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renal interstitial fibrosis by
reducing pro-inflammatory M1/
M2 macrophage polarization
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Renal interstitial fibrosis (RIF) is a common pathological feature contributing to

chronic injury and maladaptive repair following acute kidney injury. Currently,

there is no effective therapy for RIF. We have reported that locked nuclear acid

(LNA)-anti-miR-150 antagonizes pro-fibrotic pathways in human renal tubular

cells by regulating the suppressor of cytokine signal 1 (SOCS1)/Janus kinase

(JAK)/signal transducer and activator of transcription (STAT) pathway. In the

present study, we aimed to clarify whether LNA-anti-miR-150 attenuates folic

acid-induced RIF mice by regulating this pathway and by reducing pro-

inflammatory M1/M2 macrophage polarization. We found that renal miR-150

was upregulated in folic acid-induced RIF mice at day 30 after injection. LNA-

anti-miR-150 alleviated the degree of RIF, as shown by periodic acid–Schiff and

Masson staining and by the expression of pro-fibrotic proteins, including alpha-

smooth muscle actin and fibronectin. In RIF mice, SOCS1 was downregulated,

and p-JAK1 and p-STAT1 were upregulated. LNA-anti-miR-150 reversed the

changes in renal SOCS1, p-JAK1, and p-STAT1 expression. In addition, renal

infiltration of total macrophages, pro-inflammatory M1 and M2 macrophages

as well as their secreted cytokines were increased in RIF mice compared to

control mice. Importantly, in folic acid-induced RIF mice, LNA-anti-miR-150

attenuated the renal infiltration of total macrophages and pro-inflammatory

subsets, including M1 macrophages expressing CD11c and M2 macrophages

expressing CD206. We conclude that the anti-renal fibrotic role of LNA-anti-

miR-150 in folic acid-induced RIF mice may be mediated by reducing pro-

inflammatory M1 and M2 macrophage polarization via the SOCS1/JAK1/

STAT1 pathway.
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Introduction

Renal interstitial fibrosis (RIF), a common pathological

feature of end-stage kidney disease (ESKD), causes personal

and economic burdens worldwide. As there is a lack of effective

therapeutic agents to slow or halt the progression of RIF, the

prevalence of ESKD remains unacceptably high (1, 2). Clarifying

the mechanisms of RIF and discovering novel therapeutic targets

are urgent needs.

Renal infiltration of macrophages is a key factor in the

progression of acute kidney injury to chronic kidney disease

(CKD) (3, 4). In the kidney, acute kidney injury activates

molecular pathways that initially stimulate the differentiation

of macrophages into the M1 phenotype. M1 macrophages

contribute to the decline of renal function and development of

renal fibrosis (5, 6). CD206+ M2 macrophages are also strongly

associated with renal fibrosis in human and experimental kidney

diseases (7).

MicroRNAs (miRs) also regulate gene expression during each

stage of macrophage development, from myelopoiesis, through

polarization and effector function. Furthermore, they regulate

macrophage polarization signals and metabolic functions (8, 9).

The role of miRNA regulation of macrophages in kidney disease

has also been studied. For instance, miR-374b-5p contributes to

renal inflammation and promotes M1 macrophage activation by

directly targeting the suppressor of cytokine signal 1 (SOCS1)

during renal ischemia/reperfusion injury progression (10).

Furthermore, miR-30a-5p inhibition alleviates cardiac injury

following viral myocarditis by shifting the macrophages toward

a M2 phenotype via SOCS1 upregulation (11). We have reported

that a miR-150 antagonist reversed SOCS1/Janus kinase (JAK)/

signal transducer and activator of transcription (STAT) pathway

in co-cultures of human kidney 2 (HK-2) cells and macrophages,

and we further showed that LNA-anti-miR-150 alleviates folic

acid-induced renal fibrosis in mice (12). However, the relationship

among miR-150, macrophages, and renal fibrosis and the

underlying mechanisms has not been characterized.

In the present study, we aimed to clarify the relationship

among miR-150, pro-inflammatory M1, and M2 macrophage

polarization and renal fibrosis. We further investigated the

effects of LNA-anti-miR-150 on SOCS1/JAK/STAT and the

infiltration of macrophages, including M1 and M2 subtypes, in

folic acid-induced renal fibrosis mice. We show that LNA-anti-

miR-150 reduces pro-inflammatory M1 and M2 polarization

and that this is mediated by the SOCS1/JAK/STAT pathway.
Materials and methods

Animal experimental design

The animal studies were approved in advance by the Animal

Care and Use Committee of China Medical University
Frontiers in Immunology 02
(15052111) and were performed following NIH Animal Care

and Use Guidelines. Male ICR mice (12 weeks old, 35–40 g) were

purchased from Beijing Vital River Laboratory Animal

Technology Co. Ltd. (Beijing, China), housed at three mice per

cage, and allowed free access to standard food and drinking

water. The mice were maintained under a 12-h light/dark cycle

with a fixed temperature of 23 ± 1°C and humidity (55–70%).

