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 Background: We aimed to develop and evaluate a deep learning-based method for fully automatic segmentation of knee 
joint MR imaging and quantitative computation of knee osteoarthritis (OA)-related imaging biomarkers.

 Material/Methods: This retrospective study included 843 volumes of proton density-weighted fat suppression MR imaging. A con-
volutional neural network segmentation method with multiclass gradient harmonized Dice loss was trained 
and evaluated on 500 and 137 volumes, respectively. To assess potential morphologic biomarkers for OA, the 
volumes and thickness of cartilage and meniscus, and minimal joint space width (mJSW) were automatically 
computed and compared between 128 OA and 162 control data.

 Results: The CNN segmentation model produced reasonably high Dice coefficients, ranging from 0.948 to 0.974 for 
knee bone compartments, 0.717 to 0.809 for cartilage, and 0.846 for both lateral and medial menisci. The OA-
related biomarkers computed from automatic knee segmentation achieved strong correlation with those from 
manual segmentation: average intraclass correlations of 0.916, 0.899, and 0.876 for volume and thickness of 
cartilage, meniscus, and mJSW, respectively. Volume and thickness measurements of cartilage and mJSW were 
strongly correlated with knee OA progression.

 Conclusions: We present a fully automatic CNN-based knee segmentation system for fast and accurate evaluation of knee 
joint images, and OA-related biomarkers such as cartilage thickness and mJSW were reliably computed and vi-
sualized in 3D. The results show that the CNN model can serve as an assistant tool for radiologists and ortho-
pedic surgeons in clinical practice and basic research.
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Background

Osteoarthritis (OA), the most common form of chronic arthri-
tis, is a multifactorial joint degenerative disease that can cause 
disability [1]. It typically affects weight-bearing joints, such as 
the knee, in up to 50% of the population over the age of 65 
years [2]. Effective therapies to treat OA are limited, and pre-
vention efforts, such as weight reduction and lifestyle change, 
can be managed only at early stages. Partial or total joint re-
placement is an invasive and expensive remedy, and the ar-
tificial joints can fail after 10 to 15 years [3]. Therefore, ear-
ly diagnosis, monitoring, and severity staging is essential for 
treating patients with knee OA.

Although OA pathogenetic and progression mechanisms re-
main unclear, there are specific changes that occur in carti-
lage, menisci, subchondral bone, and other joint tissues that 
could provide useful imaging biomarkers [1,4-8]. MRI is the 
recommended imaging modality for assessing OA-related soft 
tissues, such as cartilage and menisci, to diagnose OA, stage 
the disease, and monitor treatment responses [9]. MRI-based 
quantification of articular cartilage volume, thickness, and 
minimal joint space width (mJSW) has been widely investi-
gated [10,11]. Quantification of such knee joint morphologi-
cal signatures requires careful review and manual segmenta-
tion of cartilage from MRI sequences, which is time-consuming 
and subject to inter-observer variability [12]. To address these 
problems, a fully automated multiple object knee segmenta-
tion system is necessary to efficiently and accurately extract 
OA-related biomarkers.

The mJSW is the only structural measurement approved by the 
US Food & Drug Administration for studying OA treatments 
in phase III clinical trials, and it is both a potential surrogate 
endpoint and an important parameter in total knee arthro-
plasty [13,14]. The mJSW is defined as the distance between 
the femoral and tibial subchondral bone margins on 2-dimen-
sional (2D) radiographs [15], which can be performed manually 
with a lens and a rule, by semi-automated methods, or by ful-
ly automated methods [16]. Compared to measurements with 
2D radiographs, 3D MRI-based measurement of the mJSW is 
assumed to be more accurate without possible errors caused 
by beam projection [15,17].

