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Abstract Background/purpose: The application of artificial intelligence diagnosis based on
deep learning in the medical field has been widely accepted. We aimed to evaluate convolu-
tional neural networks (CNNs) for automated classification and detection of recurrent
aphthous ulcerations (RAU), normal oral mucosa, and other common oral mucosal diseases
in clinical oral photographs.
Materials and methods: The study included 785 clinical oral photographs, which was divided
into 251 images of RAU, 271 images of the normal oral mucosa, and 263 images of other com-
mon oral mucosal diseases. Four and three CNN models were used for the classification and
detection tasks, respectively. 628 images were randomly selected as training data. In addition,
78 and 79 images were assigned as validating and testing data. Main outcome measures
included precision, recall, F1, specificity, sensitivity and area under the receiver operating
characteristics curve (AUC).
Results: In the classification task, the Pretrained ResNet50 model had the best performance
with a precision of 92.86%, a recall of 91.84%, an F1 score of 92.24%, a specificity of 96.41%,
a sensitivity of 91.84% and an AUC of 98.95%. In the detection task, the Pretrained YOLOV5
model had the best performance with a precision of 98.70%, a recall of 79.51%, an F1 score
of 88.07% and an AUC of Precision-Recall curve 90.89%.
Conclusion: The Pretrained ResNet50 and the Pretrained YOLOV5 algorithms were shown to
have superior performance and acceptable potential in the classification and detection of
RAU lesions based on non-invasive oral images, which may prove useful in clinical practice.
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Introduction

Recurrent aphthous ulcerations (RAU) is the most common
benign ulcerated lesion in the oral cavity with an uncertain
etiology.1 Surveys have suggested that at least 20% of the
population suffers from this disease, and the prevalence of
RAU can be as high as 50% in certain populations.2,3 RAU is
characterized by single or multiple painful and recurrent
ulcerations in the oral cavity.4 Patients experience discom-
fort when swallowing, eating, and communicating, thereby
significantly affecting their quality of life.5 It is worth noting
that oral ulceration is quite complicated and diverse due to
overlap of their clinical features, such as cancerous ulcers,
tuberculosis ulcers, and eosinophilic ulcers.6 An accurate
diagnosis of RAU can significantly reduce unnecessary psy-
chological and economic burdens on patients and greatly
improve clinical diagnosis and treatment efficiency.

In recent years, artificial intelligence, particularly deep
learning technology based on convolutional neural network
(CNN), has enabled computer-aided diagnosis due to its
excellent automatic feature extraction and generalization
abilities, and its potential in the medical field has been
increasingly recognized.7,8 Studies have demonstrated that
deep learning technologies, such as image recognition,
have been extensively employed in intelligent diagnosis of
skin diseases, caries detection, and early detection of lung
and gastric cancers.9e12 Oral mucosal diseases, such as
RAU, which can be easily visualized without special in-
struments, possess significant potential for the application
of artificial intelligence technology in the intelligent diag-
nosis of oral mucosal diseases.13

This study developed and trained four deep learning
models to achieve a classification task based on clinical oral
photographs, which can intelligently differentiate RAU,
normal oral mucosa, and other common oral mucosal dis-
eases. Furthermore, we constructed and trained three
additional deep learning models to achieve intelligent
recognition of lesion locations in RAU images and evaluated
their performance. The implementation of this system is
expected to eliminate variability in the diagnosis of RAU
between clinical doctors and to benefit patients in disease
follow-up and self-assessment. This study also establishes a
foundation for the future development of more precise and
convenient intelligent diagnosis systems for oral mucosal
diseases.
Materials and methods

Data acquisition

This study was approved by the Institutional Review Board
of the Stomatology Hospital of Zhejiang University School of
Medicine.
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The dataset of images utilized in this study was retro-
spectively collected from patients of the department of
oral medicine between March 2022 and March 2023. A total
of 785 images were included and divided into three distinct
groups, comprising 251 images of RAU patients who met the
diagnostic criteria for RAU, 271 normal oral mucosa images
from healthy volunteers, and 263 images of patients with
other common oral mucosal diseases.3 The collection pro-
cess was assisted by professional nurses using a professional
camera to capture high-quality images of various areas of
the oral cavity for each group. A detailed presentation of
these areas is available in Table 1.