The mice were injected intraperitoneally with 250 mg/kg folic

acid (Sigma-Aldrich, MO, USA) in a vehicle of 0.3 mMNaHCO3

(0.2 ml/mouse) or the vehicle alone. After confirming acute

kidney injury (AKI) based on significantly increased blood urea

nitrogen (BUN) and serum creatinine, the mice (n = 24) were

divided into four groups: (1) normal control (NC), (2) folic acid

alone, (3) folic acid + scrambled LNA, and (4) folic acid + LNA-

anti-miR-150. The mice were injected subcutaneously with

LNA-anti-miR-150 or scrambled LNA (Exiqon, MA, USA),

starting at day 2, at a dose of 2 mg/kg twice weekly, for a total

of eight doses over 4 weeks.
Sample collection

Peripheral blood samples were collected on days 0, 2, and 30

following folic acid administration. On day 30, the mice were

anesthetized, blood samples were collected from the abdominal

aorta, and kidneys were collected after perfusion with

phosphate-buffered saline to remove intrarenal blood as

previously described (12). Plasma was isolated from blood

samples and was stored at -80°C. The kidneys were divided

into four parts: 1/2 of the left kidney was fixed into 4%

paraformaldehyde and the tissue was embedded in paraffin, 1/

2 of the left kidney was put into optimal cutting temperature

compound (Sakura, CA, USA) and stored at -80°C, and the right

kidney was divided into one vertical and horizontal cut, and four

pieces of kidney tissue, including intact renal cortex and

medulla, were stored at -80°C for isolation of total protein

and RNA.
Serology chemistry

BUN and serum creatinine (Scr) were measured using

commercial kits (Njjcbio, China) and an Architect c16000

clinical chemistry analyzer (Abbott, Chicago, IL, USA).
Histology studies

Kidney sections (3 µm) were cut from mouse paraffin-

embedded kidney tissue blocks and stained with hematoxylin and

eosin (H&E), periodic acid–Schiff (PAS), and Masson (Solarbio,

China) stains. On PAS-stained sections, tubular injury was scored

with a semi-quantitative approach by an observer masked to the
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sample identities (13). For each mouse, we arbitrarily selected 100

tubules at ×400 magnification. Each tubular profile was assigned

one of five categories according to the following criteria: 0, normal;

1, areas of tubular epithelial cell swelling, vacuolar degeneration,

necrosis, and/or desquamation involving <25% of tubular profile; 2,

similar changes involving ≥25 but <50% of tubular profile; 3, similar

changes involving ≥50% but <75% tubular profile; and 4, similar

changes involving ≥75% tubular profile. NIH Image J was used to

semi-quantify the renal fibrosis area on Masson-stained sections as

previously described (12).
Immunocytochemistry staining

Antigen retrieval for immunohistochemistry (IHC) staining

was performed on 3-mm mouse kidney sections, which were

deparaffinized, rehydrated, and incubated in citrate buffer for

20 min at 95°C. Non-specific binding was blocked with 10%

normal goat serum (Zsbio, Beijing, China) for 15 min at 37°C.

The slides were incubated overnight at 4°C with antibodies

against a-smooth muscle (a-SMA), fibronectin (FN), SOCS1,

phospho-Janus kinase-1 (p-JAK1), phosphorylated-signal

transducer and activator of transcription-1 (p-STAT1), CD11c,

CD68, and CD206 (Table 1). This was followed by incubation

with biotin-conjugated goat anti-rabbit immunoglobulin IgG

(Zsbio, China) for 15 min at 37°C. The sections were exposed to

streptavidin-conjugated peroxidase (Zsbio, China) for 15 min at
Frontiers in Immunology 03
37°C. The reaction products were visualized using a

diaminobenzidine kit (Zsbio, China). Images were captured by

microscopy (Nikon Corporation, Tokyo, Japan). Eight IHC

parameters were quantified by Image J software (NIH,

Bethesda, MD, USA) as previously reported (14).
Western blotting

K idne y t o t a l p r o t e i n s we r e e x t r a c t e d u s i n g

radioimmunoprecipitation assay buffer with protease inhibitors,

and protein concentrations were determined by bicinchonic acid

assay (Beyotime, China). Equal amounts of total protein from kidney

tissues (50 mg) were separated by SDS-PAGE and transferred onto

polyvinylidene fluoride membranes (Millipore Immobilon-P, MA,

USA). After blocking with 5% milk, the membranes were incubated

at 4°C overnight with primary antibodies against a-SMA, FN,

SOCS1, JAK-1, p-JAK1, STAT1, p-STAT1, CD68, CD11c, CD206,

and a-tubulin (Table 1). After washing the blots, goat anti-rabbit

immunoglobulin G (IgG) was added for 1 h at room temperature.