In recent years, considerable efforts have been made to devel-
op automatic algorithms to extract quantitative OA morphol-
ogy measurements [18]. There is a need for a fully automatic, 
fast, and accurate knee segmentation method for automated 
quantification. Artificial intelligence (AI) has grown dramatical-
ly and has been widely applied in the medical field, including 
in computer-aided diagnosis, prediction of patient outcomes, 
and individual treatment decision making [19,20]. AI can help 
achieve a faster clinical workflow, more accurate diagnosis rate, 

and more efficient population and personal health manage-
ment. Machine learning is a subcategory of AI that can make 
predictions and decisions on new data without a specific pro-
gram by using pretrained models [20]. Deep learning is a sub-
field of machine learning that has recently become popular in 
medical image analysis applications, which is different from 
traditional machine learning in how image representations are 
learned from the raw data [21]. Deep learning uses neural net-
work processing layers in computational models to learn rep-
resentations of data with multiple levels of abstraction, which 
do not require labels [20,22]. As an end-to-end model, convo-
lutional neural networks (CNNs) have gained tremendous in-
terest and have pushed the limit of automated image analysis 
to an unprecedented level in the field of medical imaging [23]. 
Deep CNN architecture can automatically learn a hierarchical 
representation of image patterns and subsequently identify 
the most significant features in medical images [21]. This ap-
proach could improve the efficiency of OA image analysis in 
clinical practice and basic research [24-26].

In this work, we propose a deep learning-based, fully automat-
ic method for morphological assessment of multiple knee tis-
sues that enables automatic calculation of the volume, thick-
ness of cartilage and meniscus, and mJSW in 3D MRI data. We 
evaluated the performance of the fully automated system and 
its applicability to knee OA progression studies and compared 
it with manually segmented results.

Material and Methods

Study Population and Dataset

This retrospective study was approved by the institutional 
board, informed patient consent was waived, and all infor-
mation and imaging data were under the control of authors 
throughout the study. Between January 2017 and May 2019, 
we collected 843 participant images of 843 volumes from the 
Second Hospital of Jilin University. Dataset demographic infor-
mation is shown in Table 1.We used the MRI of sagittal pro-
ton density-weighted fat suppression sequences (PD-FS) ac-
quired from 3 groups of patients with menisci tear, anterior 
cruciate ligament injuries, and OA (Kellgren-Lawrence grade 
>1). All MR scanning was performed on a GE Optima MR430s 
1.5T (field of view, 160×160 mm; dimensions 512×512×20; vox-
el spacing 0.35×0.35×4.5 mm; slice thickness, 3.5 mm; spac-
ing between slices, 4.5 mm; repetition time, 2000 msec; echo 
time, 36.0 msec; flip angle, 90), and GE Discovery MR750 3.0T 
(field of view, 160×160 mm; dimensions 512×512×20; voxel 
spacing 0.35×0.35×4.5; slice thickness, 3.5 mm; spacing be-
tween slices, 4.5 mm; repetition time, 2600 msec; echo time, 
34.0 msec; flip angle, 90).
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In the first part, we evaluated the performance of knee im-
age segmentation using 500 and 137 volumes for training and 
testing, respectively. In the second part, for evaluation of bio-
marker correlation between the OA and control groups, we 
used data from 162 control and 128 OA participants. The con-
trol group inclusion criteria did not include anterior cruciate 
ligament injure. The detailed study population selection pro-
cess and experimental group flowchart is shown in Figure 1.

Region of Interest Delineation and Network Architecture of 
3D V-Net

The dataset was manually and independently delin-
eated by 2 radiologists using ITK-SNAP 3.6.0 software 
(http://www.itksnap.org/pmwiki/pmwiki.php) under the su-
pervision of radiologist Dr. Liu (12 years of experience) and or-
thopedic surgical specialist Prof. Qin (19 years of experience). 

The regions of interest (ROIs), including the femur, tibia, car-
tilage of the femur and tibia, and menisci (lateral and medi-
al) were manually delineated. We randomly selected the same 
10 participants to validate the intraclass correlation (ICC) be-
tween the 2 radiologists on the volume of the bone, cartilage, 
and meniscus. The average ICC value was 0.988, which indi-
cated the reliability of the manual segmentation. During the 
manual segmentation, the radiologists discussed the difficult 
subjects and uncertain structures to confirm the reliability of 
the manual segmentation.

