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The adaptive transition of glioblastoma stem cells and its
implications on treatments
Zeyu Wang1, Hao Zhang1, Shengchao Xu1, Zhixiong Liu1,2 and Quan Cheng 1,2,3

Glioblastoma is the most malignant tumor occurring in the human central nervous system with overall median survival time
<14.6 months. Current treatments such as chemotherapy and radiotherapy cannot reach an optimal remission since tumor
resistance to therapy remains a challenge. Glioblastoma stem cells are considered to be responsible for tumor resistance in treating
glioblastoma. Previous studies reported two subtypes, proneural and mesenchymal, of glioblastoma stem cells manifesting
different sensitivity to radiotherapy or chemotherapy. Mesenchymal glioblastoma stem cells, as well as tumor cells generate from
which, showed resistance to radiochemotherapies. Besides, two metabolic patterns, glutamine or glucose dependent, of
mesenchymal glioblastoma stem cells also manifested different sensitivity to radiochemotherapies. Glutamine dependent
mesenchymal glioblastoma stem cells are more sensitive to radiotherapy than glucose-dependent ones. Therefore, the transition
between proneural and mesenchymal subtypes, or between glutamine-dependent and glucose-dependent, might lead to tumor
resistance to radiochemotherapies. Moreover, neural stem cells were also hypothesized to participate in glioblastoma stem cells
mediated tumor resistance to radiochemotherapies. In this review, we summarized the basic characteristics, adaptive transition and
implications of glioblastoma stem cells in glioblastoma therapy.
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BACKGROUND
Glioblastoma (GBM), classified as grade IV glioma, is a highly
aggressive and heterogeneous tumor in the central nervous system.
Standard treatments of GBM include maximal surgical resection and
following radiochemotherapies, which is also known as the STUPP
protocol.1 Nevertheless, the average overall survival time is still
<14.6 months for newly diagnosed GBM patients and 6.9 months for
recurrence GBM patients.2 Novel treatments such as anti-angiogenic
therapy,3 immunotherapy4,5 and tumor-treating electric fields6 were
proposed recently but their efficacies were still unsatisfied. GBM is
categorized into four subtypes based on their molecular character-
istics: proneural, neural, mesenchymal and classical gliomas,7–9 and
patients’ prognoses varied among those subtypes. In primary GBM,
the mesenchymal GBM is the most aggressive type while the
proneural GBM is associated with a relatively better overall survival
compared to other subtypes. Moreover, mostly primary GBM
experiences the subtype switch at relapse, in which mesenchymal
GBM is the most stable subtype.10 Therefore, this GBM subtype switch
is reckoned as an adaptive transition considered as an underlying
mechanism of tumor resistance to radiochemotherapies.11–13

Cancer stem cells were first isolated from acute myeloid
leukemia by Bonnet and Dick in 1997,14 which is defined as a
cluster of undifferentiated cells with the ability of self-renewal and
tumor initiation. Glioblastoma stem cells (GSCs) were isolated from
GBM with the ability to develop GBM in the transplanted
mouse.15,16 Several biomarkers were identified to distinguish
GSCs from non-tumorigenic stromal cells including CD56+, SOX2+,
SOX9+, CD133+, CD15+, CD248−, CD105−, αSMA− .17 Besides,
GSCs were classified into different groups based on gene

signatures,18–24 metabolic patterns25,26 and biological beha-
viors25,27 (Fig. 1). Those classifications were not isolated but were
also closely connected. For example, GSCs are classified as
proneural GSCs (PN GSCs) or mesenchymal GSCs (MES GSCs)
based on gene signatures; in metabolic patterns, MES GSCs
switches between glycolysis and oxidative phosphorylation
(OXPHOS) whereas PN GSCs mainly dependent on glycolysis; PN
GSCs and MES GSCs were characterized with potent proliferative
and invasive abilities, respectively. The biological behavior
classification, defining proliferative GSCs (pGSCs) and quiescent
GSCs (qGSCs), is associate with neural stem cells (NSCs) but have
no relationship with the molecular or metabolic classification.
Moreover, those classifications are also linked with tumor

resistance to radiotherapy or chemotherapy. For instance, MES
GSCs and qGSCs manifest relatively higher resistance to radio-
therapy compared to PN GSCs and pGSCs, respectively.28,29

Glutamine-dependent MES GSCs show resistance to radioche-
motherapies.26,30,31 Besides, PN GSCs can be induced to transform
into MES GSCs by treating with temozolomide.32 Similar
phenomenon was also noticed between pGSCs and qGSCs.33

Given that, we summarize the characteristics of each classification
of GSCs, explore their internal relationships and investigate their
association with tumor resistance to radiochemotherapies. Con-
sequently, the phenomenon that therapy sensitive GSCs switch to
therapy-resistant GSCs is summarized with the term, ‘the adaptive
transition of GSCs’. The role of NSCs and niche acts during GSCs
adaptive transition are also discussed. Finally, the implication of
GSCs adaptive transition to clinical treatment is investigated to
provide novel potential strategies for future GBM treatment.
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GSCS ISOLATION
Currently, there are various methods to isolate GSCs including
sphere-formation assay, side population assay, label-retention
assay and flow cytometry.34,35 To verify the ability of self-
renewal and tumor initiation, sphere-formation assay and GSCs
allogeneic transplantation are required after isolation.36 There-
fore, a regular protocol consists of isolation and verification. In
order to obtain sufficient GSCs for verification, sphere-formation
assay and flow cytometry assay are considered as qualified
methods.37 In addition to those classical culture systems, 3D
organoids system for GSCs was also proposed in recent years.38–40

