead to ectopic
accumulations of proximally polyadenylated short transcripts.
Thus, the AAE complex is indispensable for the generation
of full-length transcripts of genic heterochromatin-containing
genes. Regarding the underlying mechanism, recent report
indicates that EDM2 and AIPP1 mutations can slow down Pol
II elongation rate at proximal polyadenylation site, leading to
a promotion of proximal polyadenylation site usage (Lai et al.,
2019). AAE complex-mediated polyadenylation regulation plays
an important role in multiple biological processes, including
modulating plant immunity by targeting innate immunity
receptor gene RPP7 (Tsuchiya and Eulgem, 2013), epigenome
regulation by targeting histone H3K9me2 demethylase gene
IBM1, and T-DNA suppression (Saze et al., 2013; Wang et al.,
2013). Similar mechanism may also exist in other plants, like
bamboo and oil palm (Wang et al., 2017). For example, in oil
palm, loss of Karma transposon methylation leads to ectopic
splicing of the homeotic gene DEFICIENS, which accounts for
the mantled soma clonal variant phenotype of oil palm (Ong-
Abdullah et al., 2015). Interestingly, recent study indicates that

FPA, a flowering time regulator in Arabidopsis, can antagonize
ASI1 in the selection of polyadenylation site. In the double
mutant of asi1 and fpa, the polyadenylation pattern phenocopies
fpa but not asi1. While, this antagonistic control only occurs in
specific target genes, indicating a complex regulation of AAE
complex-mediated polyadenylation (Deremetz et al., 2019).

Histone Variants and
Chromatin-Remodeling Factors
Nucleosome, consisting of 147-bp double-stranded DNA and a
single histone octamer, is the basic unit of chromatin. Histone
variants, which are transcribed from separate genes, have been
shown playing key roles in the regulation of chromatin features.
This finding reminds us that histone variants may also regulate
co-transcriptional RNA processing. In mammals, five somatic
H1 variants (H1.1 to H1.5) have been identified (Happel and
Doenecke, 2009). More recently, Glaich et al. (2019) reported that
H1.5 deposition is observed at the splicing sites of the short exons
in human lung fibroblasts (IMR90 cells), and Pol II on H1.5-
marked exons exhibits greater stalling than it does on unmarked
exons. Deletion of H1.5 affects the inclusion of short exons with
relatively long introns and reduces Pol II occupancy on these
exons (Glaich et al., 2019). This finding clearly indicates that
the linker histones participate in the regulation of alternative
RNA processing, which has not been previously demonstrated
(Glaich et al., 2019).

In addition to histone variants, chromatin remodeling
factors also affect chromosome segregation and transcription
(Clapier and Cairns, 2009). During the last two decades, a
growing number of studies have indicated that chromatin
remodeling factors also play a role in alternative splicing. Brahma
(BRM), the core adenosine triphosphatase (ATPase) subunit
of the switch/sucrose nonfermenting (SWI/SNF) chromatin-
remodeling complex, was firstly shown to facilitate the inclusion
of alternative exons by interacting with Pol II to induce its
stalling (Figure 1A; Batsché et al., 2006; Jancewicz et al., 2019).
Actually, chromatin remodeler mediated-regulation of AS is an
evolutionarily conserved mechanism across most species, such
as in maize. ZmCHB101, a SWI3D protein, has been shown
controlling AS by altering chromatin status and transcriptional
elongation rates under osmotic stress (Yu et al., 2019), although
the mechanism by which chromatin remodeling factors interact
with Pol II transcription to impact mRNA processing machinery
remains unclear.

NON-CODING RNAS AND ALTERNATIVE
RNA PROCESSING

In addition to the identification of many alternative RNA
processing events based on chromatin level, an interesting finding
suggests that ncRNAs may play a key role in RNA processing
regulation (Kishore and Stamm, 2006). Generally, ncRNAs are
divided into two groups according to their size: small ncRNAs
(< 200 bp), including rRNA, microRNA (miRNA), small nuclear
RNA (snRNA), small nucleolar RNA (snoRNA), small interfering
RNA (siRNA), and piwi interacting RNA (piRNA); long ncRNAs
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(> 200 bp, lncRNA; Bartel, 2009). ncRNAs are now commonly
believed to have a variety of biological functions, and it is possible
that certain ncRNAs catalyze some steps of the splicing reaction
(Cech and Steitz, 2014).