In the training stage, a coarse-to-fine segmentation method 
was trained using two 3D V-Net models with MRI of different 
resolutions, given that the use of a single image resolution 
does not yield the best segmentation results. At the coarse 
level, the object boundary is not accurately delineated because 
shape details are lost during image downsampling. Conversely, 

Datasets Model training set Model test set Clinical test set

Patients (n) n=500 n=137 n=206

Age (years)  46  (32-56)  43 (32-54)  53 (40-62)

 Male  40.6  (27.75-52)  36 (29.5-49.5)  44 (33-57)

 Female  49  (33.75-59)  52 (40-60.25)  56 (48-65)

Sex

 Male (%)  246  (49.2)  66 (48.2)  72 (35)

 Femal (%)  254 (50.8)  71 (51.8)  134 (65)

Magnetic strength

 1.5T (%)  283 (56.6)  70 (51.1)  136 (66)

 3.0T (%)  217 (43.4)  67 (48.9)  70 (34)

Side

 Left (%)  247 (49.4)  75 (54.7)  99 (48)

 Right (%)  253 (50.6)  62 (45.3)  107 (52)

Cohort (%)  OA: n=167 (33.4)  OA: n=46 (33.5)  OA: n=82 (40.2)

 ACL/MI: n=174 (36.8)  ACL/MI: n=53 (38.7)  Control: n=124 (60.8)

 Control: n=159 (31.8)  Control: n=38 (27.7)

Typical parameters

GE Optima MR430s 1.5T: Filed of view, 160×160 mm;Dimensions 512×512×20; 
voxel spacing 0.35×0.35×4.5 mm; slice thickness, 3.5 mm; spacing between slices, 4.5 mm; 
Repetition Time, 2000 msec; Echo Time, 36.0 msec; fiip angle, 90. GE Discovery MR750 3.0T: 
Filed of view, 160×160 mm; Dimensions 512×512×20; voxel spacing 0.35×0.35×4.5; 
slice thickness, 3.5 mm; spacing between slices, 4.5 mm; Repetition Time, 2600 msec; 
Echo Time, 34.0 msec; fiip angle, 90

Table 1. Dataset demographic breakdown.

Unless otherwise specified, data in parentheses are percentages. ACL – anterior cruciate ligament injury; MI – meniscus injury; 
OA – osteoarthritis. The data of the OA and control group in model testing and clinical test set are added together to make 
nonparametric test for quantitative biomarkers identification.
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Knee joint MRI PD-FS from January 2017 to May 2019 on our hospital (n=843)
OA group con�rmed by arthroscopic, control group con�rmed by the radiologist and arthopedic surgical specialist

Dataset dor knee joint auto segmentation (n=674)

MRI scans data from 4 machines with
signi�cantly di�erent pixel spacing (n=37)

Training data for segmentation (n=500)

Dataset for quantitative biomarkers extraction (n=377)

1. Postoperative examination ACL or MI (n=86)
2. Fracture missing segmentation (n=1)

Control group
(n=162)

OA group
(n=128)

Test data for segmentation and
quantative biomarkers (n=137)

Figure 1.  The data flow and exclusion process from the data set in this study. (Microsoft Powerpoint 2010).
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Figure 2.  The illustration of the convolutional neural network architecture used in this study. (Microsoft Powerpoint 2010).
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the fine resolution representation contains sufficient image 
details at the cost of missing global context due to the small-
er receptive field size of the network [27]. Therefore, our ap-
proach consisted of a coarse-to-fine segmentation method 
that first localized the ROI from the entire MRI volume by le-
veraging the global 3D context at a resolution of 1 mm, then 
segmented the target bones and soft tissues with local image 
details at a resolution of 0.32 mm. The coarse model removed 
a large amount of unrelated background region, so the fine 
model could more efficiently be trained to extract the most 
relevant features from the local background.

The network architecture is illustrated in Figure 2. At each 
downsampling step, we doubled the number of features (left 
side) through a 2×2×2 max pooling operation with a stride of 
2, while each upsampling step was followed by a 2×2×2 con-
volution. The skip connection concatenated the feature maps 
on the contraction path with those on the expansion path to 
increase segmentation spatial resolution. Gradient harmonized 
Dice loss [28] was introduced as an extension to convention-
al cross-entropy loss in order to focus the training on hard-to-
classify samples by down-weighting easily classified samples.

