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Abstract
The present study investigated nutritional programming in Atlantic salmon to improve utilisation of a vegetable-based diet. At first exogenous
feeding, fry were fed either a marine-based diet (Diet Mstimulus, 80% fishmeal (FM)/4% fish oil (FO)) or a vegetable-based diet (Diet Vstimulus,
10% FM/0% FO) for 3 weeks. Subsequently, all fish were then fed under the same conditions with a commercial, marine-based, diet for
15 weeks and thereafter challenged with a second V diet (Diet Vchallenge, 10% FM/0% FO) for 6 weeks. Diploid and triploid siblings were run in
parallel to examine ploidy effects. Growth performance, feed intake, nutrient utilisation and intestinal morphology were monitored. Fish
initially given Diet Vstimulus (V-fish) showed 24% higher growth rate and 23% better feed efficiency compared with M-fish when later
challenged with Diet Vchallenge. There was no difference in feed intake between nutritional histories, but increased nutrient retentions
highlighted the improved utilisation of a V diet in V-fish. There were generally few significant effects of nutritional history or ploidy on enteritis
scores in the distal intestine after the challenge phase as only V-triploids showed a significant increase (P< 0·05) in total score. The data
highlighted that the positive effects were most likely a result of nutritional programming and the ability to respond better when challenged
later in life may be attributed to physiological and/or metabolic changes induced by the stimulus. This novel study showed the potential of
nutritional programming to improve the use of plant raw material ingredients in feeds for Atlantic salmon.
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Demand for farmed salmon heavily outweighs the availability of
the raw materials, fishmeal (FM) and fish oil (FO), historically
used to formulate feeds. According to the National Research
Council(1), the nutritional requirements for this carnivorous
species during the freshwater stages include 42–50% protein,
containing essential amino acids, and 16–24% lipid with an
emphasis on long-chain (LC) n-3 fatty acids; EPA (20 : 5n-3)
and DHA (22 : 6n-3) (0·5–1%). Availability of these ingredients
from marine resources is finite and alternative protein and
lipid sources are required in order to sustain aquaculture
development. Vegetable-derived proteins and oils are logical
alternatives because of their high availability and relatively low
production costs.
However, inclusion of plant ingredients in salmonid feeds can

result in reduced feed utilisation. This may suggest a digestive
and/or metabolic interference which can cause reduced growth
performance and health issues. Reduced digestibility of plant
ingredients in salmonid diets has been shown to correlate with
reduced retention of protein and energy(2–5), indicating lower
metabolic activity and ultimately resulting in lower growth

performance. Moreover, health implications such as distal intest-
inal (DI) enteritis, have been highlighted with some vegetable-
based diets(6–11). Several anti-nutritional factors (ANF) have been
associated with detrimental effects on growth performance and
health when using vegetable-based diets in aquafeeds(12,13).
Advances in feed technology have allowed further enrichment
and refinement for several vegetable-based protein ingredients
such as the processing of plant meals into protein concentrates,
that is soya protein concentrate (SPC) by alcohol extraction, pea
protein concentrate (PPC) by air classification, and wheat gluten
(WG) by physical extraction(13,14). These processes can reduce
or remove ANF and ultimately reduce the associated health
implications on gut morphology posed for salmonids(7,14–17).
Regardless, high inclusion of refined ingredients may still cause
detriment to salmonids as seen in SPC(18) and PPC(10) but, at lower
levels, such ingredients appear to be successful(2,19–22). Moreover,
blending reduced levels of SPC and faba bean protein concentrate
previously demonstrated improved performance in salmon and
reduced negative alterations to the gut transcriptome when
compared with individual use of each ingredient(23). Continuous

Abbreviations: BW, body weight; FE, feed efficiency; FI, feed intake; FM, fishmeal; LC, long chain; SEM, sub-epithelial mucosa; SPC, soya protein concentrate;
TGC, thermal growth coefficient.
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refinement of alternative feeds is necessary to maximise benefits
and minimise detrimental effects to the fish, with the aim to match
the efficiency of traditional feeds optimally designed for carni-
vorous salmonids.
Nutritional programming has been considered as an option that

may help to overcome problems associated with dietary repla-
cement of FM and FO in aquafeeds. This concept involves
nutritionally stimulating a physiological function during sensitive,
early developmental stages, and has been shown to ‘programme’
or redirect particular metabolic processes in several different
mammalian species(24). The phenomenon has been investigated
for several years with studies largely focused on rodents. Prenatal
and postnatal investigations have concluded that a nutritional
stimulus can trigger particular cellular development that can
impact life development, for example growth performance(25)

and health(26–28). The idea gained interest in human health
studies, and animals such as primates(29,30) and pigs(31) have been
used as models to understand lasting impacts of such nutritional
interventions because of their similarities to human physiology.
Typically, investigations have concluded that controlled prenatal
or early postnatal nutrition can improve growth and develop-
ment, and reduce incidence or severity of particular health issues
such as obesity and CVD. With regards to agriculture, under-
standing the consequential importance of the impact of early
nutrition will help to (i) improve production and (ii) mitigate
potential problems. Evidence suggested that improved perfor-
mance and increased parasitic resistance in sheep could result
from nutritional interventions during the weaning period(32). To
date, there have been only a few similar studies in teleost species.
A short exposure of a soyabean meal (SBM) diet at first feeding in
rainbow trout (Oncorhynchus mykiss) improved the palatability
and utilisation of the same diet later in life(33). The programming
theory has also been investigated in zebrafish (Danio rerio) and
an early nutritional intervention has shown to alter carbohydrate
digestion in later life(34). Moreover, investigation of early
programming on a molecular level appears to alter some phy-
siological pathways involved in gut function in both zebrafish
(D. rerio) and Gilthead seabream (Sparus aurata)(35,36).
The overall objective of the present study was to determine if

the concept of nutritional programming could operate in Atlantic
salmon. The specific aims were, first, to determine whether the
provision of Atlantic salmon fry with a vegetable-based diet at first
exogenous feeding was able to physiologically adapt the fish to
accept and more efficiently utilise the same diet at a later life stage
without compromising growth performance and health. Second,
given the growing interest in the use of triploid fish in aqua-
culture, and indications that growth performance and feed effi-
ciency (FE) and, in turn, dietary requirements, may vary between
triploid and diploid salmon(37–40), the concept was tested in both
diploid and triploid salmon in order to establish, not only if there
were differences in their performance in response to such chan-
ges in raw materials, but also to determine if the concept of
nutritional programming was affected by ploidy.

Methods

The feeding trial was carried out at the University of Stirling
temperate freshwater facilities with all experimental procedures

conducted in compliance with the Animals Scientific Proce-
dures Act 1986 (Home Office Code of Practice, HMSO, London,
January 1997) under project licence PPL70/7916 ‘Environmental
Regulation of Fish Physiology’ H. M.) in accordance with EU
regulation (EC Directive 86/609/EEC). All experimentation
performed at the Institute of Aquaculture (IoA) was subject to
an ethical review process carried out by the University of
Stirling Animal Welfare and Ethical Review Board before the
work being approved.