Antibody–antigen binding was detected by High-sig ECL Western

blotting Substrate (Wanlei, Shenyang, China) and visualized by the

Tanon 5500 imaging system (Shanghai, China). Protein loading

variation was normalized by a-tubulin. Blot density was analyzed by
NIH Image J software (Bethesda, MD, USA). Protein level is

expressed as the ratio of blot density from an individual protein to

its housekeeping antibody.
TABLE 1 Antibodies used in Western blotting and immunohistochemistry.

Protein Company Catalog Host Application Dilution

a-SMA Cell Signaling Technology 19245 Rabbit WB 1:1,000

IHC 1:500

Fibronectin Abcam ab2413 Rabbit WB 1:1,000

IHC 1:100

SOCS1 Cell Signaling Technology 3950s Rabbit WB 1:1,000

SOCS1 Bioss bs0113R Rabbit IHC 1:100

JAK1 Cell Signaling Technology 3344 Rabbit WB 1:1,000

p-JAK1 Cell Signaling Technology 74129 Rabbit WB 1:1,000

p-JAK1 Affinity AF2012 Rabbit IHC 1:100

STAT1 Cell Signaling Technology 14994 Rabbit WB 1:1,000

p-STAT1 Cell Signaling Technology 9167 Rabbit WB 1:1,000

IHC 1:800

CD68 Affinity DF7518 Rabbit WB 1:1,000

IHC 1:200

CD11c Cell Signaling Technology 97585 Rabbit WB 1:1,000

IHC 1:100

CD206 Abcam ab64693 Rabbit WB 1:1,000

CD206 Servicebio GB11062 Rabbit IHC 1:1,000

a-Tubulin Cell Signaling Technology 2125 Rabbit WB 1:1,000
fron
a-SMA, a-smooth muscle actin; FN, fibronectin; SOCS1, suppressor of cytokine signaling 1; JAK1, janus kinase-1; p-JAK1, phosphor-janus kinase-1; STAT1, signal transducer and
activators of transcription-1; p-STAT1, phosphor-signal transducer and activators of transcription-1; CD68, cluster of differentiation 68; CD11c, cluster of differentiation 11c; CD206,
cluster of differentiation 206; WB, Western blotting; IHC, immunohistochemical staining.
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qPCR

Total RNAs were isolated from the frozen kidney tissues

using TRIzol reagent (Life Technologies, Carlsbad, CA, USA)

according to instructions, and RNA concentration was measured

with Nanodrop 2000 (ThermoFisher, Waltham, MA, USA).

RNA (50 ng) was subjected to reverse transcription using

Prime Script RT Reagent Kit and followed by PCR with SYBR

Premix Ex Taq (Takara, China) for the mRNA of

proinflammatory cytokines, including CXCL1 and CXCL10 for

M1 macrophages and CCL17 and CCL26 for M2 macrophages,

as well as miR-150. Primers were designed using Primer Express

(Applied Biosystems, CA, USA) and synthesized by Life

Technologies (Shanghai, China). Real-time fluorescence signal

was detected with QuantStudio 6 Flex quantitative real-time

PCR system (Applied Biosystems). Beta-actin and small

nucleolar miRNA (Sno202) were used as endogenous controls

for mRNA and mouse miR-150, respectively (Table 2). Relative

levels of mRNA and miR-150 were calculated using the 2−DDCt

method (DCt: Ct value of endogenous control gene – Ct of

individual target gene).
Statistical analysis

Prism 9.0 (GraphPad, San Diego, CA, USA) software was used

for statistical analysis and graphing. Quantitative data are expressed

as mean ± SD. Difference between the two groups was analyzed by a

t-test. A value of p <0.05 was considered as statistically significant.
Results

miR-150 increased in folic acid-induced
RIF mice

First, we confirmed that folic acid induced AKI, followed by

renal fibrosis. At day 2 following folic acid injection, AKI was

detected, with elevated levels of BUN and Scr. Until day 30, BUN
Frontiers in Immunology 04
and Scr returned close to baseline (Figure 1A). AKI was