Two senior doctors manually annotated all images using
the LabelImg software to label the image types and
boundaries of the lesions in the RAU images.14 To ensure
the accuracy of the labeling results, the maximum inter-
section area of the labeling results of the two doctors was
used to determine the boundaries of the final labeling re-
sults. The specific number of annotations is presented in
Table 1, comprising 184 images with a single lesion and 67
images with multiple lesions. Examples of the oral photo-
graphic images from the collected dataset are presented in
Fig. 1.

Experiments

The objective of this study was twofold: to perform an
image classification task and an object detection task. The
dataset of 785 photos was randomly divided into three
distinct sets-training, validation, and testing-in an 8:1:1
ratio. The training set consisted of 628 photos to facilitate
model learning, while the validation set comprising 78
photos was used to prevent overfitting. Finally, the testing
set contained 79 photos and was utilized to evaluate the
experimental results. To avoid anomalies caused by
randomness, all experiments were conducted using 5-fold
cross-validation. The machine model and program versions
used for the classification and detection tasks were NVIDIA
3060(NVIDIA Corporation, Santa Clara, CA, USA), Pytorch
1.10 (Meta Platforms, Inc., Menlo Park, CA, USA), and CUDA
11.4 (NVIDIA Corporation) respectively. A detailed illustra-
tion of the entire research process is presented in Fig. 2.

Image classification
To train the classification model that automatically de-
termines whether a picture belongs to RAU, normal oral
mucosa, or other common oral mucosal diseases, three
CNN-based models widely used in this field, namely Den-
seNet121, ResNet18, and ResNet50, were selected.15,16

These models can introduce model parameters based on
pretraining on big data through transfer learning. Addi-
tionally, to verify the effect of pretraining on the Imagenet
dataset, a Not Pretrained ResNet50 was included as a
comparison for the ResNet50 model.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1 Baseline characteristics of our used photographic images of oral lesions.

Characteristics RAU Data Set Normal oral
mucosa Data Set

Other common
oral mucosal diseases

No. of images 251 271 263
No. of images with a single ulcer 184
No. of images with multiple ulcers 67
No. of oral ulcer lesions 577
Distribution
Lip mucosa 90 95 87
Buccal 44 48 55
Tongue 67 70 60
Palatal mucosa 11 14 12
Mouth floor 15 20 21
Retromolar trigone 10 10 10
Alveolar ridge 14 14 18
Types of other disease
Oral mucosal patches striae diseases 148
Infectious diseases of oral mucosa 30
Bullous diseases of oral mucosa 15
Oral hypersensitivity disorders 20
Traumatic lesions of the oral mucosa 20
Carcinoma in situ or tumor-like lesions 30

Summary of image characteristics and available demographic information in the development and clinical validation data sets; RAU,
Recurrent aphthous ulcerations; NO., number.

Figure 1 Examples of the oral photographic images from the collected dataset. (A) Normal oral mucosa images on the palatal
mucosa. (B) A single ulcer lesion on the lip mucosa. (C) Multiple ulcer lesions on the tongue.
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During the training process, the classification model
automatically extracts the key features of each image and
predicts the probability of each class using the Softmax
function. The output results were compared with the doc-
tor’s annotated results, and the specific loss function
(cross-entropy) was used to guide the model towards the
next learning direction. To improve the training effect, the
TorchVision (Meta Platforms, Inc.) program was used to
enhance the annotated data, including rotating, cropping,
scaling, and adjusting the saturation of images. This in-
creases the generalization ability of the data used for
training, which, in turn, helped to improve the model’s
performance. The training hyperparameters included a
maximum of 25 epochs and a batch size of 16.

Objective detection
The experiment involved constructing an object detection
model capable of accurately identifying the boundaries of
ulcers in an oral image. Two widely used models in this
field, namely You Only Look Once Version 5 (YOLOV5) and
Faster Region-based Convolutional Neural Network (Faster
ReCNN), were selected.17,18 Both models used pretrained
256
weights based on the COCO dataset and were further
optimized through secondary training. To verify the effect
of transfer learning, a Not Pretrained YOLOV5 was included
as a control.