Stem-like cells were also noticed during culturing GBM cells as
3D organoids in vitro. Moreover, high proliferative SOX2 positive
GSCs enriched at the periphery of the organoids; while rare SOX2
positive GSCs were noticed at its hypoxic core. GSCs at the core of
organoids exhibited worse proliferative ability by comparing with
GSCs at the surface.39 Compared with the traditional sphere-
forming assay, 3D organoids system highlighted the interaction
between tumor cells and extracellular matrix (ECM) components.
In addition, proper culture medium selection is also critical to

stem cells enrichment and the expression of surface markers on
GSCs. For instance, serum-free medium can assist in isolating GSCs
from tumor tissue and maintaining GSCs stemness.41,42 Cytokines
like FGF has been proved with the ability of affecting surface
marker of stem cells. Adding FGF into cell culturing medium
affects the expression of Nestin and CD133, which are star
biomarker of stem cells, and maintain the characteristics of
GSCs.43,44 The Wnt signaling pathway can cross talk with FGF to
influence cell surface marker expression, including CD133, CD44.45

Considering cell surface marker is critical to GSCs isolation and

identification, we listed common hallmarks of GSCs along with
their association with PN or MES GSCs. (Table 1).
CD133, also called prominin-1, is the most common hallmark be

applied to GSCs isolation.46 CD133 is considered as a hallmark of
PN GSCs while CD133 negative GSCs are considered as MES
GSCs.47 A previous study reported that CD133 is associated with
tumor angiogenesis, cell proliferation while CD133 negative GSCs
lack the ability of self-renewal and forming sphere in vitro.48

Nevertheless, CD133 negative GSCs can form tumor in vivo and
CD133 positive GSCs can be isolated from it.47 Therefore, isolation
by targeting CD133 can obtain GSCs but may not be able to pure
MES GSCs.
Similar to CD133, CD15 (known as SSEA-1 or Lex) can be applied

as a target in GSCs isolation. The expression of CD133 in CD15
positive GSCs is deceased during passage in vitro while the
expression of CD15 remains stable. Notably, CD15 positive CD133
negative cells still maintain the characteristic of GSCs in vitro.49

However, no significant difference of phenotypic and genomic
characteristics is observed between CD15 positive GSCs and CD15
negative GSCs, which both can develop a CD15 positive/negative
mixed tumor in vivo.50 Therefore, some researches adopted CD15
and CD133 as isolation hallmarks simultaneously to reduce
omission.51,52

A2B5 is recognized as an isolation hallmark of GSCs.53 The
ability of tumor initiation of A2B5 positive CD133 negative GSCs is
stronger than A2B5 negative CD133 negative GSCs.54 A study
reported that A2B5 negative GSCs failed to form sphere in vitro or
tumor in vivo.53 Therefore, A2B5 might be another compensate
marker of CD133 to avoid GSCs isolation omission.

Fig. 1 GSCs classification based on molecular signatures, metabolic phenotypes and biological behavior. The molecular classification includes
PN GSCs and MES GSCs. Two metabolic phenotypes of GSCs are identified. The former mostly dependent on glycolysis. The latter metabolizes
glutamine to supply OXPHOS but it can switch to glycolysis when glutamine is insufficient. According to biological behavior, GSCs can be
grouped into proliferative GSCs and quiescent GSCs
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Several biomarkers are enriched in GSCs but rare studies
adopted them for GSCs isolation. For instance, CD44 is a
biomarker of MES GSCs.19,21 CD44 positive GSCs manifest stronger
invasive ability but worse proliferative ability compared to CD133
positive GSCs.55 Integrin α6 co-expresses with CD133, and is
associated with the ability of GSCs self-renewal and tumor
initiation development.56,57 ALDH1 positive GSCs maintain the
characteristics of GSCs including asymmetric division and sphere-
formation in vitro.58 Nestin is expressed in both NSCs and CD133
positive GSCs.59 Other biomarkers like CD36,60 CD9,61–63 IL6R64,65

and CXCR466,67 are essential to the ability of sphere-formation of
CD133 positive GSCs. But there is no enough evidences to support
them as a qualified hallmark in GSCs isolation.

PRONEURAL AND MESENCHYMAL GSCS
Basic characteristic of PN and MES GSCs
Based on gene signatures, GSCs can be categorized as MES or PN
GSCs. MES GSCs are labeled with CD44, ALDH1A3, EGFR, YKL40,
IDH1-wildtype, BMI1, and GFAP whereas PN GSCs are marked with
CD133, CD15, DLL3, MAP2, SOX2, OLIG2, IDH1-mutant, and
EZH2.11,19–24 The difference in splicing profiles between PN GSCs
and MES GSCs affected cell cycle, DNA repair, splicing and cilium
formation.68 The expression profile of long non-coding RNA
between PN GSCs and MES GSCs was also analyzed and
prognostic related long non-coding RNAs were identified.68 PN
GSCs prefer peri-vascular niche while MES GSCs are mainly located
at the necrotic niche.69 PN GSCs manifest high growth rates and
are able to promote tumor angiogenesis.19 MES GSCs show strong
invasive abilities, and tumor derived from which exhibit an
aggressive growth pattern.28,70 However, it is more difficult for
MES GSCs to generate tumor than PN GSCs.71,72 MES GSCs have a
higher resistance to radiotherapy relative to PN GSCs, and PN
GSCs can be induced to transform into MES GSCs.28,32 The

comparison between PN and MES GSCs was summarized in
Table 2 and introduced with Fig. 2.

