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Abstract

MYC is a major oncogenic driver of Multiple Myeloma (MM) and yet almost no therapeutic 

agents exist that target MYC in MM. Here we report that the let-7 biogenesis inhibitor LIN28B 
correlates with MYC expression in MM and is associated with adverse outcome. We also 

demonstrate that the LIN28B/let-7 axis modulates the expression of MYC, itself a let-7 target. 

Further, perturbation of the axis regulates the proliferation of MM cells in vivo in a xenograft 

tumor model. RNA sequencing and gene set enrichment analyses of CRISPR-engineered cells 

further suggest that the LIN28/let-7 axis regulates MYC and cell cycle pathways in MM. We 

provide proof-of-principle for therapeutic regulation of MYC through let-7 with an LNA-GapmeR 

containing a let-7b mimic in vivo, demonstrating that high levels of let-7 expression repress tumor 

growth by regulating MYC expression. These findings reveal a novel mechanism of therapeutic 

targeting of MYC through the LIN28B/let-7 axis in MM that may impact other MYC dependent 

cancers as well.
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Introduction

Multiple myeloma (MM), a tumor originating from plasma cells in the bone marrow (BM), 

has an annual incidence of 6.3 new cases per 100,000 individuals1. Despite the major 

advances in therapy for MM, it remains incurable and there are no targeted therapies for 

MM, in part due to the lack of therapies that target specific oncogenes involved in the 

pathogenesis of the disease. Genomic events such as chromosomal translocations, copy 

number variation, somatic mutations, and epigenetic modifications all contribute to gene 

deregulation of specific oncogenes or tumor suppressors during MM tumorigenesis2. Among 

those, MYC plays a central role in the progression of the disease. Approximately two thirds 

of newly diagnosed patients harbor MYC activation, which correlates with adverse clinical 

outcome3. MYC activation is commonly driven by translocation or copy number gain of 

chromosome 8q24, which contains the MYC locus4, 5. Despite the dominant role of MYC in 

MM, there are very few therapeutic options targeting MYC. Previous studies have attempted 

to target MYC by using a bromodomain inhibitor to target BET proteins, which regulate 

MYC6, 7.

The let-7 miRNA was originally discovered in C. elegans as a regulator of developmental 

timing and cell proliferation8. Let-7 expression increases as cells become more 

differentiated. In humans, let-7 miRNAs comprise a family of 12 members distributed over 8 

genomic loci9 that are often repressed in cancer10. Let-7 miRNAs function as a tumor 

suppressor through regulation of key oncogenes, including MYC and RAS, by binding 

specific sites in the mRNA 3'-UTRs and inhibiting translation of these targets11,12. Low 

expression of let-7 family members is associated with poor prognosis in several cancer 

types13, 14.

In humans, let-7g and let-7i are located individually on chromosomes 3 and 12 respectively. 

The remaining let-7 family members are distributed among six miRNA clusters at 

genetically distinct loci. The let-7a2 and let-7c clusters are involved in hematopoietic stem 

and progenitor cell (HSPC) homeostasis by regulating the balance between TGFβ and Wnt 

signaling15, whereas the let-7e cluster is highly expressed in HSPC and confers 

hematopoietic phenotypes16. However, the exact role of the various let-7 family members in 

mammalian development has not yet been fully elucidated17,18, in large part because it is 

technically difficult to knock out multiple let-7 family members in the same individual cell. 

Moreover, these multiple let-7 family members are likely to have functionally similar roles.

LIN28B is an RNA-binding protein highly expressed in stem cells and developing tissues 

where it impairs the processing of let-7 precursors into mature, functional miRNAs19. Over-

expression of LIN28B has been reported in several cancers20 and is associated with 

advanced disease and poor outcome in ovarian14, breast21, colon22, hepatocellular 

carcinoma23, 24 and neuroblastoma25, 26. Transgenic LIN28B has been shown to induce 

multiple tumors types in mice including liver, Wilms, colon, and neuroblastoma, all of which 

solidify its oncogenic role24, 25,27,28. LIN28B has also been reported to act through a let-7-

independent manner, especially via regulation of IGF224.

Manier et al. Page 2

Leukemia. Author manuscript; available in PMC 2017 April 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



While the LIN28B/let-7 axis has been implicated in the regulation of MYC in different 

tumor types20, its potential as a therapeutic target has not yet been explored, specifically in 

blood cancers. In this study, we define the mechanistic activity of the LIN28/let-7 axis in 

clonal plasma cells and establish a potential therapeutic role of this pathway in targeting 

MYC in MM, which could lead to significant therapeutic advances in MM and other 

cancers.

Methods

Cell and primary cells

The MM cell lines MM.1S and RPMI8226 were purchased from ATCC; KMS12BM and 

MOLP-8 were purchased from DSMZ and KMM-1 was purchased from JCRB Cell Bank. 