While the features extracted by CNN are used for clas-
sification, they also need to predict the possible target
range and continuously compare the output results with the
annotated results using regression for positioning. There-
fore, the model’s loss function includes both classification
loss and localization loss. When the model predicts incor-
rectly, relevant feedback information is passed back
through gradients to help correct the parameters in a more
optimal direction. The key hyperparameters used for
training were a maximum of 100 epochs and a batch size of
8. The Gradient-weighted Class Activation Mapping (Grad-
CAM) method was also employed to draw Saliency Maps for
YOLOV5’s internal parameter results.19

Evaluation measures

For the classification task, we used several objective met-
rics including precision, recall (equal to sensitivity), F1
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score, specificity, confusion matrix, and area under the
receiver operating characteristics curve (AUC) to evaluate
the performance of the classification model.20 For the ob-
ject detection task, we employed precision, recall, F1
score, and the area under the Precision-Recall (PR) curve
AUC to evaluate the performance of the selected model.21
Results

Image classification

The performance of the image three-classification model
on the test set is presented in Table 2. Among all the
models, the Pretrained ResNet50 exhibited the best per-
formance, achieving an precision of 92.86%, a recall
(sensitivity) of 91.84%, an F1 score of 92.24%, a specificity
score of 96.41%, and an AUC of 98.95%. In contrast, the Not
Figure 2 Workflow for computer-aided diagnosis of RAU based o
collected through a camera, which were then annotated by senio
lesions in the RAU images. The training and validation sets were u
training, the testing set was used to predict and validate model per
visually to evaluate the accuracy of the model’s predictions.

Table 2 Performance of the adopted models in the classificati

Model Precision (%) Recall/Sen

Pretrained Densent121 88.91 88.24
Pretrained Resnet18 88.68 88.19
Pretrained Resnet50 92.86 91.84
Not Pretrained Resnet50 69.07 68.10

AUC: area under the receiver operating characteristic curve; ROC: re
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Pretrained ResNet50 displayed the lowest performance in
all indicators, achieving only an AUC of 86.69%. Fig. 3 il-
lustrates the ROC curves and confusion matrices corre-
sponding to four CNN models, as well as the changes in
specificity scores for each model during the training
process.

Objective detection

The performance of object detection on the test set is
summarized in Table 3. Among the three CNN models, the
Pretrained YOLOV5 delivered the best performance,
achieving a precision of 98.70%, a recall of 79.51%, an F1
score of 88.07%, and an AUC of the PR curve of 90.89%. The
Not Pretrained YOLOV5 model exhibited the least validation
accuracy. Fig. 4 shows the AUC of PR Curve of each model.
Two examples of the output of the object detection model
are presented in Fig. 5.
n deep learning: a certain amount of oral cavity images were
r doctors to classify samples and mark the boundaries of the
sed to train the deep learning model. Upon completion of the
formance. Finally, the results were analyzed quantitatively and

on task.

sitivity (%) F1 (%) Specificity (%) AUC

88.35 94.51 97.82
88.30 94.73 98.33
92.24 96.41 98.95
67.85 85.44 86.69

ceiver operating characteristic.



Figure 3 (A) ROC curves by each classification model, the upper-left corner of each image was magnified. (B) The confusion
matrix obtained by each model on the test dataset. (C) The changes in specificity metric of the selected model on the validation set
during the training process.

Table 3 Performance of the adopted models in the objective detection.

Model Precision (%) Recall (%) F1 (%) AUC of PR Curve

Pretrained Faster ReCNN 87.11 84.12 85.59 90.76
Pretrained YOLOV5 98.70 79.51 88.07 90.89
Not Pretrained YOLOV5 65.83 75.01 70.12 72.35

AUC: area under the receiver operating characteristic curve; PR: Precision-Recall; Faster ReCNN: Faster Region-based Convolutional
Neural Network; YOLOV5: You Only Look Once Version 5.
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Discussion