The proneural-mesenchymal transition
Primary GBM tends to switch its subtype from proneural to
mesenchymal at relapse and show resistance to radiochemothera-
pies.11,40 Similarly, PN GSCs can be transformed into MES GSCs
during radiochemotherapies.12,28,29,73 The GSEA analysis was
performed on differential expressed genes between MES GSCs
and PN GSCs, and the result also supported that MES GSCs
manifest higher resistance to tumor therapy relative to PN GSCs.
Therefore, MES GSCs are able to survival from radiochemothera-
pies compared to PN SGCs and form therapy-resistance tumor
eventually.13 Another study also reported, by treating GSCs with
radio- or chemo-therapy, proneural related signatures (like CD133,
OLIG2) in GSCs were decreased and mesenchymal-like gene
signatures (like CD44, YKL40) were upregulated.73 Other than
proneural or mesenchymal related signatures, several molecules
also supported that the proneural-mesenchymal transition (PMT)
in GSCs is associated with tumor resistance to tumor therapy. For
instance, ZDHHC18 and ZDHHC23 are preferentially expressed in
MES GSCs and PN GSCs, respectively.74 ZDHHC18 promotes the
degradation of BMI1, an enzyme helps cells to survive under
stressful environments, while ZDHHC23 assists to stabilize BMI1
expression.74

Differentially activated signaling pathways are also detected
between PN GSCs and MES GSCs. The PDGF receptor-β mediated
signaling pathway,75 the Notch pathway76 and the Wnt path-
way76,77 are activated in PN GSCs; on the other hand, the TGF-β
signaling pathway,20 the NF-κB signaling pathway,19,78 FOXD-
ALDH1A3 axis28,79 and glycolysis-mediated metabolism pathway28

are activated in MES GSCs. Several pathways also were involved in
the PMT and regulated cells sensitivity to therapy. The Notch
signaling pathway is related to cells growth, differentiation and

Table 1. Common hallmarks in GSCs isolation

Hallmarks Functions Subtypes Reference

CD133 Cell cycle and tumor cell proliferation. PN GSCs 46

CD15 Cell proliferation, self-renewal, and multilineage differentiation. PN GSCs 51

ITGA6 Cell proliferation and adhesion. PN GSCs 56,57

A2B5 Cell proliferation, migration, clonogenicity, and tumorigenesis. PN GSCs 53

CD44 Cell invasion MES GSCs 19,55

ALDH1 Tumorigenesis, PMT transition, resistance to temozolomide, cell invasion, cell proliferation, glycolysis MES GSCs 58

Nestin A class VI intermediate filament protein Not suitable 105

CD36 A scavenger receptor, GSCs self-renewal and proliferation. Not suitable 60

CD9 Cell proliferation. Not suitable 61–63

IL6R Tumor growth Not suitable 64,65

CXCR4 Cell proliferation, self-renewal. Not suitable 66,67

Table 2. The basic characteristics of PN GSCs and MES GSCs

Difference PN GSCs MES GSCs

Hallmarks CD133, CD15, MAP2, SOX2, OLIG2, IDH1-mutant and EZH2 CD44, ALDH1A3, EGFR, YKL40, IDH1-wildtype, BMI1 and GFAP

Signaling pathways The PDGF receptor-β mediated pathway; The Notch
pathway; The Wnt pathway

The NF-κB pathway; FOXD-ALDH1A3 axis; glycolysis-mediated
metabolism pathway

Niche Peri-vascular niche or tumor edge tissue Necrotic tissue

Lipid metabolism Low High

Glutamine utilization Low High

Metabolism preference Glycolysis Glycolysis or OXPHOS

Immunocytes infiltration Natural killer cells M2 macrophage; CD8+ cells and microglial
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development. Inhibiting the activity of the Notch pathway can
restore GSCs sensitivity to radiotherapy.80 The Wnt signaling
pathway is associated with GSCs proliferation, self-renewal and
tumor initiation. The dual inhibition of the Notch and Wnt
pathway increased proneural related signatures in GSCs.77 There-
fore, the Notch and Wnt pathway may be involved in the
maintenance of the proneural phenotype. The activation of the
NF-κB signaling pathway partly mediates the PMT in GBM.81,82 In
GSCs, MLK4 is enriched in MES GSCs and can interact with the NF-
κB signaling pathway to maintain this phenotype.78 On the other
hand, radiotherapy increases the expression of STAT3 and C/EBP-
β, the downstream of the NF-κB pathway, indicating the activation
of the NF-κB pathway during the PMT.29,83,84 The hedgehog
pathway is involved in the PMT in GBM but no research verifies its
role in GSCs.85

In summary, molecular classification of GSCs clearly distin-
guishes GSCs sensitivity to radiochemotherapies. The PMT has
been associated with GBM resistance to therapy, and the
discovery of the PMT between GSCs subtypes might further
support that theory. Therefore, the PMT can be viewed as the
adaptive response of GSCs to unfavorable environment, and the
inhibition of the PMT may improve patients’ overall survival
outcome. Since multiple molecules or pathways related to the
PMT have been identified, drugs are designed to target those
mediators may improve tumor resistance to therapy.