Experimental diets

Diets used in this study were formulated by BioMar UK Ltd
and manufactured at the BioMar Tech Centre. Diet formulations
and compositions are shown in Table 1. In brief, the marine
stimulus diet (Diet Mstimulus) was a formulation almost
exclusively based on FM (80% FM) as protein source and FO
(4% FO) as lipid source. The vegetable-based stimulus diet
(Diet Vstimulus) contained only a low proportion of FM (10% FM)
and a mixture of plant protein concentrates (SPC, PPC and WG)
as protein sources, whereas rapeseed oil was the sole added
lipid source (0% FO). The vegetable-based challenge diet
(Diet Vchallenge) contained the same FM/FO % and ingredients
as Diet Vstimulus, only a different composition to account for size
of pellet.

Table 1. Formulation, proximate composition and fatty acid composition
of the high marine diet (Diet Mstimulus) and low fishmeal/fish oil diets
(Diet Vstimulus and Diet Vchallenge) used in the respective feeding phases

Experimental phases... Stimulus phase Challenge phase

Diets... Mstimulus Vstimulus Vchallenge

Ingredients (g/kg)
Fishmeal* 648·4 50·0 50·0
Crustacean and fish peptones† 146·0 50·0 50·0
SPC‡ – 163·7 90·2
Wheat gluten§ – 214·0 181·7
PPC|| – 210·0 245·7
Wheat¶ 135·9 139·9 134·4
Fish oil** 40·0 · ·
Rapeseed oil§ – 60·0 170·6
Vitamins and minerals†† 22·7 54·8 52·5
Amino acids‡‡ 7·0 57·6 25·0

Analysed proximate composition
Lipid – crude (%) 13·3 11·3 21·6
Protein – crude (%) 57·1 56·6 49·6
Energy – gross (MJ/kg) 20·5 20·6 22·7

All fatty acids (% total fatty acids)
PUFA 40·6 37·6 33·3
LA (18 : 2n-6) 4·8 25·8 22·9
ALA (18 : 3n-3) 1·3 8·2 8·9
EPA (20 : 5n-3) 13·0 1·4 0·6
DHA (22 : 6n-3) 12·1 1·4 0·6

SPC, soya protein concentrate; PPC, pea protein concentrate; LA, linoleic acid; ALA,
α-linolenic acid.

* Feed Services Bremen.
† Aker BioMarine.
‡ Caramuru.
§ Cargill.
|| Agrident.
¶ WN Lindsay.
** ED&F Man.
†† DSM.
‡‡ Evonik.
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Fish stock and culture conditions

Eggs and milt from unrelated Atlantic salmon two sea-winter
broodstock (Landcatch Natural Selection Ltd) were collected in
December 2014 and transferred to the IoA (University of
Stirling, Scotland) where the experiment took place in the
temperate freshwater recirculation facility. Eggs were divided
into two groups (approximately 1680 eggs each) for ploidy
differentiation. Triploidy was induced in one group, with eggs
subjected to 9500 psi (pounds per square inch) of hydrostatic
pressure for 6·25min at 8°C, 37min post-fertilisation(41). Both
groups of eggs were incubated at a relatively low temperature
of 5·6± 0·1°C to account for the triploid salmon requiring a
lower thermal regimen for optimal performance(42). Towards
the end of the alevin stage (approximately 950° d), fish were
transferred to 12× 0·3m² tanks under 24 h light, and water
temperature was increased over 11 d before first feeding and
maintained until the end of the experiment at 12·7± 0·5°C.

Feeding trial

During the first 3 weeks of exogenous feeding, termed the
‘stimulus’ phase, diploid (2 N) and triploid (3 N) salmon were
fed either Diet Mstimulus or Diet Vstimulus using automatic feeders
(Arvo-Tec Feeding System) for two 4-h periods daily. Each of
the four treatments (2NM, 3NM, 2NV, 3NV) were triplicated with
260 fish stocked per tank. During the ‘marine’ phase, all groups
were fed a commercial marine-based diet (55% protein and
20% lipid, with blends containing FM and FO) for 15 weeks
under the same conditions. The ‘challenge’ phase consisted of
all groups then being fed Diet Vchallenge for a further 6 weeks
before the trial was concluded. Throughout the experiment,
all groups of fish were fed to satiation plus 10% excess and
survival was monitored daily. The only time the fish in the
present study were fed different diets was during the stimulus
phase when fish were fed either Diet Mstimulus or Diet Vstimulus.
For simplicity, the terms ‘M-fish’ and ‘V-fish’ will be used,
respectively.

Verification of ploidy

To confirm ploidy status, red blood smears were prepared from
samples taken from the caudal peduncle of euthanised fish (n 20/
ploidy). Air dried slides were fixed in 100% methanol and then
placed into Giemsa stain for 10min. Slides were digitised using a
slide scanner at 20× magnification (Axio Scan.Z1; Zeiss) and
erythrocyte length and diameter was determined by Fiji software
(ImageJ). A total of thirty randomly chosen nuclei per slide were
measured to the nearest 0·01μm and a total mean taken for
presumed diploid and triploid fish. Diploid groups had
significantly smaller erythrocyte nuclear lengths, with no overlaps
with the pressure shocked triploid groups (2 N, 7·4–8·5μm; 3 N,
9·5–11·3μm) confirming that all fish that were subjected to
hydrostatic pressure shock were likely to be triploid.

Sampling procedures

For growth assessment, following a 24-h fasting period, indivi-
duals (n 30/tank) were weighed (body weight, BW) at the
relevant dietary transition periods from the initial (i) to the

final (f) sampling point. Fish were sedated before weight mea-
surement (Tricaine, 50parts per million (ppm); Pharmaq). Growth
rate was calculated using the thermal growth coefficient (TGC, %
BW °C/d). For carcass and tissue analyses, fish were randomly
selected and euthanised (Tricaine, 1000ppm; Pharmaq).

Feed intake

Feed intake (FI) was monitored during the final 16d of the marine
phase and for the duration of the challenge phase (41d). All waste
was siphoned out of the tank and uneaten feed was separated
from faeces and any detritus. The uneaten pellets were weighed
and converted to pellet number and dry weight from earlier
calculations. FI was measured and revised for contrasting growth
rates between populations; per 100g average BW (% BW/d).
The response of BW gain to FI during the challenge phase was
measured as FE) and calculated as (BWf−BWi)/FI. Nutrient and
energy utilisation efficiency was calculated using determined
biochemical compositions (proximate analysis) of whole body fish
and feeds with the influence on BW gain.