Quantitative Biomarker Extraction

To classify OA patients and controls, 4 quantitative biomark-
ers specifically for OA features were computed, including vol-
ume, thickness, mJSW, and tibial coverage of the ROIs. These 
quantitative features were computed from the segmentation 
of the knee joint bone, cartilage, and menisci, as illustrated 
in Figure 3.

(1)  The volumes of femoral cartilage, medial tibial cartilage, lat-
eral tibial cartilage, lateral meniscus, and medial meniscus 
were directly computed from the corresponding segmenta-
tion masks. The volumes of interest in magnetic resonance 
images were based on voxel spacing of 0.35×0.35×4.5 mm 
and voxel number.

(2)  The thicknesses of femoral cartilage, tibial cartilage, and 
menisci were computed based on several segmentation 
surfaces including femoral cartilage/bone interface, tibi-
al cartilage/bone interface, and menisci surface. For car-
tilage, multiple vertical lines along the cartilage/bone in-
terface surface were generated through triangle meshes 
[29], and then cartilage thickness was estimated by cal-
culating the length of the vertical line segment within the 

A

C

B

D

Figure 3.  Illustration of method for biomarker calculation used in this study. (A) Diagram of volumes calculation; (B) diagram of 
joint space width calculation; (C) diagram of tibial coverage calculation; (D) diagram of thicknesses calculation for femoral 
cartilage, tibial cartilage, and menisci. (Microsoft Powerpoint 2010).

e936733-5
Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System]  
[ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica]  
[Chemical Abstracts/CAS]

Tang X. et al: 
Deep learning model in osteoarthritis
© Med Sci Monit, 2022; 28: e936733

CLINICAL RESEARCH

This work is licensed under Creative Common Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)



cartilage mask (unit in mm). Mean thickness was calculat-
ed by averaging thickness along the cartilage/bone inter-
face and could be used to assess cartilage deformation in 
response to compressive loading. Similarly, menisci thick-
ness was estimated by generating vertical lines along the 
menisci surface.

As shown in Figure 4, we generated colormaps of cartilage thick-
ness and overlaid them on the reconstructed femur and tibia 
with ParaViewer 5.9. The colormaps provided 3D visualization 
about the affected areas of the cartilage more conveniently.

(3)  The mJSW was measured as the minimum Euclidean dis-
tance between the femoral and tibial bone surfaces. Figure 5 
shows the mJSW with the 3D reconstructed knee joint us-
ing ITKSNAP 3.6.

(4)  The tibial coverage was calculated as the percentage of the 
tibial cartilage plateau covered by the menisci on the later-
al and medial sides. A point on the tibial cartilage plateau 
was covered if a perpendicular ray of its surface passed 
through the menisci tissue.

Model Performance Evaluation and Statistical Analysis

First, a multi-compartment model was trained to simultane-
ously segment the compartments of 2 bones (femoral, tibial), 
3 cartilages (femoral, medial tibial, lateral tibial), and 2 me-
nisci (medial, lateral). The model segmentation performance 
was evaluated with the Dice coefficient. Then, the ability of 
automatic quantification to extract biomarkers (volume, thick-
ness, mJSW), was tested with Spearman’s test and ICC be-
tween delineation and segmentation ROIs. All statistical tests 
were performed with SPSS Statistics 26.0 (IBM Corp, Armonk, 
NY, USA). Finally, nonparametric tests were performed to as-
sess the association of quantitative biomarkers between the 
OA and control groups.

Results

In this section, we present our findings of automatic segmen-
tation performance, comparison of biomarker computed from 
manual and automatic segmentation, and the correlation of 
calculated biomarkers with OA.
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Figure 4.  The thickness map and visualization of cartilage between different participants after automatic segmentation. 
(A) Osteoarthritis patient’s femoral cartilage thickness; (B) osteoarthritis patient’s tibial cartilage thickness; (C) control 
subject femoral cartilage thickness; (D) control participant’s tibial cartilage thickness. (ParaViewer 5.9).

e936733-6
Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System]  
[ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica]  
[Chemical Abstracts/CAS]

Tang X. et al: 
Deep learning model in osteoarthritis
© Med Sci Monit, 2022; 28: e936733