confirmed on histology, with renal tubular lumen expansion,

tubular epithelial cell vacuolization and brush border loss, renal

tubular epithelial cell detachment from basement membrane,

and a sparse infiltrate of inflammatory cells seen on PAS,

Masson, and H&E staining. At day 30, renal tubular atrophy,

patchy fibrosis of medulla rays, and severe infiltration of

inflammatory cells appeared. Tubular injury score and percent

renal fibrosis area showed the severity of tubular injury and renal

fibrosis (Figure 1B). Based on this disease course, we focused on

day 30, when RIF was striking. miR-150 was upregulated in the

kidney at day 30 after FA injection, quantitated by qPCR analysis

(Figure 1C). We examined the expression of pro-fibrotic

proteins in kidney tissues. The expression of a-SMA and

fibronectin was increased in RIF mice compared to control

mice by Western blotting and immunohistochemical staining;

semi-quantification of expression is shown in Figures 1D, E.
LNA-anti-miR-150 alleviated RIF

We have previously reported that LNA-anti-miR-150 is

delivered to the mouse kidneys following its systemic

administration (12, 14, 15). Therefore, we investigated the

efficacy of LNA-anti-miR-150 on folic acid-induced RIF at day

30 after eight doses of the injections. LNA-anti-miR-150 reduced

the upregulation of renal miR-150 on day 30 (Figure 2A).

Furthermore, PAS and Masson staining and semi-quantitative

analysis of fibrosis area showed that LNA-anti-miR-150

attenuated renal fibrosis. Specifically, there was a reduction in

the extent of regions of patchy fibrosis adjacent to the medullary

rays as demonstrated at low magnification (Figure 2B).

Moreover, the tubular injury score was reduced, and there

were fewer infiltrating inflammatory cells on PAS-stained

sections as well as reduced fibrosis area on Masson stain

(Figure 2C). The increased levels of fibrotic proteins, including

a-SMA and fibronectin, were reversed by LNA-anti-miR-150,

compared to the scrambled LNA, as assessed by Western

blotting and immunostaining (Figures 2D, E).
TABLE 2 Sequence of RNA and RNAi used in the present study.

Gene Host Forward (5′–3′) Reverse (5′–3′) Application

mmu-miR-150 Mouse TCTCCCAACCCTTGTACCAGTG qPCR

Sno202 Mouse GCTGTACTGACTTGATGAAAGTACT qPCR

CXCL1 Mouse CTGGGATTCACCTCAAGAACATC CAGGGTCAAGGCAAGCCTC qPCR

CXCL10 Mouse CCAAGTGCTGCCGTCATTTTC GGCTCGCAGGGATGATTTCAA qPCR

CCL17 Mouse GACGACAGAAGGGTACGGC GCATCTGAAGTGACCTCATGGTA qPCR

CCL26 Mouse TTCTTCGATTTGGGTCTCCTTG GTGCAGCTCTTGTCGGTGAA qPCR

Beta-actin Mouse TTCCTTCTTGGGTATGGAAT GAGCAATGATCTTGATCTTC qPCR

LNA-anti-miR-150 Mouse TACAAGGGTTGGGAG RNAi in vivo

Scrambled LNA Mouse TAGAAGGGTGGTGAC RNAi in vivo
LNA, locked nucleic acid; RNAi, RNA interference; CXCL, C-X-C motif chemokine ligand; CCL, chemokine (C–C motif) ligand.
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LNA-anti-miR-150 ameliorated RIF
through the SOCS1/JAK1/STAT1 pathway

We previously reported in a study using the luciferase

reporter gene that miR-150 mimic can downregulate SOCS1

mRNA, which encodes the suppressor of cytokine signaling 1
Frontiers in Immunology 05
(16). We have previously reported that LNA-anti-miR-150