Proximate composition

Proximate composition of feeds and 24-h starved whole fish
were determined according to standard procedures(43). Samples
were collected at relevant transition periods after lethal anaes-
thesia (Tricaine, 1000 ppm) as described above. Whole fish
were homogenised in a blender (Waring Laboratory Science) to
produce pates, and feeds were ground before analyses.
Moisture contents were obtained after drying in an oven at
110°C for 24 h and ash content determined after incineration
at 600°C for 16 h. Crude protein content was measured by
determining N content (N× 6·25) using automated Kjeldahl
analysis (Tecator Kjeltec Auto 1030 analyser; Foss) and
crude lipid content was determined after acid hydrolysis
followed by Soxhlet lipid extraction (Tecator Soxtec system
2050 Auto Extraction apparatus; Foss). Energy content was
measured using bomb calorimetry calibrated with benzoic acid
(Gallenkamp Autobomb; Gallenkamp & Co. Ltd).

Fatty acid composition

Total lipid was extracted from diets, whole fish and tissue pates
by homogenisation in chloroform/methanol (2:1, v/v)(44). Fatty
acid methyl esters (FAME) were prepared from total lipid by
acid-catalysed transesterification at 50°C for 16 h(45), and FAME
extracted and purified as described previously(46). FAME were
separated and quantified by GLC using a Fisons GC-8160
(Thermo Scientific) equipped with a 30m× 0·32mm internal
diameter× 0·25 μm ZB-wax column (Phenomenex), on-column
injector and a flame ionisation detector. Data were collected
and processed using Chromcard for Windows (version 2.01;
Thermoquest Italia S.p.A.). Individual FAME were identified by
comparison to known standards and published data(46).

Distal intestine histology

Randomly selected fish were euthanised (Tricaine, 1000 ppm)
after a 24 h fasting period at the end of the marine (n 2/tank)
and the challenge phase (n 5/tank). The entire DI was dissected
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and rinsed of faecal material in 4°C saline solution before
storage in Serra fixative (ethanol–formalin–glacial acetic acid;
6:3:1) for 24 h and subsequently in ethanol (70%). Samples
were later processed according to standard histological
methods. In brief, the samples were dehydrated in ethanol,
equilibrated in xylene and embedded in paraffin. Longitudinal
cuts (i.e. perpendicular to the macroscopically visible circular
folds) of approximately 5μm were stained with haematoxylin–
eosin. The sections were examined by experienced personnel in
three independent blinded evaluations. The following histological
characteristics were evaluated according to a previous study(47):
width of the lamina propria (LP) and sub-epithelial mucosa
(SEM), infiltration of SEM by eosinophilic granulocytes (EG),
infiltration of the intra-epithelial spaces by lymphocytes (IEL) and
the mitotic activity in mucosal fold base. Details of the histo-
pathological scoring system utilised for the DI samples is given in
Table 2.

Statistical analysis

Minitab 17 Statistical Software (2010) was used for all statistical
analyses. After confirming normality and homogeneity of variance
in the data using the Kolmogorov–Smirnov test and Levene’s
test, a two-way ANOVA was performed on independent
parameters considering nutritional history (NH, Diet Mstimulus and
Diet Vstimulus), ploidy (2 N and 3 N), and their interaction.

Percentage data were transformed using the arcsine square root
function. Significance was accepted at P< 0·05 and Tukey’s post
hoc test was used to compare significantly different means.
To investigate solely nutritional influence, differences shown
within a given ploidy were analysed using a Kruskal–Wallis test.
Histological scores were analysed statistically using a Kruskal–
Wallis test followed by Dunn’s post hoc test for non-parametric,
categorical comparison.

Results

Growth performance

Survival (%) was slightly lower in V-fish and triploids during
both the stimulus and marine phases (Table 3). However,
during the challenge phase, there were no effects of nutritional
history or ploidy on survival. During the stimulus phase, growth
rate as measured by TGC was higher in M-fish compared with
V-fish, and in diploids compared with triploids (Table 3). There
was also a significant difference in growth rate during the
marine phase with M-fish showing higher TGC than V-fish,
although this was only significant in diploids. In general, tri-
ploids significantly outgrew diploids (P< 0·05) during the
marine phase. These effects on growth were observed in the
BW of the fish at the beginning and end of the FI trial carried
out in the last 16 d of the marine phase, with both initial and
final BW being higher in M-fish than V-fish, significantly so in
both ploidies, and also significantly higher in triploids than in
diploids (Table 4). In contrast, during the challenge phase,
growth rate for both diploids and triploids was significantly
greater in V-fish compared to M-fish as evidenced by the higher
TGC values (Table 3). Growth of triploids was also significantly
greater than that of diploids during the challenge phase. These
growth differences were reflected in final BW so that, despite
the fact that weights of M-fish were higher than those of V-fish
at the beginning of the challenge phase, there were no sig-
nificant differences in final BW of V-fish and M-fish at the end of
the challenge phase (Table 5).

Feed intake

When FI was corrected (% BW/d), no impacts of nutritional
history or ploidy were observed between treatments during
either feeding phase (Tables 4 and 5).

Feed utilisation

During the marine phase FE was higher in M-fish compared
with V-fish, significantly so with diploids (Table 3). This resulted
in M-fish showing higher protein, lipid and energy gains and
retentions in the marine phase compared with V-fish, again
significant in diploids with triploids showing identical trends
(Table 4). In contrast, the opposite effects on nutrient and
energy utilisation were observed during the challenge phase.
Thus, FE was higher in V-fish compared with M-fish,
significantly so in diploids (Table 3). This resulted in V-fish
showing higher protein, lipid and energy gains compared with
M-fish, although only significant with lipid and energy gain in
diploids. Consistent with these data, protein, lipid and energy

Table 2. Description of scoring system covering a range of parameters
used to assess severity of enteritis(42)

Scores Parameter

LP
1 Normal size LP
2 Normal to moderate size LP
3 Moderate size LP
4 Moderate to large size LP
5 Large size LP

EG
1 Few in SEM
2 Increased number in SEM (multiple layers)
3 Increased number in SEM and migration into LP
4 Diffused number in LP and SEM
5 Dense EG in SEM and LP

SEM
1 Normal SEM
2 Normal to moderate size SEM
3 Moderate size SEM
4 Moderate to large size SEM
5 Large size SEM

IEL
1 Rare IEL (1/20 epithelial cells)
2 Mild (focal increase in numbers migrating towards the apical

cytoplasm of epithelium; few scattered)
3 Moderate (increased numbers often towards the apical

cytoplasm of epithelium)
4 Severe (marked increase in IEL)

Mucosal fold base mitotic activity
1 Normal (2–3 mitotic epithelial cells)
2 Moderate (5–10 mitotic epithelial cells; some leucocytes might

exhibit mitotic activity)
3 High (>10 mitotic epithelial and increment in intestinal leucocyte

mitotic activity)

LP, lamina propria; EG, eosinophilic granulocytes; SEM, sub-epithelial mucosa; IEL,
intra-epithelial lymphocytes.
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retentions in the challenge phase were higher in V-fish than
M-fish, significant in diploids with triploids showing identical
trends (Table 5). The effects on nutrient utilisation efficiency/
retention were therefore consistent across all nutrients, reflected
in the fact that there was no effect of nutritional history on
whole body proximate composition (Table 6).