CLINICAL RESEARCH

This work is licensed under Creative Common Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)



Automatic Segmentation Performance

For our 3D V-Net, segmentation accuracy was calculated as 
the mean Dice coefficient, as shown in Table 2. The Dice coef-
ficients of bone, cartilage, and menisci on the internal datas-
ets were 0.964 (95% CI: 0.962, 0.966) for femoral bone, 0.948 
(95% CI: 0.944, 0.953) for tibial bone, 0.809 (95% CI: 0.802, 
0.817) for femoral cartilage, 0.745 (95% CI: 0.733, 0.758) for 
lateral tibial cartilage, 0.746 (95% CI: 0.733, 0.758) for medial 
tibial cartilage, 0.846 (95% CI: 0.836,0.856) for lateral menis-
cus, and 0.845 (95% CI: 0.834, 0.857) for medical meniscus. 
The average computation time of automatic segmentation per 

case was about 2 to 3 s with a standard workstation (CPU: Intel 
Xeon E5-2620 v4, 2.10 GHz; GPU: TITAN Xp with 12G memory).

Automatic Extraction of Biomarker Morphology in 
Segmentation Regions

The quantitative biomarkers computed from manual delinea-
tion and automatic segmentation ROIs showed strong corre-
lation by ICC (all greater than 0.8) and R value of Spearman’s 
test (all P<0.001, all R values greater than 0.8). In detail, the 
volume obtained from delineation and segmentation reached 
achieved an average ICC of 0.901 and R value of 0.847 for 

A B

Figure 5.  The illustration of knee joint space width and the location of minimal joint space width (mJSW) after automatic 
segmentation and 3D reconstruction. (A) Diagram of mJSW; (B) detail view. For this example, the location of mJSW is the 
lateral-anterior compartment, which may indicate there was an apparent lateral-anterior symptom for this patient. (Made by 
Itk-Snap 3.6.0).

Multicompartment Training	set Test	set

FB  0.968 (0.967,0.969)  0.964 (0.962-0.966)

TB  0.956 (0.955-0.958)  0.948 (0.944,0.953)

FC  0.825 (0.822,0.828)  0.809 (0.802,0.817)

LTC  0.785 (0.781,0.789)  0.745 (0.733,0.785)

MTC  0.773 (0.768,0.778)  0.746 (0.733,0.758)

LM  0.874  (0.871-0.877)  0.846 (0.836-0.856)

MM  0.872 (0.869-0.876)  0.845 (0.834-0.857)

Table 2. Dice coefficient results of bone, cartilage, and menisci.

Data are presented as mean (95% confidence intervals). FB – femoral bone; FC – femoral cartilage; LM – lateral meniscus; LTC – lateral 
tibial cartilage; MM – medial meniscus; MTC – medial tibial cartilage; TB – tibial bone.
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cartilage, ICC of 0.938 and R value of 0.898 for meniscus, re-
spectively, with a mean absolute difference of 200.716 mm3 for 
cartilage and 46.805 mm3 for meniscus. In particular, the thick-
nesses obtained from delineation and segmentation reached 
an average ICC of 0.854 and R value of 0.819 for cartilage and 
ICC of 0.908 and R value of 0.822 for meniscus, respective-
ly, with a mean absolute difference of 0.103 mm for cartilage 
and 0.11 mm for meniscus (lower than the image resolution). 
The mJSW had an average ICC of 0.899 and R value of 0.818, 
with a mean absolute difference of 0.184 mm. The quantita-
tive biomarker statistical results are shown in Table 3. The 
scatterplots and Bland-Altman plots in Figure 6 clearly show 
strong agreement between the 2 groups of biomarkers com-
puted from manual and automatic segmentation. Therefore, 
the obtained automatic segmentation was used in the study 
to analyze OA-related biomarkers.