METABOLIC PHENOTYPE OF GSCS
Tumor cells metabolic reprogramming, also known as the
Warburg effect, refers to tumor cells preferring glycolysis rather
than the tricarboxylic acid cycle even with adequate oxygen.86 In
contrast to GBM cells, the metabolic profile of GSCs, including
lower glycolytic, lower extracellular acidification rate, less oxygen
consumption and maximal respiratory capacities,87 is more
quiescent. It should be noted that recent studies reported
different metabolic phenotypes of GSCs.
One study identifies two clusters of GSCs manifesting different

metabolic phenotypes, Clone A and Clone B, in the murine GBM
model. Cells in Clone A are glycolysis dependent while the
metabolic phenotype of Clone B can switch between mitochon-
drial respiration and glycolysis.88 One research divide GSCs into
GLN-low and GLN-high GSCs based on glutamine consumption.30

GLN-high GSCs metabolize more glutamine to sustain its
mitochondrial respiration, and the reduction of glutamine can
weaken its ability in proliferation or self-renewal. Another study

clusters GSCs into GSf-like GSCs and GSr-like GSCs based on
metabolism profile. Cells in the former group show metabolic
feature with low mobile lipids and high glutamine while cells in
the latter group show the opposite.18 GSf-like GSCs and GSr-like
GSCs also express proneural and mesenchymal related signatures,
respectively. Notably, metabolic phenotype of GSCs corresponds
with molecular classification. GSf-like GSCs express proneural
related signatures while mesenchymal related signatures are
enriched in GSr-like GSCs. Another study reported that GSCs with
activated lipid metabolism and reduced glucose consumption are
resistance to radiochemotherapies.89 Activated glutamine meta-
bolism is also associated with GSCs resistance to radiotherapy.26

Therefore, therapy-resistant GSCs consume less glucose, with
activated glutamine and lipid metabolism by contrasting with
therapy sensitive GSCs.
In summary, there are two metabolic phenotypes of GSCs. The

first phenotype is GSCs dependent on aerobic glycolysis. This type
of GSCs metabolizes glucose to supply cells proliferation. The
other phenotype is more complicated. GSCs can switch between
glycolysis and OXPHOS according to extracellular stimulation.
Instead of consuming glucose, GSCs in this type prefer to
metabolize glutamine to initiate OXPHOS. Glycolysis is only
activated when the supply of glutamine is insufficient.30 Besides,
this type of GSCs contains more mobile lipids in cytoplasm, which
indicates the activated lipid metabolism-related pathways. As
aforementioned, metabolic phenotype of GSCs affects its sensi-
tivity to cancer therapy. More effort on exploration about the
mechanisms of how abnormal metabolic pattern affects cells
resistance to therapy remains to be urgently needed.

BIOLOGICAL BEHAVIOR CLASSIFICATION
Classification based on GSCs biological behavior classifies GSCs
into qGSCs or pGSCs.25,27 ‘Quiescent cells’ refers to cells with slow
cell cycle relative to normal cells, and cells are able to quit this
state when necessary.33,90,91 Label-retaining assay is able to
distinguish quiescent GSCs from tumor.27,92 Apart from that,
recent studies reported that isolation of qGSCs by marking the
promoter of nuclear receptor tailless of GSCs with GFP93 or based
on GSCs’ sensitivity to a different chemical compound.94 In 3D
organoids culturing system, stem-like cells at the periphery
showed strong proliferative ability while cells in the hypoxic core
more quiescence.39 However, the accuracy of qGSCs isolation
between those protocols is lack of comparison.
The proliferation ratio of pGSCs is significantly quicker than

qGSCs but there are no specific molecular hallmarks to distinguish
them.25,33 Differentially expressed genes profile identifies SAT1
and ID1 upregulated in qGSCs while EGFR enriched in pGSCs.95

pGSCs are mostly located in the perivascular niche, which is similar
to PN GSCs, while qGSCs are located in necrotic niche.33,96 BMP
and TGF-β signaling pathways are selectively activated in qGSCs
and pGSCs respectively.95 Besides, biofunction prediction suggests
that dysregulated genes in qGSCs are related to tumor immune
landscape and tumor resistance to therapy, while genes in pGSCs
are associated with cell proliferation.95

Potential regulators of biological behavior of GSCs
The expression profile of cell cycle-related genes reveals the
mechanism of different biological behavior of GSCs. For instance,
cyclin B1, CDKN1A and G0S2 expression are dysregulated in
qGSCs.33 Accumulation of p27 at G0 phase in qGSCs is associated
with the maintenance of cells quiescence.97 Factors like Ca2+
influx related genes expression (like CACNB1, CAPS, CACNA2D1,
PKD2 and ORAI2),98 the activity of Notch signaling pathway,99

mitochondrial shape96 and hypoxia and acidic niche39 are also
raised for their role in quiescence state.
Other potential regulators involved in the biological behavior of

GSCs are also summarized. DOCK4 and β-catenin affect GSCs

Fig. 2 Difference between PN GSCs and MES GSCs. They manifest
different growth pattern of sphere culture in vitro. PN GSCs tend to
form bigger sphere and show higher growth rate than MES GSCs
in vitro. In vivo, PN GSCs locate at perivascular niche while MES GSCs
prefer necrotic tissue

The adaptive transition of glioblastoma stem cells and its implications. . .
Wang et al.

4

Signal Transduction and Targeted Therapy           (2021) 6:124 



proliferative ability through influencing GSK3-β activity.100 NGF
and its receptors control GSCs proliferation.101 The proliferation
rate of GSCs can be inhibited by silencing the expression of STAT3
and integrin α6.102,103 Those regulators can affect the proliferation
ability of GSCs but their role in pGSCs or qGSCs remain elusive.

Biological behavior transition
The proliferation-quiescence transition is termed as pGSCs
entering the ‘quiescence’ status. This transition can be induced
by hypoxia or an acidic environment through altering mitochon-
drial shape and cytometric calcium concentration of GSCs.33

Notably, the ratio of qGSCs in tumor is positively correlated with
tumor recurrence times.33 The population of qGSCs is increased
after treating GBM with RTK inhibitors, and the activity of the
Notch pathway and KDM expression is also increased.104 In
general, pGSCs can be transformed to qGSCs under the
stimulation of unfavorable environment or radiochemotherapies,
and this transition could be a novel mechanism of tumor
resistance to therapy.25,92,93,105

Since the ‘quiescence’ state is a reversible state, pGSCs can also
generate from qGSCs.93 The GINS complex (comprise of SLD5,
PSF1, PSF2, and PSF3) re-initiates cell cycle in qGSCs by altering
cell-cycle-related genes expression.106 Evidence supporting the
quiescence-proliferation transition is insufficient, and this transi-
tion might be related to tumor recurrence.
Biological behavior of GSCs also sheds light on the mechanism

of GSCs sensitivity to therapy. For instance, qGSCs can survive
from an unfavorable environment and develop tumor by quitting
the quiescence state. pGSCs can enter the quiescence state when
the environment is not favorable for survival. This dual-transition
highlights the mechanism of tumor recurrence and tumor
resistance to therapy.