Fatty acid retention and composition

The same trend as observed for the macronutrients was also
found in EPA and DHA retention in the marine and challenge
phases, respectively (Tables 4 and 5). Importantly, M-fish lost
EPA during the challenge phase, whereas V-fish positively

retained EPA (Table 5). In contrast, all fish retained DHA during
the challenge phase although retention was far greater in V-fish
than in M-fish. Unsurprisingly, the reverse trend was seen
during the marine phase, with M-fish have the greater EPA and
DHA retentions. As with most parameters, the effects of nutri-
tional history on EPA and DHA retentions were significant for
diploids, with triploids showing identical but non-significant
trends. Fatty acid profiles of whole body, liver, and pyloric
caeca pre-challenge (end of marine phase) and post-challenge
phase reflected the dietary fatty acid compositions of the
commercial diet (fed in the pre-challenge phase) and Diet
Vchallenge (fed during the challenge phase) in all fish irrespective
of nutritional history or ploidy (Table 7). Therefore, total SFA

Table 3. Survival, growth rate and feed efficiency of fish during each of the three nutritional phases; stimulus, marine and challenge†
(Mean values with their standard errors, n 3)

Ploidy... Diploid Triploid

NH... Mstimulus Vstimulus Mstimulus Vstimulus P

Mean SEM Mean SEM Mean SEM Mean SEM Ploidy NH Ploidy ×NH

Survival (%)
Stimulus phase 98·3 – 89·2 – 95·2 79·7 – – –

Marine phase 96·7 2·0 92·2 0·4 79·8 1·7 72·9 5·1 0·000 0·046 NS
Challenge phase 99·5 0·3 99·6* 0·3 98·3* 0·9 98·8* 0·2 NS NS NS

Growth rate (TGC, % BW °C/d)
Stimulus phase 0·8 – 0·5 – 0·7 0·3 – – –

Marine phase 1·4a 0·0 1·3b 0·0 1·5 0·0 1·5 0·0 0·000 0·024 NS
Challenge phase 1·0b* 0·0 1·3a 0·1 1·1b* 0·1 1·5a 0·0 0·009 0·001 NS

Feed efficiency
Stimulus phase – – – – – – – – – – –

Marine phase 1·6a 0·1 1·2b 0·0 1·4 0·1 1·7 0·1 NS NS 0·005
Challenge phase 1·2b* 0·1 1·6a* 0·0 1·2 0·0 1·5 0·0 NS 0·001 NS

NH, nutritional history; TGC, thermal growth coefficient; BW, body weight.
a,b Significant differences between diets within a given ploidy.
* Significant differences between phases within a given treatment.
† Based on their ploidy status (diploid or triploid) and their nutritional history during the stimulus phase (Diet Mstimulus or Diet Vstimulus). Percentage data were arcsine transformed for

statistical analysis. Significance was calculated between ploidy, NH and their interaction (Ploidy×NH), and was accepted at P< 0·05.

Table 4. Growth parameters, feed intake (FI) and feed utilisation during the marine phase*
(Mean values with their standard errors, n 3)

Ploidy... Diploid Triploid

NH... Mstimulus Vstimulus Mstimulus Vstimulus P

Mean SEM Mean SEM Mean SEM Mean SEM Ploidy NH Ploidy ×NH

Growth parameters (× in/d)
Initial body weight (g) 11·0a 0·2 9·8b 0·2 13·0a 0·3 10·9b 0·7 0·006 0·005 NS
Final body weight (g) 17·9a 0·0 14·2b 0·0 19·9a 1·2 16·9b 0·6 0·007 0·001 NS
Protein gain (g) 1·2a 0·0 0·8b 0·0 1·1 0·1 1·1 0·1 NS 0·029 0·043
Lipid gain (g) 1·0a 0·1 0·4b 0·1 0·9 0·2 0·5 0·0 NS 0·009 NS
Energy gain (kJ) 61·3a 3·8 39·7b 3·6 64·3 7·7 56·3 9·2 NS 0·046 NS

Voluntary FI
FI (% BW/d) 1·9 0·1 1·9 0·1 1·9 0·0 1·9 0·0 NS NS NS

Nutrient and energy utilisation efficiency (% intake)
Protein retention 50·3a 1·4 37·8b 1·1 41·5 3·2 49·9 3·0 NS NS 0·003
Lipid retention 99·2a 9·7 54·0b 13·1 76·7 11·1 56·3 0·7 NS 0·022 NS
Energy retention 71·0 4·6 54·4 4·1 64·2 5·8 68·8 8·5 NS NS NS
EPA (20 : 5n-3) retention 22·6 1·7 17·1 1·7 20·2 4·2 12·7 6·0 NS NS NS
DHA (22 : 6n-3) retention 104·9a 5·8 78·9b 7·9 89·7 19·1 55·7 36·0 NS NS NS

NH, nutritional history; BW, body weight.
a,b Significant differences within a given ploidy.
* Based on their ploidy status (diploid or triploid) and their nutritional history during the stimulus phase (Diet Mstimulus or Diet Vstimulus). Percentage data were arcsine transformed for

statistical analysis. Significance was calculated between ploidy, NH and their interaction (Ploidy×NH), and was accepted at P< 0·05.
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and n-3 PUFA (especially EPA and DHA) decreased, and total
monoenes and n-6 PUFA (especially linoleic acid, 18 : 2n-6)
increased in all tissues in all fish from pre- to post-challenge.
The differences in EPA and DHA retention (based on absolute
contents of whole body) between fish of different nutritional
history were not reflected in the relative proportions of the fatty
acids in whole body.