regulates the SOCS1/JAK1/STAT1 pathway in experiments

using HK-2 cells co-cultured with macrophages (12). To verify

whether this pathway also operates in vivo, we examined the

renal protein levels of SOCS1, JAK1, p-JAK1, STAT1, and p-

STAT1 in folic acid-induced RIF mice by Western blotting and
B

C

D

E

A

FIGURE 1

Course of folic acid-induced kidney injury and renal miR-150 expression in mice. The dynamic changes of renal function indicated by blood
urea nitrogen and serum creatinine (A). Histological morphological changes by periodic acid–Schiff, Masson, and H&E staining as well as semi-
quantification of tubular injury score and renal fibrosis area (B) in mice after folic acid (FA) injection. Relative renal expression of miR-150
determined by qPCR (C). Shown are the renal expression of profibrotic protein including a-SMA and fibronectin by Western blotting and the
density of the bands (D) and immunohistochemical (IHC) staining and their respective semi-quantitative analysis at day 30 after FA
administration (E). Data are presented as mean ± SD, n = 6. In (A, B), #p < 0.05, day 2 post-FA mice vs. normal control (NC) mice. In (A), *p <
0.05, day 30 post-FA vs. day 2 post-FA. In (B–E), *p < 0.05, day 30 post-FA vs. NC mice. For PAS, Masson, H&E, and IHC, magnification = ×200
and scale bar = 100 mm.
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immunohistochemical staining as well as their respective semi-

quantification. SOCS1 was downregulated, and p-JAK1 and p-

STAT1 were upregulated in the kidneys of folic acid-injected

mice compared to those of normal mice (Figures 3A, B). LNA-

anti-miR-150 intervention reverted these changes in the protein

expression of the SOCS1/p-JAK1/p-STAT1 pathway

(Figures 4A, B). Thus, the SOCS1/p-JAK1/p-STAT1 pathway

contributes to renal fibrosis in folic acid-induced RIF mice.
Frontiers in Immunology 06
Renal infiltration of the polarized M1 and
M2 macrophages was increased in
RIF mice

The JAK/STAT pathway contributes to the activation and

polarization of macrophages (17). To clarify the renal infiltration

of macrophages and the polarization of pro-inflammatoryM1 and

M2 polarization in folic acid-induced RIF mice, we assessed CD68
B

C

D

E

A

FIGURE 2

LNA-anti-miR-150 inhibited the renal miR-150 expression and attenuated the renal injured production of profibrotic proteins in renal interstitial
fibrosis mice. Renal miR-150 levels were inhibited by LNA-anti-miR-150 (A). Morphologic damage including kidney surface scarring (B) and
patchy fibrosis along the medullary rays was improved, as assessed by PAS staining; semi-quantification. Renal fibrosis improvement was also
seen on Masson staining; semi-quantification is shown (C). Renal profibrotic proteins including a-SMA and fibronectin analyzed by Western
blotting (D) and immunohistochemical staining (E). For PAS staining, magnification ×1.5, scale bar = 1 mm (B). For PAS, Masson, and
immunohistochemical staining, magnification = ×200, scale bar = 100 mm. For all graphs, data are presented as mean ± SD, n = 6. *p < 0.05, FA
+ LNA-anti-miR-150 group vs. FA + scrambled LNA group.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.913007
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hao et al. 10.3389/fimmu.2022.913007
+ (total) macrophages, CD11c+ M1 macrophages, and CD206+

M2macrophages. CD68 macrophage protein was increased at day

30 in folic acid-injected RIF mice by both Western blotting and

immunohistochemical staining (Figure 5A).

We investigated the polarization of macrophages toM1 andM2

states. Pro-inflammatory CD11c and CD206 proteins were

upregulated in RIF mice compared to control mice as assessed by

Western blotting (Figure 5B) and by immunohistochemical

staining, which demonstrated macrophage localization to fibrotic

areas (Figure 5C). In addition, we examined the expression of pro-

inflammatory cytokine characteristics of M1 and M2 macrophages.

The renal expression of CXCL1 and CXCL10 (secreted by M1

macrophages) was upregulated in RIF mice compared to normal
Frontiers in Immunology 07
mice, which was assessed at the mRNA level by qPCR (Figure 5D).

Similarly, the renal mRNA levels of CCL17 and CCL26 cytokines

secreted by M2 macrophages were also increased on qPCR in RIF

mice compared to control mice (Figure 5D).
LNA-anti-miR-150 inhibited the
polarization of renal macrophage M1 and
M2 in RIF mice

Next, we investigated whether LNA-anti-miR-150 affects the

polarization of macrophages to M1 and M2 phenotypes in folic

acid-induced RIF mice. LNA-anti-miR-150 significantly decreased
B

A

FIGURE 3

Renal expression of proteins on the SOCS1/JAK1/STAT1 pathway in folic acid (FA)-induced renal interstitial fibrosis mice. Western blotting (A) of
SOCS1, JAK1, p-JAK1, STAT1, and p-STAT1 and the density of the blots. Immunohistochemical (IHC) staining (B) of SOCS1, p-JAK1, and p-STAT1
and the percentage of positive-staining area of each of the abovementioned proteins. For IHC, magnification = ×200, scale bar = 100 mm. For
all graphs, data are presented as mean ± SD, n = 6. *p < 0.05, day 30 post-FA group vs. NC group.
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the renal protein levels of CD68, a macrophage marker, and

reduced the numbers of CD68-expressing cells in folic acid-

induced RIF mice, compared to the mice treated with the

scrambled LNA, on Western blotting and immunohistochemical

staining (Figure 6A).