In clinical practice, the differential diagnosis of RAU from
other ulcerative diseases, such as cancerous ulcers (carci-
noma in situ or oral squamous cell carcinoma), traumatic
ulcers, tuberculosis ulcers, etc., poses a considerable
challenge due to their complexity and diversity.6 The ac-
curate identification and diagnosis of oral ulcerative dis-
orders can alleviate the psychological and economic burden
258
of patients, as well as improve their overall prognosis and
survival rates. Deep learning algorithms based on CNN
possess powerful data classification and prediction capa-
bilities and have been widely applied in the field of medi-
cine, such as intelligent-assisted diagnosis of liver and
esophageal cancers and automatic detection of ophthalmic
diseases.22e25 These impressive findings inspire us to
believe that deep learning may also have the potential to
capture the characteristic features of oral mucosal



Figure 4 The Precision-Recall curves of the three selected
models for the object detection task.
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diseases, represented by RAU, providing a promising solu-
tion for designing intelligent diagnostic models of oral
mucosal diseases.

In this study, we employed CNN-based classification and
detection models to detect RAU in photographic images,
resulting in a high degree of diagnostic accuracy. The Pre-
trained ResNet50 model exhibited the best performance in
distinguishing RAU from normal oral mucosa and other
common oral mucosal diseases, achieving an AUC of 98.95%.
This performance was comparable to that reported in
studies using CNN-based algorithms for skin lesion classifi-
cation.26 With regard to the object detection model, the
Pretrained YOLOV5 model achieved an AUC of 90.89% for
detecting ulcerative lesions in the image, which represents
an acceptable level of accuracy.15

In the classification task, we utilized four CNN-based
deep learning models that exhibited varying degrees of
performance. Our study yielded three notable findings.
Figure 5 (A) The example image with a single ulcer lesion on
features extracted by Grad-CAM method based on image A. (C) Th
(D) The example image with multiple ulcer lesions on the tongue.
Grad-CAM method based on image D. (F) The true positive output
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Firstly, the use of Pretrained models significantly enhanced
performance. Pretrained models are a typical application
of transfer learning that reduces the amount of labeled
data required for downstream tasks and improves gener-
alization performance.27 Secondly, in our experiments,
both ResNet18 and ResNet50 outperformed the DenseNet
model, which is consistent with the findings of previous
studies.15,25 This could be attributed to the introduction of
residual learning and shortcut connections in the ResNet
model, which effectively address the issue of gradient
vanishing in deep networks, thereby enhancing the model’s
stability during training.28 Thirdly, compared to ResNet18,
ResNet50 exhibited significantly superior performance in
multiple indicators, suggesting that larger models can learn
more diverse features and achieve better performance.29

Regarding the object detection task, YOLOV5 no longer
uses the two-stage method of classification first and then
detection, as in Faster ReCNN.17,30 Instead, it employs a
grid system to divide the image and performs end-to-end
regression calculations directly, significantly simplifying
the computation process.31 Moreover, after several gener-
ations of optimization and transformation, the current
YOLOV5 exhibits higher detection accuracy and faster
training and prediction speeds.

Our study had several limitations. The algorithm only
performed a three-class classification for oral mucosal
diseases and cannot make clear predictions for a wider
range of oral mucosal diseases. Future multi-center large-
sample studies may help address this limitation. Further-
more, its potential clinical application needs to be carefully
discussed. Risk and activity assessment of RAU, as well as
the formulation of individualized medical strategies, still
require evaluation by clinical physicians, which cannot be
replaced by AI algorithms at present. Further research and
development are needed to overcome these challenges.

In conclusion, our study demonstrated that the deep
learning model based on the CNN algorithm, using oral
images, can not only perform three-class classification for
the palatal mucosa. (B) Visualization results of deep learning
e true positive output of YOLOV5 detection based on image A.
(E) Visualization results of deep learning features extracted by
of YOLOV5 detection based on image D.
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RAU, normal oral mucosa, and other oral mucosal diseases
but also has the potential to accurately identify the loca-
tion of lesions in RAU images. Based on our findings, we
believe that deep learning technology has a promising
future in the automatic diagnosis of oral mucosal diseases,
represented by RAU. It may serve as a simple, non-invasive,
and cost-effective screening tool to assist in clinical
decision-making. However, further evaluation and valida-
tion are necessary before its widespread clinical
application.
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