Distal intestine histology

Generally, histological assessment of DI at the end of the
marine phase (pre-challenge) indicated that total enteritis scores
were low and comparable across the four treatment groups

(Table 8). No differences were found in the parameters ana-
lysed except for SEM, where V-diploids showed increased size
compared with M-diploids, and lastly for IEL, where M-triploids
showed significantly higher prevalence than V-triploids. Simi-
larly, there were generally few significant effects of nutritional
history or ploidy on enteritis scores in the distal intestine post-
challenge (Table 8). However, in diploids, significantly higher
SEM in V-fish compared with M-fish, as well as significantly
higher total scoring of combined histological characteristics
between these groups, was observed post-challenge phase.
There were differences in scores within a given treatment
between the pre- and post-challenge phases with all overall
scores tending to be higher, although only significantly in

Table 5. Growth parameters, feed intake (FI) and feed utilisation during the challenge phase*
(Mean values with their standard errors, n 3)

Ploidy... Diploid Triploid

NH... Mstimulus Vstimulus Mstimulus Vstimulus P

Mean SEM Mean SEM Mean SEM Mean SEM Ploidy NH Ploidy ×NH

Growth parameters (×in/d)
Initial body weight (g) 17·9a 0·0 14·2b 0·0 19·9a 1·2 16·9b 0·6 0·007 0·001 NS
Final body weight (g) 30·0 0·4 28·8 1·3 35·5 1·1 37·1 1·1 0·000 NS NS
Protein gain (g) 2·1 0·2 2·3 0·2 2·7 0·1 3·1 0·0 0·003 NS NS
Lipid gain (g) 1·1b 0·1 1·8a 0·3 2·2 0·2 2·7 0·2 0·004 0·029 NS
Energy gain (kJ) 105·7b 1·5 132·0a 14·3 148·5 10·6 176·3 9·1 0·005 0·040 NS

Voluntary FI
FI (% BW/d) 1·0 0·1 1·0 0·1 1·2 0·1 1·2 0·0 0·044 NS NS

Nutrient and energy utilisation efficiency (% intake)
Protein retention 41·4b 3·5 53·9a 0·5 41·5 2·1 46·4 2·2 NS 0·011 NS
Lipid retention 50·4b 6·1 92·4a 7·2 72·8 4·0 87·6 3·2 NS 0·002 NS
Energy retention 46·1b 2·8 65·3a 2·0 48·5 1·4 56·6 0·1 NS 0·000 0·043
EPA (20 : 5n-3) retention −8·0b 60·8 165·5a 18·9 − 13·9 15·5 121·8 36·4 NS 0·006 NS
DHA (22 : 6n-3) retention 237·7b 152·1 797·0a 50·5 200·8 34·7 618·5 67·0 NS 0·002 NS

NH, nutritional history; BW, body weight.
a,b Significant differences within a given ploidy.
* Based on their ploidy status (diploid or triploid) and their NH during the stimulus phase (Diet Mstimulus or Diet Vstimulus). Percentage data were arcsine transformed for statistical

analysis. Significance was calculated between ploidy, NH and their interaction (Ploidy ×NH), and was accepted at P<0·05.

Table 6. Whole fish proximate composition before and after the challenge period†
(Mean values with their standard errors, n 3)

Ploidy... Diploid Triploid

NH... Mstimulus Vstimulus Mstimulus Vstimulus P

Mean SEM Mean SEM Mean SEM Mean SEM Ploidy NH Ploidy ×NH

Pre-challenge phase
DM (%) 28·9 0·2 28·3 0·4 28·6 0·0 28·4 0·5 NS NS NS
Lipid – crude (%) 10·2 0·5 9·9 0·3 10·6 0·1 10·1 0·6 NS NS NS
Protein – crude (%) 15·1 0·2 14·6 0·1 14·5 0·0 14·7 0·1 NS NS 0·012
Ash (%) 2·3 0·1 2·2 0·0 2·0 0·0 2·2 0·1 NS NS NS
Energy – gross (kJ/100 g) 7·8 0·1 7·7 0·2 7·9 0·0 7·7 0·2 NS NS NS

Post-challenge phase
DM (%) 30·1* 0·3 30·2* 0·4 31·0* 0·3 30·3* 0·1 NS NS NS
Lipid – crude (%) 10·9 0·3 11·8* 0·4 12·0 0·7 12·0* 0·2 NS NS NS
Protein – crude (%) 15·8 0·3 15·3* 0·0 15·7* 0·3 15·1 0·1 NS 0·031 NS
Ash (%) 2·2 0·1 2·2 0·1 2·1 0·1 2·2 0·1 NS NS NS
Energy – gross (kJ/100 g) 8·2 0·1 8·4* 0·1 8·6* 0·2 8·4* 0·1 NS NS NS

NH, nutritional history.
Significant differences between diets within a given ploidy.
* Significant differences between phases within a given treatment.
† Percentage data were arcsine transformed for statistical analysis.
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V-triploids. Furthermore, EG scoring was significantly higher
post-challenge regardless of nutritional history or ploidy. LP
scoring was generally higher post-challenge, but only sig-
nificantly so in M-triploids, and SEM was significantly higher in
triploids post-challenge.

Discussion

The present study confirmed that a short exposure to a
vegetable-based diet (Diet Vstimulus) during first exogenous
feeding prepared or adapted Atlantic salmon, irrespective of
ploidy, to better utilise a similar diet (Diet Vchallenge) when
challenged later in life. This result is consistent with a previous
trial which demonstrated a physiological adaptation in rainbow
trout (O. mykiss) through nutritional programming(33). In addi-
tion, the present study showed that while this ‘nutritional pro-
gramming’ effect was highly significant in diploid salmon, the
effect was also clearly apparent in triploid salmon albeit the

greater variation in the triploid data often reduced the sig-
nificance of these responses.

Throughout the majority of the trial, there was no significant
difference in survival rates between nutritional histories within
each ploidy. However, a difference was detected in the stimulus
phase. V-fish showed a lower survival rate irrespective of
ploidy. The same trend was found for growth during the
stimulus phase as V-fish showed a lower growth rate. Reluctance
to feed on vegetable-based diets is well documented in salmon
and other species, especially when first presented(48–50) and so it
is likely that the greater mortality and lower growth in V-fish was
initially because of the poor acceptance of Diet Vstimulus leading to
reduced FI, although this could not be accurately measured in the
first feeding fry in the present study. Failure or impaired estab-
lishment of first feeding of Diet Vstimulus may be explained by the
physiological characteristics of a carnivorous teleost. Typically,
Atlantic salmon develops anatomically according to the type and
level of nutrients present in the maternal egg reserves(51). This has

Table 7. Fatty acid compositions (% fatty acid methyl esters) of whole body, liver and pyloric caeca before and after the challenge phase†
(Mean values and standard deviations, n 3)

Pre-challenge phase Post-challenge phase

Ploidy... Diploid Triploid Diploid Triploid

NH... Mstimulus Vstimulus Mstimulus Vstimulus Mstimulus Vstimulus Mstimulus Vstimulus