INTERNAL CONNECTION BETWEEN DIFFERENT
CLASSIFICATIONS OF GSCS
Previous studies subdivided GSCs into PN GSCs or MES GSCs
based on molecular classification. Notably, two metabolic
phenotypes of GSCs are also associated with PN GSCs or MES
GSCs. According to the metabolic profile and molecule signatures,
cells in Clone A, GSf-like GSCs and GLN-low GSCs are PN GSCs
while cells in another group (Clone B, GSr-like GSCs and GLN-high
GSCs) are MES GSCs. Therefore, PN GSCs depend on aerobic
glycolysis while the metabolic phenotype of MES GSCs is more
flexible.26

MES GSCs consume glutamine and glucose to supply OXPHOS
and glycolysis, respectively. Since glutamine can replenish lipid
biosynthesis precursors and supply mitochondrial respiration,26

glutamine and lipid metabolism-related pathways are also
activated in MES GSCs.18 Multiple studies supported that activated
glutamine and lipid metabolism are involved in tumor resistance
to therapy.31,107,108 Thus, the mechanism of MES GSCs shows
resistance to therapy might relate to this metabolic phenotype.
On the other hand, PN GSCs and MES GSCs manifest stronger

ability in proliferation and migration, respectively. The connection
between molecular classification and GSCs biological behavior is
unclear. Given the slow cell cycle of qGSCs, pGSCs might be a
group of cells containing PN GSCs and MES GSCs simultaneously.
However, pGSCs and PN GSCs both are located at perivascular
niche while qGSCs and MES GSCs prefer necrotic niche.
Three classifications, molecular, biological behavior, and meta-

bolic phenotype all elaborate only one feature of GSCs. Within
each group, GSCs can also be grouped as therapy sensitive or
resistant cells. Transition restricted to each classification clearly
map the response of GSCs to therapy or unfavorable environment.
Several studies have confirmed the connection between mole-
cular classification and metabolic phenotype. However, their
association with GSCs biological behavior is unclear. Figuring

out the internal connection between different classifications can
reveal the feature of therapy-resistant GSCs and promote clinical
management (Fig. 3).

The relationship between NSCs and GSCs
Subventricular NSCs (also called as astrocyte-like NSCs or type B
cells) contain two groups of cells, B1 astrocytes and B2 astrocytes.
B2 astrocytes are non-neurogenic astrocytes. B1 astrocytes
asymmetrically split into type C cells (also known as transit-
amplifying progenitor cells) which will differentiate into type A
cells (also known as neuroblasts) or oligodendrocyte precursor
cells in the end. In the meantime, B1 astrocytes can be subdivided
into quiescent NSCs (qNSCs) and active NSCs (aNSCs) based on
their biological behavior. Type A cells can form neurons, and
oligodendrocyte precursor cells differentiate into oligodendro-
cytes or astrocytes.109,110

Several studies reported that GSCs are derived from subven-
tricular NSCs,111–113 and the fact that by engineering p53,114

EGFR115 or H-RasV12 88 in NSCs can induce the formation of GSCs.
Gnomically, NSCs and GSCs share common gene signatures
including SOX2, NESTIN, OLIG2, CD133, YKL40, et al.116,117 CD133
and Nestin are both expressed in B1 astrocytes and PN GSCs; EGFR
is mainly enriched in type C cells and MES GSCs118,119 (Table 3).
This hallmark similarity implies the association between NSCs and
GSCs.
Metabolically, NSCs depend on glycolysis to maintain its

stemness, but its differentiation is involved in the activation of
several metabolic pathways including elevated fatty acid con-
sumption, increased lipogenesis, decreased glycolysis and acti-
vated OXPHOS.120–122 This metabolic phenotype transition during
NSCs differentiation is similar to the PMT. Glycolysis dependent
type C cells show tolerance to the hypoxia environment,123 but its
proliferation still relies on absorbing extracellular fatty acid and
activating de novo lipogenesis.124 The metabolic patterns transi-
tion during the differentiation of NSCs is similar to GSCs adaptive
transition.
The biological behavior of qNSCs and aNSCs is similar to that of

qGSCs and pGSCs, respectively.125,126 Besides, aNSCs and pGSCs
both show sensitivity to temozolomide but qNSCs and qGSCs can
survive from it.127 Therefore, the nature of NSCs may also affect
GSCs sensitivity to therapy.
Another study pioneered exploring the association between

GSCs and NSCs by performing single-cell RNA sequencing
analysis.128 They proved that the apex of GBM hierarchy is
progenitor cancer cells, and most of them carry with proneural
signature while few of them are classified as mesenchymal or
classical. They also identify an un classified type of GSCs which
show similarity with progenitor cancer cells.
Taken together, similarity in transcriptomic signature, metabolic

profile, biological behavior and single-cell RNA sequencing
analysis highlighted the internal correlation of GSCs and NSCs.
Furthermore, it may be hypothesized that GSCs are derived from
B1 astrocytes, and the PMT is the glioma version of the B1
astrocytes differentiation. Nevertheless, evidences from some
studies make different voice. For instance, CD44, hallmarks of
MES GSCs, is expressed on astrocyte-restricted precursors that do
not express on NSCs. Metabolic profile of PN GSCs is similar to
type C cells instead of B1 astrocyte.88 The origin of IDH wildtype
glioma and IDH mutant glioma might different.129 Since
differentiation of NSCs is a complicated, precise, dynamic process,
their internal relationship with GSCs still needs more investigation
(Fig. 4).