Differences in Biomarkers Between the OA and Control 
Groups

Nonparametric tests were performed to assess the associa-
tion of quantitative biomarkers between the OA and control 
groups (Table 4). Significant tendencies toward lower volumes 
of cartilage and meniscus tissues were observed in the OA 
group compared with the control group, and there were low-
er thickness of femoral cartilage and meniscus tissues in OA 

group. The mJSW was also significantly different between the 
2 groups (P=0.001). However, the thickness of tibial cartilage 
did not show a statistically significant difference (P>0.05). To 
clearly show the difference between the OA and control groups, 
Figure 4 shows an example of visualization of the knee carti-
lage thickness map. The distributions of femoral cartilage, lat-
eral tibial cartilage, and medial tibial cartilage thickness re-
veal the affected cartilage areas in patients with OA. Figure 5 
shows the location of minimal JSW in the knee joint, which 
can be helpful for evaluating OA severity and provide infor-
mation to guide total knee arthroplasty.

Discussion

The proposed knee multi-tissue analysis system is fully auto-
matic and efficient and can automatically extract OA-related 
morphology biomarkers from MRI. We found that the volume 
and thickness of cartilage and menisci, except for the thickness 
of the tibial cartilage, as well as mJSW were highly associated 
with the progression of knee joint OA. Moreover, the results 
enrich the application of deep learning on OA and provide a 
useful intelligence tool for radiology and orthopedic specialists.

As previously reported [1], multiple tissues of the knee joint 
should be segmented and quantitatively analyzed to assess 

Biomarkers
Training	set Test	set

MAD ICC R value P value MAD ICC R value P value

Volume 
(mm3)

FC 86.644 0.923 0.89 <0.001 416.48 0.902 0.89 <0.001

LTC 97.886 0.955 0.927 <0.001 56.855 0.913 0.927 <0.001

MTC 181.832 0.938 0.933 <0.001 128.818 0.889 0.933 <0.001

LM 56.978 0.973 0.956 <0.001 39.507 0.944 0.956 <0.001

MM 22.976 0.976 0.957 <0.001 54.108 0.932 0.9857 <0.001

Thickness 
(mm)

FC 0.041 0.88 0.806 <0.001 0.117 0.832 0.806 <0.001

LTC 0.003 0.912 0.854 <0.001 0.062 0.889 0.854 <0.001

MTC 0.059 0.91 0.858 <0.001 0.131 0.841 0.858 <0.001

LM 0.041 0.96 0.908 <0.001 0.081 0.899 0.908 <0.001

MM 0.036 0.959 0.927 <0.001 0.139 0.918 0.927 <0.001

JSW (mm)
L_JSW 0.367 0.895 0.813 <0.001 0.224 0.889 0.813 <0.001

M_JSW 0.275 0.871 0.818 <0.001 0.144 0.909 0.818 <0.001

Coverage (%)
L_Cov 0.06 0.93 0.861 <0.001 5.1 0.873 0.861 <0.001

M_Cov 0.02 0.941 0.892 <0.001 5.7 0.856 0.892 <0.001

Table 3. ICC and Spearman results of morphology analysis for the training and test sets.

MAD, mean absolute difference; ICC, intraclass correlation coefficient; ICC values <0.5, 0.5-0.75, 0.75-0.9, and >0.90 are indicative 
of poor, moderate, good, and excellent reliability, respectively. R value calculated by Spearman’s test; When P value was less than 
0.05, R value 0.8-1.0 was indicative of very strong correlation. FC – femoral cartilage; LM – lateral meniscus; MM – medial meniscus; 
LTC – lateral tibial cartilage; MTC – medial tibial cartilage; JSW – joint space width.

e936733-8
Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System]  
[ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica]  
[Chemical Abstracts/CAS]

Tang X. et al: 
Deep learning model in osteoarthritis
© Med Sci Monit, 2022; 28: e936733

CLINICAL RESEARCH

This work is licensed under Creative Common Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)



knee OA progression and biomechanical changes accurately. 
However, previous studies of automatic and semi-automatic 
knee joint segmentation in MRI mainly focused on the carti-
lage. Fewer studies have been published on segmentation of 
other structures, such as the bones and menisci [30-32]. An 
accurate and robust segmentation technique of bone and car-
tilage is helpful for identifying the bone-cartilage interface on 
MRI, which is a prerequisite in measuring cartilage morpholo-
gy changes in patients with OA [33]. Our model enabled com-
plete multi-tissue automatic segmentation and could simul-
taneously and quickly segment the femur, tibia, menisci, and 
articular cartilage components.