The MM.1S GFP+Luc+ cell line was generated by retroviral transduction with the pGC-

GFP/Luc vector (gift of A. Kung, Dana-Farber Cancer Institute). Cells were authenticated by 

short tandem repeat DNA profiling. Primary samples were obtained from bone marrow 

aspiration from both MM patients and healthy controls. Plasma cells were isolated using 

CD138+ microbead selection (Miltenyi Biotec®, Auburn, CA). All patients were diagnosed 

with active MM at diagnosis or at relapse, based on criteria of the International Myeloma 

Working Group29. Informed consent was obtained from all patients and healthy volunteers 

in accordance with the Declaration of Helsinki protocol.

Lentivirus-mediated shRNA silencing

LIN28B shRNA in lentiviral plasmid (TRCN0000122191 and TRCN0000122599) and 

control shRNA (SHC216V) were purchased from Sigma-Aldrich. For viral production, 293T 

cells were transfected with lentiviral gag/pol, VSV-G, and the lentiviral plasmid, at a ratio of 

1:0.4:1, using Lipofectamine 2000. Viral particles were harvested after 24hrs and 48hrs. Two 

milliliters of viral supernatant were used to infect 1,000,000 cells in the presence of 

Polybrene (8 ng/µL). Infected cells were selected on Puromycin antibiotic before subsequent 

analysis.

Lentivirus-mediated CRISPR silencing

LentiCRISPRv2 (Addgene plasmid #52961) and lentiCRISPR:EGFPsgRNA-1 (#51760) 

were gifts from Feng Zhang30. LIN28B sgRNA were designed using the MIT Optimized 

CRISPR design tool. Sequences of sgRNA were: 5’-CATCGACTGGAATATCCAA G-3’ for 

sgLIN28B#1 and 5’-CAGAGCAAACTATTCATGGA-3’ for sgLIN28B#2. Human U6 

(hU6) primer 5’-GAGGGCCTATTTCCCATGATT-3' was used for validation by Sanger 

sequencing after cloning. Lentivirus production was processed as above for shRNA lentiviral 

production.

miRNA mimic transfection

Cell lines were transfected with hsa-let-7b mimic or with a control probe (mirVana miRNA 

mimic, Life Technology) at final concentration of 40 nM, using Lipofectamine 2000 

according to manufacturer’s instructions (Invitrogen). Culture medium was changed to 

regular medium 24 hours after transfection and cells were used for functional assays at 48 

hours. For the rescue experiment, MOLP-8 sgGFP or sgLIN28B#1 were transfected with a 
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control probe or a mix of anti-let-7a, b, d, and g (mirVana anti-miRNA, Life Technology) at 

a final concentration of 40 nM, using X-tremeGENE 9 according to manufacturer’s 

instructions (Roche, Life Science).

Quantitative reverse transcription PCR

Mature miRNA and mRNA expression were analyzed by qRT-PCR using SYBR green dye 

on an Applied Biosystems AB7500 Real Time PCR System. All PCR reactions were run in 

triplicate. Ct values were normalized on RNU6B and 18S, respectively, and relative changes 

were calculated using the 2-ΔΔCt. The following primer sequences were used: LIN28B-F: 

5’-GCCCCTTGGATATTCCAGTC-3’; LIN28B-R: 5’-TGACTCAAGGCCTTTGGAAG-3’; 

MYC-F: 5’-TCGGTCCTCGGATTCTCTGCTCT-3’; MYC-R: 5’-

GCCTCCAGCAGAAGGTGATCCA-3’; KRAS-F: 5’-

TGTGTCTCATATCAGGTTGACGA-3’; KRAS-R: 5’ -

CAAGAGTCGAGTGTGGTCTCA-3’; CCND1-F: 5’-

TCTACACCGACAACTCCATCCG-3’; CCND1-R: 5’-

TCTGGCATTTTGGAGAGGAAGTG-3’; DICER1-F: 5’-

CTCCTACCACTACAATACTATCACT-3’; DICER1-R: 5’-

GGTCTTCATAAAGGTGCTTGGT-3’; E2F6-F: 5’-GCGGAGAGTGTATGACATCACC-3’; 

E2F6-R: 5’-GTCAGAAAGTTCCTCCTGTAGCT-3’; HMGA1-F: 5’-

GAAGTGCCAACACCTAAGAGACC-3’; HMGA1-R: 5’-

GGTTTCCTTCCTGGAGTTGTGG-3’; pri-let-7d-F: 5’-

GCCAAGTAGAAGACCAGCAAG-3’; pri-let-7d-R: 5’-

CAAGGAAACAGGTTATCGGTG-3’; pri-let-7g-F: 5’-GTTCCTCCAGCGCTCCGTT-3’; 

pri-let-7g-R: 5’-CCATTACCTGGTTTCCCAGAGA-3’. Sequences for full mature let-7 
miRNA were used to design let-7 forward primers, in combination with universal 3’ miRNA 

reverse primer.

Immunoblotting

Whole-cell lysates were subjected to SDS-PAGE, and transferred to polyvinyldene fluoride 

(PVDF) membrane (Bio-Rad Laboratories). For immunoblotting we used antibodies against 

LIN28B (Cell signaling #4196S), c-MYC (Cell signaling #9402S) and GAPDH (Cell 

signaling #2118S).

Proliferation assay

Proliferation rates were measured by DNA synthesis, using [3H]-thymidine uptake (Perkin 

Elmer, Boston, MA) as described31.