NICHE AND GSCS
Niche is a special microenvironment where stem cells are
preserved. The niche of GSCs comprises of multiple components
including endothelial cells (ECs), arterioles, immunocytes,
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fibroblasts, NSCs, pericytes, et al.130 Several studies reported five
types niches in GBM, including peri-vascular niches,131 peri-
arteriolar niches,132 peri-hypoxic niches,133 peri-immune niches134,
and ECM niches,135 based on their unique traits. Those niches
share similar features and interrelate with each other. Therefore, a
comprehensive model integrating those niches called hypoxic
peri-arteriolar niche was proposed.136 More importantly, this
dynamic model simplifies the catalog of GSCs niches and
improves the understanding of the interconnection between
niches and GSCs. However, discussion about the relationship
between MES GSCs and this model is not mentioned.

Blood vessels and vasculogenic mimicry
Blood vessels distribution in GBM varies from normal brain tissue.
ECs, pericytes and smooth muscle cells are constituents of blood
vessels, and they both affect GSCs. For instance, ECs are associated
with the maintenance of GSCs stemness by activating the Notch
pathway.137,138 On the other hand, GSCs can transdifferentiate
into ECs, pericytes and smooth muscle cells, and involve in the
formation of vasculogenic mimicry.139–141 GSCs-derived pericytes
contribute to tumor resistance to therapy by altering the
permeability of the blood-brain barrier.142–144 Besides, several
molecules are involved in this process, including Flk-1,145 CDH5,146

YKL40,147 KDR148, and VEGF.149 In summary, GSCs are closely
associated with tumorigenesis and vasculogenic mimicry.

Hypoxia and acidic tumor microenvironment
Hypoxia and acidic are critical characteristics of tumor micro-
environment.150,151 The survival probability of PN in hypoxia and
acid environment is lower than MES GSCs.74 HIF-2α is involve in
maintaining the stemness of GSCs and contributes to the PMT.55

Hypoxia can activate glutamine metabolism-related pathway in
tumor cells.152,153 Besides, hypoxia and acidic tumor microenvir-
onment affect the proliferation-quiescence transition of GSCs.33

Together, those results indicate that niche is involved in GSCs
resistance to therapy.

Table 3. Common gene signatures of NSCs

Cells GFAP Nestin CD133 EGFR CD15

qNSCs + − + − +
aNSCs + + + + +

B2 astrocytes + + − + −

Type C cells − + − + +

Type A cells − − − − −

PN GSCs − + + − +

MES GSCs − − − + +

Fig. 3 The adaptive transition within GSCs classifications. Therapeutic sensitive GSCs like PN GSCs can transform into MES GSCs which show
resistance to cancer treatment. PN GSCs mostly dependent on glycolysis, and MES GSCs switch its metabolism between glycolysis and
OXPHOS. PN GSCs metabolize glucose while MES GSCs can switch between glucose and glutamine. The Notch and Wnt pathway are
preferentially activated in PN GSCs; the activation of TGF-β pathway and NF-κB pathway are mostly observed in MES GSCs
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Immunocytes infiltration
Immunocytes infiltration of PN and MES GSCs is different. For
instance, qGSCs upregulate the expression of T cell targeted
antigen and are infiltrated with more T cells than pGSCs.154 MES
GSCs have higher infiltration of CD8 positive T cells and microglial
than PN GSCs.155 Tumor-associated macrophages are derived
from bone marrow-derived monocytes, microglial cells and
GSCs.156 PN GSCs induce the formation of tumor-associated
macrophages and recruit M2 tumor-associated macrophages.36,157

Compared with MES GSCs, PN GSCs increase the expression of
MHC I, CD40 and CD86 and downregulate the expression of MHC
II and CD80. B7-H1, an inhibitory molecule of T cells, is also
increased in PN GSCs.158 Hypoxia microenvironment promotes PN
GSCs to release immunosuppressive cytokines.159 PN GSCs show
resistance to TGF-β stimulation and its low TGF-β expression
indicates that TGF-β acts an immunosuppressive role in PN
GSCs.155 Together, those results reveal lower immunocytes
infiltration in PN GSCs than MES GSCs, and this difference might
relate to the efficacy of GSCs sensitivity to immunotherapy.
The comprehensive model of niche allows a clearer view of the

relationship between niche and GSCs. The components of the
niche are complicated and dynamic. GSCs affect the formation of
niche, in turn, niche components like pericytes or characteristics
like hypoxia influence the subtype of GSCs as well as GSCs

sensitivity to therapy. Currently, whether niche contributes to
GSCs resistance to therapy is still unclear.

IMPLICATIONS ON TREATMENTS
As aforementioned, a different subtype of GSCs carry with
different characteristics and show different sensitivity to tumor
therapy. Therefore, targeting to GSCs selectively may be an option.
In recent years, progresses in selectively targeting to GSCs subtype
have been reported, and the section summarized those pro-
gresses (Fig. 5).

Radiotherapy
PN GSCs can transform into MES GSCs by treating with
radiotherapy and show resistance to radiotherapy.28 Multiple
studies revealed that interfering the PMT related pathway can
restore GBM sensitivity to radiotherapy.160–164 However, the
efficacy of inhibiting the PMT in GSCs is not verified. The inhibition
of relevant metabolic pathways in GSCs might also be a novel
treatment to restore GSCs sensitivity to radiotherapy.