In this study, we adopted a cascade coarse-to-fine 3D U-Net 
to achieve high efficiency and accuracy of multiple knee tis-
sue segmentation in MRI. Most existing deep learning-based 
segmentation methods applied to musculoskeletal structures 
are based on 2D CNNs that perform 2D convolution on sagit-
tal slices [33]. Such methods usually cause limited spatial con-
sistency and smoothness of the segmentation across slices.

We applied this deep learning model based on a large anno-
tated knee MRI dataset (including 637 participants) in 3D and 
achieved better performance than current studies. Norman et al 
used the 2D U-Net to segment articular cartilage and menisci 
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Figure 6.  The scatterplots and Bland-Altman plots show comparisons of OA-related imaging biomarkers including thickness, 
volumetric, joint space width, coverage for segmented structure calculations produced from manual and automatic 
segmentation. (A, C) Scatterplots of mean thickness of medial meniscus (MM)/lateral meniscus (LM) between manual 
and automatic segmentation; (B, D) Bland-Altman Plots of mean thickness of MM/LM between manual and automatic 
segmentation. Note that the mean difference and standard errors of the mean of the Bland-Altman plot were calculated 
using the entire internal dataset. (Scatterplots made by IBM SPSS Statisitc20; Bland-Altman Plots made by MedCalc Version 
20.106).
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based on the Osteoarthritis Initiative (OAI) dataset (176 an-
notated participants). The authors reported an 0.867 mean 
test (of 37 subjects) Dice score [10]. A state-of-the-art convo-
lutional neural network for meniscus segmentation was pro-
posed by Archit et al and achieved 0.802 Dice scores for later-
al meniscus and 0.856 Dice scores for medial meniscus in the 
OAI dataset [33,34]. Liu et al applied 2D SegNet for bone and 
cartilage segmentation on the SKI-10 dataset (100 annotated 
participants) and ranked second in the SKI-10 challenge [35]. 
Our method achieved the highest among scores on the SKI-
10 validation dataset reported in previous publications, with 
Dice values of bone and cartilage of 0.974 for femoral bone, 
0.976 for tibial bone, 0.761 for femoral cartilage, 0.717 for lat-
eral tibial cartilage, and 0.744 for medial tibial cartilage. A rel-
atively high Dice score of 0.846 for both lateral meniscus and 
medial meniscus was obtained in the internal dataset, which is 
the best result to date for meniscus automatic segmentation.

Furthermore, we employed a novel loss function, termed gra-
dient harmonized Dice loss [28], in training the segmentation 
model. This loss function addresses the quantity imbalance 
problem between classes and focuses on hard examples; it can 
also be generalized to multi-class segmentation, as in our study.

Total Control OA P-value

Basic information
Number 290 162 128

Age  49 (35-60)  37.5 (29-48)  60 (53-67) <0.001

Volume (mm3)

FC  10269.5 (9168-11983)  11178 (9486-12837)  9758.5 (8777-10819) <0.001

LTC  2361 (1991-2854)  2458 (2224-3044)  2117 (1824-2588) <0.001

MTC  2184 (1855-2526)  2352 (1964-2678)  2038 (1745.5-2324) 0.003

LM  1631.5 (1346.0-1982)  1696.5 (1449-2090)  1530.5 (1221-1778) <0.001

MM  1898.5 (1561-2224)  1986.5 (1634-2320)  1828 (1437-2125.5) <0.001

Thickness (mm)

FC  1.42 (1.35-1.49)  1.45 (1.38-1.54)  1.38 (1.31-1.45) 0.001

LTC  2.92 (2.67-3.2)  2.91 (2.73-3.21)  2.90 (2.62-3.18) 0.599

MTC  3.07 (2.78-3.3)  3.11 (2.79-3.35)  3.05 (2.76-3.24) 0.137

LM  1.28 (1.12-1.41)  1.32 (1.16-1.46)  1.20 (1.06-1.36) <0.001

MM  1.19 (1.06-1.32)  1.24 (1.13-1.34)  1.16 (1.01-1.28) 0.001

JSW (mm)