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Whole body (%)
Total saturated 25·3a 0·3 24·1b 0·3 25·0 1·1 24·2 0·8 19·1* 0·7 18·9* 0·6 18·7* 0·5 18·4* 0·2
Total monoenes 46·5 0·6 47·1 0·6 46·8 0·8 46·7 0·5 50·9* 0·6 51·2* 0·6 52·1* 0·6 52·1* 0·1
18 : 2n-6 4·7 0·1 5·0 0·2 4·7b 0·1 4·9a 0·1 11·4* 0·7 11·5* 0·7 11·9* 0·6 11·9* 0·3
20 : 4n-6 0·5 0·0 0·5 0·0 0·5 0·0 0·5 0·0 0·7* 0·0 0·7* 0·0 0·7* 0·0 0·7* 0·0
Total n-6 PUFA 6·3 0·1 6·7 0·2 6·3 0·2 6·6 0·2 14·7* 0·8 14·8* 0·9 15·4* 0·7 15·3* 0·5
18 : 3n-3 0·9 0·0 1·1 0·1 0·9b 0·0 1·0a 0·0 3·0* 0·2 3·00* 0·2 3·1* 0·2 3·2* 0·1
20 : 5n-3 4·0 0·0 4·0 0·2 4·1 0·2 4·2 0·0 2·0* 0·2 2·0* 0·2 1·7* 0·2 1·8* 0·1
22 : 6n-3 12·4 0·1 12·4 0·6 12·2 0·4 12·6 0·4 6·8* 0·5 6·7* 0·7 5·7* 0·6 6·0* 0·4
Total n-3 PUFA 21·0 0·1 21·2 0·8 21·1 0·7 21·6 0·4 14·8* 0·7 14·6* 0·9 13·4* 0·7 13·8* 0·6
Total PUFA 28·3 0·3 28·8 0·9 28·2 0·9 29·1 0·6 30·0* 0·3 29·9 0·3 29·2 0·1 29·5 0·1

Liver (%)
Total saturated 26·8 0·6 26·6 1·5 26·6 0·5 26·3 1·2 16·2* 1·1 17·2* 1·2 18·3* 1·1 17·7* 1·6
Total monoenes 27·5 1·1 29·7 5·2 27·8 3·5 29·5 1·9 50·8* 2·1 50·8* 3·0 47·8* 2·4 50·3* 4·8
18 : 2n-6 2·4 0·1 2·4 0·2 2·4 0·3 2·4 0·1 9·3* 0·9 9·0* 0·4 8·2* 0·7 9·0* 0·8
20 : 4n-6 3·1 0·2 2·9 0·4 2·9 0·3 2·9 0·2 4·6* 0·8 4·3* 0·4 5·2* 0·9 4·7* 1·1
Total n-6 PUFA 7·2 0·1 7·0 0·2 7·2 0·1 7·1 0·2 19·6* 0·9 19·4* 0·0 19·2* 0·5 19·4* 0·9
18 : 3n-3 0·3 0·0 0·3 0·0 0·3b 0·1 0·3a 0·0 1·2* 0·2 1·2* 0·0 1·1* 0·1 1·2* 0·1
20 : 5n-3 5·9 0·2 5·8 0·4 6·0 0·2 6·0 0·1 1·4* 0·2 1·4* 0·3 1·7* 0·3 1·5* 0·3
22 : 6n-3 30·3 1·4 28·8 3·5 29·9 3·3 28·8 1·2 9·5* 0·6 8·8* 1·4 10·5* 1·2 8·7* 2·0
Total n-3 PUFA 38·4 1·0 36·7 3·8 38·3 3·3 37·1 1·1 13·3* 0·7 12·7* 1·8 14·6* 1·4 12·6* 2·3
Total PUFA 45·7 1·1 43·7 3·9 45·6 3·2 44·2 1·1 32·9* 1·5 32·1* 1·8 33·9* 1·3 32·1* 3·2

Pyloric caeca (%)
Total saturated 27·9 0·7 27·2 0·4 27·7 0·5 27·7 0·5 19·1* 0·5 18·2* 0·4 17·8* 0·8 17·8* 0·4
Total monoenes 45·3 0·1 44·1 0·9 43·2 0·2 42·5 2·7 50·0* 0·8 50·2* 0·3 52·0a* 0·5 50·0b* 0·7
18 : 2n-6 4·6 0·2 4·6 0·2 4·6 0·2 4·5 0·1 11·3b* 0·3 12·1a* 0·3 12·3* 0·5 12·6* 0·9
20 : 4n-6 0·6 0·0 0·6 0·0 0·7 0·0 0·8 0·2 1·1* 0·1 1·2* 0·1 0·9* 0·1 1·2 0·2
Total n-6 PUFA 6·2 0·2 6·4 0·2 6·4 0·2 6·4 0·3 15·5b* 0·3 16·9a* 0·6 16·5* 0·7 17·4* 1·5
18 : 3n-3 0·9 0·0 0·9 0·0 0·9 0·0 0·9 0·0 2·7b* 0·1 3·0a* 0·0 3·1* 0·2 3·1* 0·3
20 : 5n-3 3·4 0·3 3·5 0·2 3·5 0·1 3·5 0·2 1·8* 0·1 1·5* 0·2 1·5* 0·1 1·5* 0·4
22 : 6n-3 12·3b 0·3 13·8a 0·6 14·2 0·5 15·3 2·3 7·6* 0·6 7·2* 0·4 5·9* 0·2 7·2* 0·8
Total n-3 PUFA 19·8b 0·5 21·5a 0·7 21·8 0·5 22·7 2·6 15·0* 0·4 14·4* 0·9 13·3* 0·3 14·4* 1·0
Total PUFA 26·8b 0·7 28·7a 0·8 29·0 0·4 29·9 2·9 30·9* 0·4 31·6* 0·6 30·1b* 0·5 32·2a 0·7

NH, nutritional history.
a,b Significant differences between diets within a given ploidy.
* Significant differences between phases within a given treatment.
† Based on their ploidy status (diploid or triploid) and their NH during the stimulus phase (Diet Mstimulus or Diet Vstimulus). Percentage data were arcsine transformed for statistical

analysis. Significance was calculated between NH within each ploidy and was accepted at P<0·05.
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been reviewed in several species concerning important orga-
nismal systems including reproductive structure and perfor-
mance(52). With regards to the gastrointestinal tract (GIT),
morphological and functional differentiation occurs in the very
early life stages and is influenced by environment and nutri-
tion(53). Overall, triploids had a lower survival rate during the
stimulus and marine phases, which was consistent with previous
studies(54–56). Similarly, lower growth rates in triploid Atlantic
salmon fry during the stimulus phase was also consistent with
previous studies(57,58). The experimental diets used in the present
study were generally based on formulations for diploid salmon,
and recent studies have indicated that triploid Atlantic
salmon may have different nutritional requirements for certain
physiological development, principally during the freshwater
stage(37,38,59,60). One may speculate that the increased proportions
of vegetable-based proteins and oils currently used in commercial
salmon feeds may have reduced nutrient bioavailability compared
with FM/FO diets, which could perhaps highlight dietary defi-
ciencies for triploids. However, high-quality protein concentrates
have shown to be similar or more digestible than FM(61,62). The
reduced performance and survival of triploid fry during the
stimulus phase may be explained by missing micronutrients in
the formulation(63,64). Also, this drawback may not be solely
consequent of nutritional deficiency, but ploidy itself should be
considered as a factor.
At the end of the stimulus phase V-fish were about 30%