snoRNAs
It is assumed that most snoRNAs, nearly 70 nt in length, are
derived from excised introns through exonucleolytic processing
(Watkins and Bohnsack, 2012). There are hundreds of different
snoRNAs in vertebrates and have even been found in archaea
(Terns and Terns, 2002). The first evidence of the participation
of snoRNA in AS was snoRNA HBII-52, which regulates the
serotonin receptor 2C and is associated with the congenital
disease Prader–Willi syndrome (PWS). HBII-52 regulates AS of
5-HT2CR by binding to a silencing element in exon Vb. PWS
patients do not express HBII-52. They have different 5-HT2CR
messenger RNA (mRNA) isoforms than healthy individuals
(Kishore and Stamm, 2006). Recently, a class of intronic lncRNAs
named snoRNA-related lncRNAs (sno-lncRNAs) was identified
in humans. The sno-lncRNAs generated from the PWS region
associate strongly with Fox family splicing regulators, altering
serotonin receptor 5-HT2CR splicing (Figure 2A). In patients
with PWS, the expression of some specific sno-lncRNAs is
downregulated. As a result, these patients have different 5-HT2CR
mRNA isoforms than healthy individuals, which have been
identified during early embryonic development and adulthood
(Yin et al., 2012).

Almost all eukaryotic pre-mRNAs and many ncRNAs are
subject to cleavage/polyadenylation at the 3′ end, which takes
place in macromolecular machinery called the mRNA 3′-
processing complex (Tian and Manley, 2016). It has been
shown that snoRNAs, which are classified as trans-acting
RNAs, directly interact with Fip1, a component of the cleavage
and polyadenylation specificity factor (CPSF) complex. Small
Nucleolar RNA C.D Box 50A (SNORD50A), a U/A-rich C/D-
box snoRNA, inhibits mRNA 3 processing by disturbing the
Fip1-poly(A) site (PAS) interaction (Figure 2B). SNORD50A
depletion leads to more frequent binding of Fip1 to PAS
and increases the 3′ processing of target mRNAs containing
U-rich sequences (Huang et al., 2017; Shi et al., 2017). Taken
together, these studies strongly suggest that snoRNA is an
important regulator of polyadenylation for specific genes by
serving as an antagonistic RNA. An important question remains
for future studies to address: how do ncRNAs bind to neighboring
sequences and regulate the interactions between the core mRNA
processing factors and processing sites?

lncRNAs
Recently, lncRNAs have received increasing attention. In human,
Metastasis-associated lung adenocarcinoma transcript 1 (Malat1)
is the most widely studied lncRNA. Malat1 was first identified
in human non-small cell lung cancer (NSCLC; Ji et al., 2003).
A number of serine/arginine-rich (SR) proteins, including SRSF1,
SRSF2, and SRSF3, associate with Malat1. Absence of Malat1
affects the localization of some splicing factors in the HeLa cell
line and leads to changes AS pattern (Blencowe, 2006). However,
the loss of Malat1 in normal mice rarely causes global changes

in splicing factor levels and results only in the dysregulation
of small mRNAs (Zhang et al., 2012). Meanwhile, deletion of
Malat1 in mammary carcinoma mice leads to many AS events
in genes essential for cell differentiation and tumorigenesis
(Arun et al., 2016). It can therefore be proposed that Malat1
regulates AS in specific cells and tissues under particular
conditions. In human cells, the lncRNA Gomafu, which is
dynamically regulated by neuronal activation, directly binds to
the splicing factors QKI and SRSF1 and inhibits their association
with the schizophrenia disease-related gene transcripts, thereby
affecting alternative splicing (Barry et al., 2014). In Arabidopsis,
an lncRNA called alternative splicing competitor (ASCO) binds
to the highly conserved spliceosome component PRP8a, thereby
impairing the recognition of specific flagellin-related transcripts
by PRP8a (Rigo et al., 2020). Actually, it has been shown
that ASCO can binds to multiple splicing factors, indicating
that lncRNAs may integrate a dynamic network to modulate
transcriptome reprogramming, including alternative splicing.

In addition to the evidence we discussed above, some ncRNAs
are directly or indirectly involved in RNA processing. It has been
shown that piRNAs and piRNA biogenesis components affect
mRNA splicing of P-transposable element transcripts in vivo,
resulting in the production of a non-transposase-encoding
mature mRNA isoform in Drosophila germ cells (Teixeira et al.,
2017). In plants, there is a special family of ncRNAs that can
confer de novo DNA methylation through the RNA-directed
DNA methylation (RdDM) pathway, and thereby inducing
global AS/APA events (Matzke and Mosher, 2014; Wang and
Chekanova, 2016). As the non-coding transcriptome, ncRNAs are
important components of the eukaryotic genome. There may be
a large number of mechanisms by which ncRNAs enhance the
plasticity of the proteome by interacting with mRNA-processing
machinery. A deep understanding of this mechanism will open up
broad prospects for gene therapy of various diseases, including
cancer, and the application of biotechnology in agricultural and
human health fields.