We assessed the effect of LNA-anti-miR-150 on macrophage

polarization. Using Western blotting of folic acid-induced RIF

mouse kidneys, we found that LNA-anti-miR-150 reduced the

CD11c+ M1 protein (Figure 6B). Similar findings were observed

on immunohistochemical staining (Figure 6C). Similarly, the

protein levels of CD206 and CD206+ M2 macrophages were

decreased by the LNA-anti-miR-150 of folic acid-induced RIF

mouse kidneys, respectively, on Western blotting (Figure 6B)
Frontiers in Immunology 08
and immunohistochemistry staining (Figure 6C). As for the

macrophage-excreted cytokines, LNA-anti-miR-150 reduced

M1-related CXCL1 and CXCL10 compared with the

scrambled LNA-receiving RIF mouse kidneys. Similarly, M2

macrophage pro-inflammatory cytokines CCL17 and CCL26

were reduced in folic acid-induced RIF mouse kidneys by

LNA-anti-miR-150 administration on qPCR (Figure 6D).
Discussion

The main findings in this study of folic acid-induced renal

fibrosis in mice are as follows: (1) LNA-anti-miR-150
A

B

FIGURE 4

The effect of LNA-anti-miR-150 on the protein expression of SOCS1/JAK1/STAT1 pathway in renal interstitial fibrosis mice. Western
blotting (A) demonstrated the renal protein levels of SOCS1, JAK1, p-JAK1, STAT1, and p-STAT1 and the density of the blots.
Immunohistochemical (IHC) staining (B) of SOCS1, p-JAK1, and p-STAT1 and the percentage of positive-staining area of each of the
abovementioned proteins are shown. For immunohistochemical staining, magnification = ×200, scale bar = 100 mm. For all graphs, data
are presented as mean ± SD, n = 6. *p < 0.05, FA + LNA-anti-miR-150 group vs. FA + scrambled LNA group.
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ameliorated renal interstitial fibrosis at day 30 after the folic acid

injection, (2) LNA-anti-miR-150 reduced the renal infiltration of

total macrophages and pro-inflammatory polarized CD11c+ M1

and CD206+ M2 macrophages, and (3) LNA-anti-miR-150

regulated the protein expression of the SOCS1/JAK1/STAT1

pathway proteins.
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Various mouse models, including unilateral ureteral

obstruction and 5/6 nephrectomy, manifest renal fibrosis (18,

19). A bolus injection of folic acid provides the classic mouse

model for the progression of AKI to RIF (20, 21). When renal

function recovered, renal fibrosis still progressively and

irreversibly occurred (22). In the present study, RIF was
B

C

A

FIGURE 5

The infiltration of total macrophages, M1 macrophages, and M2 macrophages increased in the kidneys of renal interstitial fibrosis mice. Western
blots and immunohistochemical (IHC) staining of the renal expression of CD68 protein, a typical biomarker for total macrophages (A), are
shown. M1 macrophage polarization is indicated by CD11c, and M2 macrophage polarization is indicated by CD206 expression as analyzed
using Western blotting (B) and IHC staining and their respective semi-quantification (C). The renal mRNA levels of M1-related cytokines
CXCL1and CXCL10 as well as M2-related cytokines CCL17 and CCL26 were assessed by qPCR (D). For IHC staining, magnification = ×200, scale
bar = 100 mm. For all graphs, data are presented as mean ± SD, n = 6. *p < 0.05, day 30 post-FA group vs. NC group.
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observed on morphological analysis at day 30 after a high-dose

peritoneal injection of folic acid (Figure 1). Interestingly, we

found that the expression of renal miR-150 was increased in folic

acid-induced RIF mice. The increase of miR-150 in this model is

consistent with our previous report (12). The overexpression of

renal miR-150 accelerates the progression and renal fibrosis of

murine lupus nephritis (14, 16, 23). In a clinical study of IgA

nephropathy, Pawluczyk et al. reported that the expression of

miR-150 was significantly increased (24). Similarly, Qi et al.

found high levels of miR-150 in kidney tissue from patients with
Frontiers in Immunology 10
focal segmental glomerulosclerosis (15). Taken together, the

clinical and translational studies suggest that miR-150 could

be a promising therapeutic target in human glomerular diseases.