smaller than M-fish, which was a potential confounding factor
during the rest of the trial as fish size itself affects subsequent
fish performance. This was taken fully into account in the
present study. Ideally, therefore, the stimulus phase should not
induce any major phenotypic changes. Very recent data on
early nutritional stimuli suggested that 3 d may be sufficient

to prompt a physiological adaptation to diet in zebrafish
(D. rerio)(35), although species-specific variation should not be
excluded. During the marine phase, M-diploids had a higher
growth rate than V-diploids. As discussed above, the difference
in BW at the beginning of this phase could have had some
impact on growth rate, but another factor could be potentially
reduced acceptability of the commercial diet in V-fish. An
investigation of nutritional programming in rainbow trout
(O. mykiss) concluded that early nutritional intervention can
alter transcriptional and physiological characteristics of the
olfactory and gustatory systems to suit specific feed formula-
tions(33,65). Therefore, in this respect we can speculate that
M-fish were already adapted for a commercial diet, whereas
V-fish would have required time to adapt to it. FI was not
measured at this point but was determined at the end of the
marine phase when no difference between M-fish and V-fish
was observed.

There was no difference in survival rate between fish during
the challenge phase, but V-fish demonstrated significantly
higher growth rates than M-fish. The switch in performance in
response to Diet Vchallenge had a positive effect that appeared to
be related to the initial dietary stimulus. V-fish adapted to Diet
Vchallenge better than M-fish suggesting there was a degree of
memory to the dietary stimulus. It has been previously descri-
bed that environmental triggers can influence ‘multidimensional
plasticity’ in different organisms, and suggested that transcrip-
tional and physiological changes during early development
could significantly affect the resilience of these organisms to
different stressors(66). The weights of V-fish at the end of the
challenge phase were not higher than those of M-fish, because
of the fact that V-fish were initially smaller due to lower growth
during the stimulus and marine phases. However, the weights

Table 8. Total scores and individual scores before and after the challenge phase for the different parameters used to determine
severity of enteritis(42)†
(Mean values with their standard errors, n 3)

Ploidy... Diploid Triploid

NH... Mstimulus Vstimulus Mstimulus Vstimulus P

Mean SEM Mean SEM Mean SEM Mean SEM Ploidy NH Ploidy ×NH

Pre-challenge phase
LP 1·2 0·2 1·8 0·6 1·4 0·3 1·3 0·3 NS NS 0·027
EG 1·1 0·1 1·2 0·3 1·1 0·2 1·1 0·2 NS NS NS
SEM 1·1b 0·3 1·4a 0·2 1·2 0·2 1·3 0·4 NS NS NS
IEL 2·0 0·4 2·0 0·4 2·1a 0·2 1·7b 0·3 NS 0·017 NS
MFBMA 1·1 0·2 1·4 0·2 1·2 0·1 1·4 0·2 NS NS NS
Total 6·5 0·9 7·8 1·4 7·1 0·4 6·8 1·1 NS NS NS

Post-challenge phase
LP 1·6* 0·5 1·8 0·2 1·8 0·5 1·6 0·4 NS NS NS
EG 1·3* 0·2 1·5* 0·3 1·5* 0·3 1·5* 0·3 NS NS NS
SEM 1·3b 0·3 1·7a 0·2 1·8* 0·3 1·8 0·3 0·001 0·007 0·034
IEL 1·7 0·5 2·1 0·5 2·0 0·5 2·0 0·4 NS NS NS
MFBMA 1·3 0·3 1·5 0·3 1·4 0·4 1·5 0·3 NS NS NS
Total 7·2b 1·2 8·5a 0·8 8·5 1·6 8·4* 0·9 NS NS NS

NH, nutritional history; LP, lamina propria; EG, eosinophilic granulocytes; SEM, sub-epithelial mucosa; IEL, intra-epithelial lymphocytes; MFBMA, mucosal
fold base mitotic activity.

a,b Significant differences between diets within a given ploidy.
* Significant differences between phases within a given treatment.
† Based on their ploidy status (diploid or triploid) and their NH during the stimulus phase (Diet Mstimulus or Diet Vstimulus). Significance was calculated

between ploidy, NH and their interaction (Ploidy ×NH), and was accepted at P<0·05.
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were comparable between nutritional histories, confirming the
greater weight gain and higher growth rate (TGC) in V-fish
during the challenge. The higher growth performance was
reflected in greater protein, lipid, and energy gains of V-fish
compared with M-fish during the challenge phase. Although
these differences were generally not statistically significant, with
the exception of lipid and energy gain in diploids, every nutrient
group showed higher values in V-fish. Moreover, there was a
ploidy effect as triploids appeared to gain significantly more
macronutrients than diploids which has previously been reported
in increased lipid uptake(67). This may indicate physiological and
metabolic differences between ploidy, with increased storage
capacity as a consequence of larger cells being hypothesised(68).
An earlier study suggested that morphological differences in the
GIT, predominantly caused by a reduction in intestinal cell
numbers, could hinder the gut’s absorptive capability and there-
fore the intestinal efficiency of nutrient absorption in triploid
salmon compared with diploid siblings(69). Therefore, the data in
the present study were not consistent with this hypothesis and
highlighted the need for further research into the effects of ploidy
on GIT morphology, physiology, enzymatic activities and intest-
inal nutrient absorption.
Because of the lower weight of V-fish, FI measurements

during the marine and challenge phases were normalised to
enable comparisons between groups, to account for the effect
of fish weight on consumption rates. Previously, palatability has
been an issue in salmonids fed with feeds containing low levels
of marine and high amounts of plant-derived ingredients as fish
have shown reluctance to consume these diets. Lower volun-
tary FI was observed in a previous study(2) when Atlantic sal-
mon were fed a SBM diet compared with a FM diet during the
initial stages of the trial, although consumption rates were
comparable towards the end of the trial suggesting that the fish
finally accepted the diet possibly reflecting an adaptation to it.
In the present study, there was no difference in FI irrespective
of nutritional history or ploidy either at the end of the marine
phase or during the challenge phase. However, there was a
significant effect of nutritional history on FE, with V-fish having
higher efficiency. Thus, the superior growth performance of
V-fish during the challenge phase was likely the result of
improved dietary nutrient utilisation. Furthermore, FE also
confirmed that nutritional history had opposite effects during
the marine and challenge phases, as previously discussed for
growth performance. Thus, during the marine phase, M-fish
exhibited higher FE compared with V-fish, consistent with the
better growth of the M-fish during this phase, and the reverse
trend was observed throughout the challenge. The FE data
confirmed that the initial, brief exposure of salmon fry to Diet
Vstimulus had a positive impact on these fish when they were
challenged with Diet Vchallenge, and further suggested that
physiological and metabolic changes and adaptations in these
fish were, at least partly, responsible for the observed
improvement in the utilisation of Diet Vchallenge by V-fish. In
contrast, a higher FI in rainbow trout was observed when
re-introduced to a vegetable-based diet after an earlier nutri-
tional stimulus(33), suggesting that exposure to the diet early in
life reduced the aversion of the fish to the challenge diet later in
life. However, the trout initially fed the vegetable-based

diet also showed improved FE when challenged with this diet
later in life. The slight difference in the results between the
earlier trout study and the present salmon study in terms of
palatability may be related to differences in the dietary for-
mulations used. For example, in the trout study the vegetable
diet was completely devoid of marine ingredients (0% FM and
0% FO) and this may have posed an even more extreme
challenge specifically in terms of palatability, but species-
specific response should not be excluded. This highlighted the
importance of optimising dietary formulations based on both
taste preference and utilisation efficiency.