EPIGENETIC REGULATION AND
ALTERNATIVE RNA
PROCESSING-MEDIATED STRESS
RESPONSE IN PLANTS

Unlike animals, plants display a high degree of plasticity
during growth and development. In plants, to overcome the
constant challenge from a rapidly changing environment,
specific adaptation mechanisms have been evolved, among which
alternative RNA processing is an important strategy (Chaudhary
et al., 2019). Recent work has indicated that the role of epigenetic
modifications in regulating AS/APA under stress is emerging
(Jabre et al., 2019). Temperature is one of the environmental
signals that strongly affects plant development. An recent study
indicated that temperature variation is memorized by chromatin
via H3K36me3 modification, resulting in a specific splicing
pattern, which enables a feasible adaptation to stress conditions
(Pajoro et al., 2017). Another study showed that genes which are
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FIGURE 2 | A proposed model for non-coding RNA (ncRNA)-mediated regulation of alternative RNA processing. (A) ncRNA directly interacts with different splicing
factor to influence alternative RNA processing through two possible mechanisms: ncRNA-splicing factor complex recognizes and binds to the junction region of
intron and alternative exon to promote the retention of alternative exon. ncRNA can also inhibit the targeting of splicing factor to the splicing site of pre-mRNA.
Asterisks represent polyadenylation signals. Rectangular boxes represent exons. (B) ncRNA recognizes and binds to polyadenylation signal-flanking sequence of
pre-mRNA, which prevents the accession of polyadenylation-related factors, thereby leading to the usage of distal polyadenylation signal. Different colored boxes in
(A) and (B) represent exons.

quickly activated under cold stress and differentially expressed at
the splicing level, were found to be modified by H3K27me3 in
non-stress conditions (Vyse et al., 2020). These reports suggest
a dynamic regulation of temperature stress-responsive genes
by alternative RNA processing and histone modification. In
Arabidopsis, the Nuclear speckle RNA binding proteins (NSRs)
have been known as regulators of AS functioning in auxin-
associated developmental processes such as lateral root formation
(Bazin et al., 2018). These proteins were shown to interact with
specific alternatively spliced mRNA targets and at least with
one structured lncRNA named ASCO (Bardou et al., 2014). The
specific interaction of NSR with the ASCO is able to modulate AS
patterns of a subset of NSR target genes, thereby impacting auxin
response (Bazin et al., 2018). In other plants, specific association
between epigenetic regulators and RNA processing factors under
stress conditions has also been found. A maize SWI3D protein,
ZmCHB101, has been found to impact alternative splicing
contexts of a subset of osmotic stress-responsive genes on
genome-wide level (Yu et al., 2019). In turn, alternative RNA
processing of pivotal regulatory genes confers plants quick
response to the changing climate conditions through alteration of
reversible epigenetic marks. While, most of the current researches
only focus on one aspect of how plants respond to changeable
environment. That means, alternative RNA processing impacts
the transcriptome of responsive genes or environment change
leads to dynamic alterations of diverse epigenetic modifications
(Rataj and Simpson, 2014; Calixto et al., 2018; Li et al., 2018).
The mechanistic insights into the detailed interplay between
epigenetic regulation and AS/APA in changing environment

remains largely limited. In addition, the complicated regulatory
mechanisms controlling mRNA isoform ratios in a tissue- or
condition-specific manner still remain unclear.

FEEDBACK REGULATION OF RNA
PROCESSIONG ON EPIGENETIC
MECHANISMS

On the one hand, the evidence above supports a notion that
chromatin- and ncRNA-based epigenetic mechanisms have a
huge impact on the patterns of alternative RNA processing.
On the other hand, alteration of RNA processing pattern can
also exert an important influence on epigenetic regulation
pathways. In agreement with the notion that the majority of
protein-coding genes show alternative processing (Elkon et al.,
2013; Naftelberg et al., 2015), a number of epigenetic modifier-
encoding genes are subjected to RNA processing regulation.
As mentioned above, one classic feedback case is IBM1, a
major H3K9me2 demethylase-encoding gene in Arabidopsis.
IBM1 is a target of the AAE complex which binds to its
intronic repetitive sequence region to promote the generation
of functional full-length transcript (Saze et al., 2008; Wang
et al., 2013). In one aspect, epigenetic regulators required
for the formation of intronic heterochromatin facilitates AAE
complex targeting. In line with this notion, mutations of
DNA methyltransferases MET1, CMT3 and histone H3K9me2
methyltransferase KYP (SUVH4) phenocopy the phenotype
observed in the aae mutants, resulting in great reduction of
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functional IBM1 transcript (Rigal et al., 2012; Duan et al., 2017).
In another aspect, reduced expression of IBM1 protein
causes an increase of genome-wide H3K9me2 level, which in
turn causes genic CHG hypermethylation through recruiting
more CMT3 DNA methyltransferase (Duan et al., 2017).
Thus, IBM1-AAE interaction implies an interdependency
between epigenetic regulation and alternative polyadenylation.
Intriguingly, DNA and H3K9me2 methylation levels in IBM1
intronic heterochromatin region were not obviously changed by
the dysfunction of the AAE complex (Duan et al., 2017). One
possible explanation is that the AAE complex may has a direct
participation in the regulation of the epigenetic status of intronic
heterochromatin.