Chemically modified oligonucleotide small interfering RNAs

and anti-miRs have been used to block the actions of specific

endogenous genes and miRNA (25). More recently, LNA-anti-

miR-132 has reduced liver fibrosis in a mouse model (26). Putta

et al. reported that LNA-anti-miR-192-inhibited miR-192 levels

attenuated glomerulosclerosis in diabetic mice (27). The

treatment of Trypanosoma cruzi-infected mice with LNA-anti-
B

C

D

A

FIGURE 6

LNA-anti-miR-150 reduced the renal infiltration of macrophages and polarization of M1/M2 macrophages in renal interstitial fibrosis mice.
Western blotting and immunohistochemical (IHC) staining of the renal expression of CD68 protein, a classic biomarker for total macrophages
(A). M1 macrophage polarization indicated by CD11c and M2 macrophage polarization indicated by CD206 expression as analyzed using
Western blotting (B) and IHC staining (C). The renal mRNA levels of M1-related cytokines CXCL1 and CXCL10 as well as M2-related cytokines
CCL17 and CCL26 were quantitated by qPCR (D). For IHC staining, magnification = ×200, scale bar = 100 mm. For all semi-quantification
graphs, data are presented as mean ± SD, n = 6. *p < 0.05, FA + LNA-anti-miR-150 group vs. FA + scrambled LNA group.
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miR-21 promoted a significant attenuation in cardiac fibrosis by

inhibiting the effect of miR-21 on collagen production (28). miR-

142-3p inhibitor reduced the tumorigenicity of breast cancer in

vitro and in vivo (29). Our study found that LNA-anti-miR-150

strongly inhibited the renal endogenous miR-150 levels to lower

than 30% of folic acid-induced interstitial fibrosis mice, which is

similar to our previous study (12). Based on these data, we

investigated the therapeutic effect of LNA-anti-miR-150 on

interstitial fibrosis mice. LNA-anti-miR-150 alleviated renal

interstitial fibrosis on PAS and Masson staining. LNA-anti-

miR-150 also reduced the production of profibrotic proteins

including a-SMA and FN (Figure 2). Dong et al. reported that

silencing of miR-150 ameliorates diabetic nephropathy (30), and

Qi et al. reported that miR-150 inhibitor ameliorates

adriamycin-induced focal segmental glomerulosclerosis in

mice (15). Ranganathan found that miR-150 deletion

protected the kidneys from myocardial infarction-induced AKI

in mice (31). Luan et al. also reported that miR-150-based RNA

interference attenuates interstitial fibrosis in mice but did not

characterize the mechanisms of protection (12). The present

study is the first to explore the role of miRNA in protecting

against folic acid-induced RIF mice.

It has been reported that miR-150 promotes renal fibrosis of

lupus nephritis by downregulating the expression of SOCS1 in

cultured kidney cells (16). miR-150 antagonist reversed the

macrophage-induced decrease of SOCS1 and the increased

JAK/STAT which is downstream of SOCS1 (12). The SOCS/

JAK/STAT pathway has been involved in multiple kidney

diseases, such as streptozotocin-induced diabetic nephropathy,

ischemia–reperfusion-induced kidney injury, and cisplatin-

induced AKI (32–34). However, whether the SOCS/JAK/STAT

pathway participates in the pathogenesis of folic acid-induced

RIF mice model remains unreported. In this study, we found that

SOCS1 was downregulated and p-JAK1 and p-STAT1 were

upregulated in folic acid-induced RIF mice. The renal

expression changes of SOCS1, p-JAK1, and p-STAT1 were

reversed to renal protective levels after eight doses of LNA-

anti-miR-150 administration in 2 weeks (Figures 3, Figure 4).

This data demonstrated that miR-150 was indeed an important

gene regulating the SOCS1/JAK1/STAT1 pathway in folic acid-

induced RIF mice. It is well established that miR-150 influences

the development of immune cells. miR-150 is selectively

expressed in mature B and T cells and is an important

regulator for the differentiation and activation of B cells (35).