Chemotherapy
The relationship between GSCs and chemotherapy is more
complicated. Temozolomide is the most common and efficient

Fig. 4 Association between subventricular NSCs and GSCs. Similarities, including genomic characteristics and metabolism pattern, are found
between PN GSCs and B1 astrocytes, MES GSCs and type C cells. The biological behavior of B1 astrocytes is similar to GSCs. However, the
explicit relationship between NSCs and GSCs remains unknown
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chemotherapeutic agent in clinical application to treat GBM. In
primary GBM, PN GSCs are resistant to multiple chemother-
apeutic agents including temozolomide.165,166 Another study
reported temozolomide can inhibit GSCs proliferation with still
a small group of GSCs survived.167 Besides, the expression of
MGMT, a biomarker to predict GBM sensitivity to temozolo-
mide, can also predict GSCs sensitivity to temozolomide
regardless of molecular signatures.167 Notably, the combina-
tion of temozolomide and perillyl alcohol has a lethal effect on
PN GSCs derived and MES GSC derived GBM.168 On the
contrary, MES GSCs derived GBM show resistance to temozo-
lomide and gradually lost its mesenchymal related signatures
during treating with temozolomide.32 In the meantime, tumor
sensitivity to radiotherapy is restored.32 In general, MES GSCs
have a higher expression of several therapy resistance-related
genes compared to PN GSCs. But their sensitivity to
chemotherapy do not show no significant difference, and
MGMT is still a qualified biomarker to predict GSCs sensitivity
to temozolomide.

Metabolic therapy
Activated glutamine metabolism in MES GSCs is associated with
GSCs resistance to radiochemotherapies and GSCs proliferation.89

EGCG, an inhibitor of transglutaminase, can restore GSCs
sensitivity to temozolomide and inhibit GSCs proliferation.30,169

Dichloroacetate, the inhibitor of pyruvate dehydrogenase kinase
inhibitor, can increase GSCs sensitivity to radiotherapy.170 In MES
GSCs, glutamine serves as a metabolic substrate of OXPHOS, and
pyruvate dehydrogenase kinase is also critical to supply OXPHOS.
Therefore, the activation of mitochondrial in MES GSCs might be
connected with its resistance to therapy. Metformin, an inhibitor
of mitochondrial complex I, can affect tumor cells resistance to
therapy but its role in GSCs is not confirmed.171

Immunotherapy
Immunotherapy targeting GSCs or adopting GSCs as therapeutic
methods to treat GBM has made some progress in recent
years.172,173 Besides, immune check point genes and antigen
presentation genes are differentially expressed on PN GSCs and

Fig. 5 Therapy resistant GSCs like MES GSCs can survive from a classical strategy like chemo- or radio-therapy. In the meantime, the
combination of GSCs targeted therapy and classical strategy may improve treatment efficiency
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MES GSCs as aforementioned.158 Immunocytes infiltration difference
is identified in molecular classification and biological behavior
classification.154,155 Metabolic phenotypes also affect GSCs sensitivity
to immunotherapy. For instance, ‘metabolic check point’like glucose
depletion and hypoxia affect the function of tumor infiltrated
immunocytes.174 Together, those results suggest that the response
of GSCs to immunotherapy might also differ from each other.154,175

However, the association between GSCs and immunotherapy is not
clear. Notably, a recent study reported tumor immune escape can be
inhibited by blocking glutamine metabolism-related pathways,
indicating that a similar strategy could be applied to GSCs.176

Other treatments
Anti-VEGF therapy is a novel strategy to treat cancer but its
efficacy in GBM is not optimistic.3,177 Bevacizumab, VEGF inhibitor,
promotes vasculogenic mimicry formation by PN GSCs148 which
might be associated with its failure of treating primary GBM.178

Tumor-treating fields inhibit tumor cells proliferation to prevent
GBM progression. It can also be applied to treat tumor derived

from GSCs.179–182 However, the association between GSCs
resistance and tumor-treating fields is not clear.
The previous study reported GSCs to respond differently to

targeted therapy.183 Since various strategies such as nanoparti-
cles184,185 and Zika virus186–188 can be applied to target GSCs, it is
critical to treat GSCs with combined therapeutic options to
improve treatment efficacy. A recent study summarized the
efficacy of strategy that by targeting SOX2 on stem-like cells can
inhibit tumor progression.189

Clinical trials targeting GSCs
Apart from traditional treatments of GBM, several clinical trials
proposed a novel strategy in recent years. All information about
clinical trials is obtained from public clinical trial databases
(https://clinicaltrials.gov/). Seventy-eight results in total are
obtained by setting ‘glioma stem cells’ as the keyword, and
nineteen of them are about targeting GSCs or adopting NSCs as
therapeutic means (Table 4). Two out of six completed clinical
trials have published their results. The efficacy of therapy adopting

Table 4. Clinical trials target on GSCs or adopt NSCs as therapeutic means

NCT number Title Status Target
or medium

Therapy

NCT02039778 Stem cell radiotherapy and temozolomide for newly diagnosed high-
grade glioma

Terminated GSCs Radio- and
chemo-therapy

NCT03072134 Neural stem cell-based virotherapy of newly diagnosed malignant glioma Completed NSCs Virotherapy

NCT01872221 Study of the capacity of the MRI spectroscopy to define the tumor area
enriched in glioblastoma stem cells. Proof of concept study

Completed GSCs Radio- and
chemo-therapy

NCT02192359 Carboxylesterase-expressing allogeneic neural stem cells and irinotecan
hydrochloride in treating patients with recurrent high-grade gliomas