L_JSW  3.76 (3.34-4.38)  3.79 (3.44-4.38)  3.71 (3.14-4.38) 0.076

M_JSW  3.49 (3.14-3.93)  3.52 (3.18-4.06)  3.45 (3.00-3.87) 0.061

Min_JSW  3.37 (3.08-3.75)  3.44 (3.16-3.75)  3.19 (2.86-3.63) 0.001

Coverage (%)
L_Cov  47 (40-52)  47 (41-52)  45 (36-52) 0.144

M_Cov  47 (41-53)  48 (42-53)  46 (38-53) 0.059

Table 4. Nonparametric test results of the association between quantitative biomarkers of OA.

FC – femoral cartilage; JSW – joint space width; LM – lateral meniscus; LTC – lateral tibial cartilage; MM – medial meniscus; 
MTC – medial tibial cartilage; OA – osteoarthritis.

Our results showed that the proposed approach can successful-
ly segment multiple knee tissues and provide quantitative mor-
phologic measures with similar accuracies to those obtained by 
radiologists. The level of agreement between the deep learning 
model and radiologists was measured by the Dice score and 
morphological parameters like volumes, thicknesses, and JSW.

From the perspective of potential clinical applications, mJSW 
measurement (the distance between the distal femur and prox-
imal tibia) has become the standard structural outcome for 
clinical trials in knee OA. The computer-assisted joint space 
area measurement (usually assessed in 2D radiographs) is a 
reproducible and cost-effective quantitative method for eval-
uating knee OA [17]. However, the sensitivity of JSW changes 
in radiography critically depends on medial tibia plateau align-
ment for 2D X-ray, which poses a considerable challenge in 
clinical application [36]. Radiographic JSW narrowing as an in-
direct way of assessing cartilage loss is less sensitive than ex-
amining pathological cartilage lesions on MRI. Comprehensive 
3D insights into the multi-tissue pathology of OA with MRI 
could be a superior way to monitor disease progression and 
treatment response.

We were able to automatically evaluate the thickness and 
volume of cartilage and visualized these changes with 3D 
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reconstruction. Furthermore, we automatically measured and 
located the mJSW in a 3D manner on MRI, which, to the best 
of our knowledge, is a new ability. Accurately measuring these 
changes is essential for clinicians, orthopedists, and radiolo-
gists for diagnosing, monitoring, and treating OA. It could also 
be useful for developing and testing knee OA computer-aid-
ed decision systems.

The strengths of this study include that it had relatively large 
datasets and greater segmentation performance than that of 
previous work, but there are still limitations and opportuni-
ties for improvement. First, we did not attempt to explore lon-
gitudinal changes or relationships among cartilage, menisci, 
and JSW measurements. Rather, we focused on improving the 
segment accuracy of the automatic method based on a deep 
learning approach at a single time point. Clear relationships 
of these parameters with clinically important outcomes have 
already been reported. Second, more detailed data on menis-
ci and cartilage can provide clinicians additional information 
to help diagnose and treat OA. We measured and visualized 
subregional cartilage thickness in an intuitive 3D manner, and 
an automatic JSW calculation also can indirectly reflect articu-
lar cartilage and meniscus changes. Finally, there was a lack of 
an appropriate comparison with our approach. We chose man-
ual segmentation as the reference standard, but this is always 
affected by segment variability. Despite these shortcomings, 
our results in different datasets and modalities prove the ro-
bustness of our network.

Conclusions

In conclusion, accurate and precise automated segmentation of 
knee images can facilitate rapid extraction of morphologic fea-
tures in clinical trials and research applications. We developed 
a fully automated knee MR analysis system based on a novel 
CNN and evaluated its real-world performance with multiven-
dor, multiparameter, heterogeneous data from patients with 
musculoskeletal disease, which demonstrated that it can reli-
ably extract morphologic features from knee OA. Additionally, 
we presented a 3D reconstruction map to visualize cartilage 
morphologic and joint spacing features, which is useful for di-
agnosis, surgical treatment planning, and preoperative patient-
doctor communication. This approach is appropriate to clinical 
practices, such as computer-aided preoperative planning and 
routine musculoskeletal readings by radiologists.
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