In addition, KChIP-2, one of the miR-150 targets in T cells, has

been reported to inhibit the production of IL-2, IL-4, and IFN-g
(36). Moreover, miR-150 has been reported to be involved in

cytokine IL-17 expression (37). Our previous study mentioned

that the inhibition of miR-150 in lupus nephritis can reduce the

infiltration of total macrophages by just examining CD68, a total

macrophage biomarker; we had not performed subsets of

macrophages (14). There is not any report on the relationship

between miR-150 and M1/M2 macrophages in kidney diseases.
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In the present study, we focused on the role of pro-inflammatory

CD11c+ M1 macrophages and CD206+ M2 macrophages. We

found that renal total macrophages were upregulated. The CD11c

+ M1 macrophages and CD206+ M2 macrophage numbers were

also increased in folic acid-induced RIF mouse kidneys and located

in the renal interstitial fibrosis area (Figures 5C, 6C). These findings

are consistent with prior reports (38). M1 macrophage polarization

plays an important role in the progression of renal fibrosis due to the

overproduction of pro-inflammatory cytokines and the profibrotic

effect of pro-inflammatory cytokines (4). It is reasonable to propose

that uncontrolled macrophage polarization might be an important

underlying mechanism for the chronic inflammation and fibrosis

observed in CKD (39, 40). Pro-inflammatory M1 macrophages

induce renal injury from the early stages of the disease, and

persistent existing M1-induced injury contributes to renal fibrosis

in the late stages (4, 41).

The present study also showed that the CD206+ macrophage

numbers are increased, as were the numbers of CD11c+

macrophages, at day 30 after FA-induced AKI when renal fibrosis

appeared (Figure 5). These data suggest that M2 macrophages may

also play crucial roles in the late stages of fibrosis, when epithelial–

mesenchymal transition occurs. As supporting evidence, M2

macrophages contribute to fibrogenesis in the late stages of renal

fibrosis, in part by producing transforming growth factor-beta, a

potent pro-fibrotic cytokine (4). CD11b+/Ly6ClowM2macrophages

contribute to renal fibrosis by producing pro-fibrotic factors,

including platelet-derived growth factor, insulin-like growth factor

(IGF)-1, and CCL17, all of which are highly correlated with

fibrogenesis or wound healing (42). In addition, using a single

gene knockout, it was also shown that M2 macrophages express a

secreted protein that is acidic and rich in cysteine (SPARC, also

known as osteonectin), which regulates the production of

extracellular matrix (ECM). Tissue inhibitor of metalloproteinase-

2 (TIMP-2) prevents matrix metalloproteinase-mediated ECM

turnover and thereby enhances matrix accumulation, contributing

to cardiac fibrosis (43, 44). Furthermore, macrophage-derived IGF-

1 attenuates myofibroblast apoptosis and enhances collagen

production (45). In a mouse rhabdomyolysis-induced AKI model,

macrophage polarization was also detected during disease

progression. Abundant F4/80lowCD11bhighLy6bhighCD206low

macrophages are found in the kidney by day 2, whereas F4/

80highCD11b+Ly6blowCD206high cells become predominant by

day 8 (46). When considering the published data and the findings

presented here, it appears that both M1 and M2 macrophages play

prominent roles in renal fibrosis.

LNA-anti-miR-150 decreased the infiltration of total

macrophages and the polarized CD11c+ M1 macrophage and

CD206+ M2 macrophage. In addition, the elevated secretion of

pro-inflammatory cytokines, including M1-related CXCL1 and

CXCL10 and M2-related CCL17 and CCL26, may augment in

the early phase of renal inflammation and in the late phase of

renal fibrosis in folic acid-induced RIF. The data suggests that

LNA-anti-miR-150 alleviates the effect of CD11C+ M1 and
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CD206+ M2 on renal inflammation and fibrosis. What is the

underlying mechanism? SOCS1 is a target of miR-150 (16).

SOCS1 negatively regulates the JAK/STAT signaling pathway by

binding JAKs or cytokine receptors (47). The downregulated

SOCS1 expression activates the JAK1/STAT1 pathway and

promotes the polarization of macrophages into M1 cells (48).

The SOCS1/JAK/STAT pathway is involved in the role of M2

macrophage in cells and mice (49). However, the relationship

between the SOCS1/JAK/STAT pathway and M2 macrophages

in renal fibrosis remains unclear. In our study, we found that

LNA-anti-miR-150 alleviates renal interstitial fibrosis by

reducing pro-inflammatory CD11c+ M1 and CD206+ M2

macrophage polarization. Recently, different subtypes such as

M2a, M2b, and M2c were identified (7). The diverse functions of

different M2 subtypes in renal fibrosis merit future investigation.

In conclusion, LNA-anti-miR-150 alleviated mouse renal

interstitial fibrosis induced by folic acid. The anti-renal fibrotic

effects appear to be mediated by reducing the pro-inflammatory

M1/M2 macrophage polarization regulated, at least partially, via

the SOCS1/JAK1/STAT1 pathway.
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