Recruiting NSCs Genetically
modified
therapy

NCT01172964 A pilot feasibility study of oral 5-fluorocytosine and genetically modified neural
stem cells expressing E. Coli cytosine deaminase for treatment of recurrent high-
grade gliomas

Completed NSCs Genetically
modified
therapy

NCT02010606 Phase I study of a dendritic cell vaccine for patients with either newly
diagnosed or recurrent glioblastoma

Active, not
recruiting

GSCs Immunotherapy

NCT02055196 Genetically modified stem cells and irinotecan hydrochloride in treating
patients with recurrent high-grade gliomas

Withdrawn NSCs Genetically
modified
therapy

NCT02015819 Genetically modified neural stem cells, flucytosine, and leucovorin for treating
patients with recurrent high-grade gliomas

Active, not
recruiting

NSCs Genetically
modified
therapy

NCT01171469 Vaccination with dendritic cells loaded with brain tumor stem cells for
progressive malignant brain tumor

Completed GSCs Immunotherapy

NCT03956706 Study of stereotactic radiosurgery to the subventricular zone in malignant
gliomas

Recruiting NSCs Radiotherapy

NCT01567202 Study of DC vaccination against glioblastoma Recruiting GSCs Immunotherapy

NCT00473408 The effect of radiotherapy and temozolomide on the tumor vasculature and
stem cells in human high-grade astrocytomas

Terminated GSCs Radio- and
chemo-therapy

NCT03632135 Standard chemotherapy vs. chemotherapy guided by cancer stem cell test in
recurrent glioblastoma

Recruiting GSCs Chemotherapy

NCT02654964 Cancer stem cell high-throughput drug screening study Unknown status GSCs Chemotherapy

NCT03548571 Dendritic cell immunotherapy against cancer stem cells in glioblastoma
patients receiving standard therapy

Recruiting GSCs Immunotherapy

NCT00846456 Safe study of dendritic cell (DC) based therapy targeting tumor stem cells in
glioblastoma

Completed GSCs Immunotherapy

NCT00890032 Vaccine therapy in treating patients undergoing surgery for recurrent
glioblastoma multiforme

Completed GSCs Immunotherapy

NCT01400672 Imiquimod/brain tumor initiating cell (BTIC) vaccine in brain stem glioma Terminated GSCs Radio- and
immune-
therapy

NCT02177578 Subventricular zone (SVZ) and temozolomide in glioblastoma multiforme Recruiting NSCs Radio- and
chemo-therapy
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NSCs as therapeutic means can be evaluated by MRI.190 Dendritic
cells loaded with GSCs-derived mRNA can inhibit GBM growth.191

Only one trial which used GSCs as the antigen source of the
vaccine was terminated due to limit efficacy and extreme toxicity
(ClinicalTrial.gov Identifier: NCT01400672). However, few clinical
trials take the difference in GSCs into account.

CONCLUSION AND PROSPECTION
In this review, different classifications of GSCs are summarized and
integrated. However, there are several questions about GSCs
classification. First, several genes signatures of the proneural or
mesenchymal subtype are identified nowadays, but few of them
can be applied to GSCs isolation. Considering the PMT in GSCs, a
precise method to isolate GSCs can bring about a more accurate
result. Second, the inner relationship between biological behavior
classification and the other two classifications is not clear. pGSCs
seem to be connected with PN GSCs but no similarity is found
between qGSCs and other subtypes of GSCs. Third, the metabolic
phenotype of GSCs requires more attention. One study which
subdivided GSCs into three groups (Cluster1a, Cluster1b and
Cluster2) reported that the molecular signatures of Cluster1a are
similar to those of PN GSCs whereas cells in the other two groups
are similar to those in MES GSCs.192 Notably, Cluster1 (including
Cluster1a and Cluster1b) manifests a flexible metabolic phenotype
while Cluster2 mainly depends on glycolysis. Obviously, this
conclusion is non consistent with previous results.18,30,72,88 Each
classification mentioned above merely reveals one feature of
GSCs. An integrative analysis of those classifications will provide a
better understanding of GSCs.
Multiple studies proved tumor cell adaptive survival from anti-

tumor therapy, and this process was viewed as tumor therapeutic
response193 Therapy sensitive or resistant GSCs are also identified
in each classification. For instance, MES GSCs, glutamine
dependent GSCs and qGSCs show nature resistance to cancer
therapy. Transition restricted to each classification like the PMT
and the proliferative-quiescent transition is highly associated with
GSCs resistance to cancer therapy. Besides, MES GSCs can
transform their metabolic pattern according to the context,
indicating that MES GSCs are hard to be affected by constraining
its nutrition supply. All kinds of GSCs adaptive transition not only
reveal the mechanisms of tumor recurrence and tumor resistance
to cancer therapy but also highlight multiple potential targets for
future research. Therefore, molecular signatures, pathways or
metabolic pattern involved in GSCs adaptive transition can be
served as potential targets to improve therapeutic efficacy.
The inner relationship between NSCs and GSCs is not clear.

Multiple studies suggested that NSCs are the derivation of GSCs, in
the meantime, other studies further confirmed the similarity
between different GSCs subtypes and NSCs differentiation lineage.
Therefore, GSCs adaptive transition might share common features
with NSCs differentiation lineage. Niche is another factor that
affecting GSCs adaptive transition, and GSCs influence the
formation of the niche in turn. Besides, immunocytes infiltration
and vasculogenic mimicry can affect tumor response to cancer
therapy. Therefore, NSCs, niche and GSCs interact with each other.
But more in-depth mechanisms remain to be revealed. In general,
GSCs is a novel breakpoint for understanding tumor recurrence
and tumor resistance to cancer therapy.
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