Retention of nutrients and energy was higher in diploid V-fish
during the challenge phase which agreed with data in the
earlier trial in trout mentioned above(33). As with other para-
meters, this was the reverse trend from the previous marine
phase which showed M-fish having better retentions than
V-fish. Although an identical trend for all nutrients was
observed in triploids, no significant differences between M- and
V-triploid salmon were observed in either of the two phases.
The present findings, however, could reflect the limited existing
knowledge on the precise nutritional requirements of triploid
salmon, which have been shown in previous studies to be
higher than in diploids specifically in relation to phos-
phorus(37,59) and histidine requirements(38,60). V-fish positively
retained EPA (20 : 5n-3) during the challenge phase whereas
M-fish showed negative retention and, although DHA
(22 : 6n-3) retention was positive in all fish irrespective of
nutritional history or ploidy, retention was considerably greater
in V-fish. This trend was found within both ploidies, but only
significantly in diploids. Retention of DHA was consistently
greater than that of EPA in all treatments, which is in accordance
with previous reports suggesting selective catabolism of EPA
over DHA in addition to a possible production of the fatty acids
by endogenous biosynthesis pathways(70,71). Thus, when con-
sidering the EPA and DHA retention data, any value that
exceeds 100% will include a proportion of the fatty acids that
were biosynthesised from α-linolenic acid (ALA) (18 : 3n-3). Net
production of DHA has previously been reported when Atlantic
salmon(72) and rainbow trout(73) were fed with high inclusion of
vegetable oil, and therefore low levels of dietary EPA and DHA.
In the present study, net production of EPA was found in V-fish
during the challenge period. This result is consistent with other
studies(73,74) where salmonids had received similarly low levels
of dietary EPA and DHA (0·7% of total FA). The selective
retention of DHA over EPA, possibly tissue (i.e. neural
tissue) specific, has been reported previously in several fish
species(75–77). DHA has a greater physiological importance in
cell membrane composition and function when compared with
EPA and therefore a higher valued essential fatty acid. The
greater retention of both EPA and DHA in V-fish found in this
study may reflect one possible and obvious metabolic
adaptation in V-fish. It is likely that there is increased LC-PUFA
biosynthesis through up-regulation of fatty acyl desaturase
and elongase activities(76,78). In an earlier trial in sea bass
(Dicentrarchus labrax)(79), expression of Δ-6 desaturase (Δ6D
or fads2d6) was up-regulated in juveniles that had been pre-
viously fed an n-3 LC-PUFA-deficient diet as larvae. The Δ6D
enzyme is the reported rate-limiting step in the conversion of
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ALA to EPA(80). However, the early nutritional stimulus had no
major effect on the final fatty acid compositions of either whole
body or tissues in the present study. Perhaps as expected, fish
and tissue fatty acid profiles at the end of the challenge phase
reflected the dietary fatty acid compositions and therefore
showed increased percentages of plant-derived C18 fatty acids
(18 : 1n-9, 18 : 2n-6 and 18 : 3n-3) and decreased proportions
n-3 LC-PUFA (EPA and DHA) in all treatment groups with no
major influence of nutritional history (or ploidy)(81). This
change in tissue fatty acid profiles is in accordance with many
studies on FM and FO substitution with alternative vegetable-
based diets in salmon(71,82–86). It is well established that,
whereas up-regulation of LC-PUFA biosynthesis through
increased expression and activity of fatty acid desaturase
activities is a consistent response to vegetable diets in salmon,
it is not sufficient to fully compensate for the lack of dietary EPA
and DHA(81,87). However, the challenge phase was 6 weeks,
which is relatively short compared with most earlier studies on
the effects of FO replacement with vegetable oils, and the
differences in EPA and DHA retention between V- and M-fish
recorded in the present study are large, and so it would be
interesting to confirm if these would translate into higher levels
of these key LC-PUFA in V-fish after longer feeding.
Overall, there were few notable differences in intestinal

morphology before and after the challenge phase. Many of the
earlier incidences of morphological changes in the gut and
enteritis in Atlantic salmon were specifically related with the use
of SBM in the diet(8–9,88). Aqueous alcohol extraction of proteins
from soyabeans or soya flour for the manufacturing of SPC, as
used in the present study, reduces contents of specific ANF
including saponins, lectins and soy-antigens(14,16), which have
been shown to be implicated in intestinal inflammation in
salmon fed SBM(12,89). Still, a significant difference in inflam-
mation was found in V-diploids compared with M-diploids after
the challenge phase. In a similar study investigating nutritional
programming in zebrafish (D. rerio)(35), fish previously exposed
to SPC were shown to be more prone to intestinal inflammation
when refed SPC than groups that had never been exposed
to it. Although further processing of diets seem to be reducing
incidence of enteritis, the present result suggests that further
refinements are needed to equal the responses to current diets.
The only treatment that showed an increase in the total scoring
of intestinal integrity from pre- to post-challenge analysis was
V-triploids. This could suggest that triploid salmon may be more
sensitive to vegetable-based diets than their diploid counter-
parts and again highlighted the lack of knowledge regarding
effects of ploidy on salmon morphological and physiological
responses.

Conclusions

The present study has indicated that nutritional programming
may help to improve utilisation of a diet and reduce potential
negative impacts associated with the use of alternative raw
materials in aquafeeds. In particular, the present study has
successfully demonstrated for the first time that Atlantic salmon
can be adapted to utilise a vegetable-based diet more efficiently
after an early nutritional intervention. Further optimisation of an

effective stimulus both in terms of diet formulation and duration
may further unlock the potential of this strategy. Importantly,
the potential of salmon to apparently be programmed to be net
producers of EPA and DHA should be further investigated.
Biosynthesis of these health-promoting n-3 fatty acids shows
promise when considering the limitation of raw material
sources. Several metabolic pathways and key biochemical and
physiological regulators have shown to be influenced in
response to consumption of vegetable-based diets in Atlantic
salmon(90,91). Therefore, further studies are in progress to
determine the molecular mechanisms potentially involved in
this physiological adaptation.
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