Another example is the BAF complex, including at-rich
interactive domain-containing protein 1A (ARID1A), which
is an evolutionarily conserved chromatin-remodeling factor
(Narayanan et al., 2015). A recent study indicated that EWS–
friend leukemia integration 1 (FLI1), a well-established ES
oncoprotein, plays a precise role in chromatin regulation by
interacting with the BAF complex (Boulay et al., 2017). In
addition to modulating chromatin organization, EWS–FLI1 also
alters the splicing of many mRNA isoforms (Selvanathan et al.,
2015). Surprisingly, EWS–FLI1 leads to preferential splicing of
ARID1A-L, promoting ES growth, and ARID1A-L reciprocally
facilitates EWS–FLI1 protein stability to maintain the expression
of ARIDIA-L. The ARID1A-L isoform is essential for the splicing
event, and a reduction in both ARID1A isoforms leads to EWS–
FLI1 degradation and cell death. The loss of ARID1A-L has
been demonstrated as an explanation of its ability to stabilize
EWS–FLI1 (Selvanathan et al., 2019). In this EWS–FLI1-ARIDIA
system, chromatin remodeling and alternative splicing are both
indispensable. Future efforts should be directed at finding
interacting components of epigenetic regulation and AS/APA.

In addition, alternative RNA processing events can also lead
to the formation of ncRNAs (Memczak et al., 2013). More
recently, Ma et al. reported microRNA-mediated phased small
interfering RNA (phasiRNA) generation from long non-coding
genes coupled with alternative splicing/polyadenylation in litchi
(Ma et al., 2018). An miR482/2118-targeted locus generates
four primary transcript isoforms through AS/APA, and diverse
phasiRNAs generated from these isoforms appeared to target
long terminal repeat (LTR) retrotransposons and other unrelated
genes. This study raised the intriguing possibility of cross talk
between ncRNAs and AS/APA components. In addition, the
diverse alternative mRNA processing-mediated protein variants
thus generated immediately affect the properties of proteins,
resulting in dysfunction of epigenetic regulators, including
chromatin modification enzymes and remodeling factors (Lei
et al., 2014; Rusconi et al., 2017; Jancewicz et al., 2019).

CONCLUSION

Epigenetic modifications are dynamically regulated by different
catalytic enzymes and reader proteins. This feature makes
epigenetic mechanisms suitable for multiple biological
processes, ranging from cell differentiation, development
and environmental stress responses. RNA processing, a

widespread mechanism of gene expression in eukaryotic cells,
also play vital roles in multiple biological processes. During
the last two decades, a great deal of efforts has been made in
the crosstalk between epigenetic mechanisms and alternative
RNA processing. As shown in Figure 1, chromatin modification,
such as DNA methylation and histone modifications can inhibit
or reinforce the binding of diverse adaptors. These chromatin
adaptors induce alternative RNA processing through changing
chromatin structure by collaborating with certain chromatin
remodelers or the cohesion complex, or directly recruiting
RNA processing factors to distinct splicing/polyadenylation
site. Most of the current researches have focused on chromatin-
based global changes of alternative RNA processing. In
fact, it’s a precise mechanism that is dynamically regulated
under diverse conditions, such as during development and
environmental stresses.

Different from the chromatin-based alternative RNA
processing, ncRNA impact AS/APA on RNA level, mainly by
disturbing the binding of RNA processing factors (Figure 2).
They can bind to splicing/polyadenylation sites and inhibit the
targeting of other RNA binding protein. Study on ncRNA-
mediated regulation of alternative RNA processing is a
promising field, particularly in the field of pharmaceutical
research including RNA interference drugs. It may be a very
effective method to treat many human diseases, which are caused
by inaccurate splicing or polyadenylation, by covering false
splicing/polyadenylation site. Therefore, it is important to find
more cases of ncRNA-mediated regulation of RNA processing. In
addition, deciphering the physiological relevance of the crosstalk
between epigenetic regulation and alternative processing is also
important toward understanding normal tissue homeostasis and
transition to disease.

Study on the interplay between epigenetic regulation and
alternative RNA processing is a novel field which is still at an
early stage. In addition to the important researches described
above, there are still some outstanding questions regarding
the underlying mechanism of alternative RNA processing due
to the space constraints not discussed in this review, such
as the identification of conserved factors involved in such
regulation, a comparison of epigenetic regulation in RNA
processing between animals and plants, and the precise epigenetic
mechanisms of tissue- and environment-specific AS/APA events.
Addressing the remaining questions will undoubtedly expand
our understanding of the chromatin codes in the regulation
alternative RNA processing.
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