RNA-sequencing

RNA was extracted using Qiagen RNeasy Kit. Whole RNA (500ng) was subject to library 

preparation with NEBNext Ultra RNA Library prep for Illumina kit (BioLabs). A single 

unique index was assigned to each sample. Quality control of the libraries was evaluated by 

Bioanalyzer analysis with High Sensitivity chips (Agilent). Libraries were quantified by 

qPCR (Kapa assay) and multiplex before sequencing on a HiSeq 2000 (2×50bp paired-end 

reads) at the Biopolymers Facility of Harvard Medical School. Cutadapt was used to trim 

Manier et al. Page 4

Leukemia. Author manuscript; available in PMC 2017 April 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



adapters; trimmed reads were aligned to Human reference genome (GRCh37) with tophat2; 

and read counts for each gene was calculated by HT-seq. RNA-seq data have been deposited 

to the Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) under accession 

numbers GSE71100.

In vivo studies

SCID/bg mice (n=5/group) used for xenograft experiments were injected subcutaneously 

with MOLP-8 cells that were infected with either a LIN28B shRNA, or a control shRNA. 

Tumor volume (measured by caliper) were calculated by the formula: length × width2 × 

0.5232. To evaluate the effect of let-7 LNA-GapmeR (containing the sequence 5’-

AGGTAGTAGGTTGTGT-3’), SCID/bg mice (n=5/group) were i.v. injected with 5×106 

MM.1S GFP+Luc+ cells on day 0; followed by i.p. injections of let-7 (20 mg/kg) or control 

LNA-GapmeR 2 times a week starting on day 2. Tumor growth was evaluated by 

bioluminescence imaging (BLI) and mice were followed for survival.

Results

Deregulation of LIN28B/Let-7 axis in MM

We first sought to determine whether LIN28B is deregulated in MM, and therefore analyzed 

two independent publicly available gene expression profiling datasets containing plasma 

cells from patients with newly diagnosed MM and healthy control donors. These included 

GSE24080 and GSE2658, containing 22 normal donor plasma cell samples and 559 plasma 

cell samples from patients with newly diagnosed patients - both from UAMS - and 

GSE16558, with 5 normal donor plasma cells and 65 plasma cell samples from patients with 

newly diagnosed MM. We identified a significant overexpression of LIN28B in MM cells 

compared to normal plasma cells in both datasets (Fig. 1a). We next sought to determine the 

prognostic relevance of LIN28B in the survival of patients with MM. We performed Kaplan 

Meier analysis on a cohort of 542 patients treated with Total Therapy 2 (GSE2658), and 

observed that high expression of LIN28B was associated with significantly worse overall 

survival, (p=0.0075) (Fig. 1b).

Therefore, we explored whether targeting the LIN28B/let-7 axis would have a 

therapeutically relevant role in MM and silenced LIN28B using two lentiviral short hairpins 

(shRNA) constructs that target the mRNA coding sequence in several LIN28B-expressing 

MM cell lines: MOLP-8, KMS12BM, RPMI8226 and KMM-1. The shRNAs caused 

degradation of LIN28B mRNA in all cell lines (Fig. 1c). Moreover, pri-let-7 RNA was not 

modified as shown for pri-let-7g, consistent with the post-transcriptional regulation of let-7 
by LIN28B (Supplemental Fig. 1a).

LIN28B regulates let-7 and MYC in MM

Consistent with the role of LIN28B in regulating let-7 expression, we observed de-

repression of let-7 family members in cells with LIN28B knockdown compared to non-

targeting control (Fig. 2a). We next analyzed the downstream targets of LIN28B/let-7 and 

found a decreased protein expression of MYC in LIN28B-silenced cells in several MM cell 

lines (Fig. 2b). Moreover, knockdown of LIN28B significantly impaired the proliferation of 
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these cell lines tested (Fig. 2c). Consistent with these observations, we identified, through 

gene set enrichment analysis (GSEA), an enrichment of let-7 target genes in MM patient 

samples who displayed a high level of LIN28B expression in two independent datasets 

(GSE2658 and MMRC dataset), suggesting that LIN28B represses let-7 and indirectly 

enriches let-7 target expression (Fig. 3a).

In addition, among let-7 target genes, MYC expression significantly correlated with LIN28B 
expression level in two independent datasets (GSE16558 and GSE2658). As shown in 

Supplemental Fig. 1b, a strong correlation existed between LIN28B and MYC in MM tumor 

cells from patient samples in GSE16558 and in total therapy 2 GSE2658, p<0.028 and 

p<0.001, respectively.

To validate whether MM cells are dependent on LIN28B for growth, we examined tumor 

growth of MOLP-8 cell line with a LIN28B specific hairpin or non-targeting control in a 

xenograft mouse model using SCID/bg mice. Tumor growth was significantly lower in mice 

injected subcutaneously with LIN28B knockdown compared to scrambled control (Fig. 3b), 

resulting in a significant prolongation of survival in the experimental group, p = 0.0045 (Fig. 

3c). In addition, MYC expression was significantly reduced in cells obtained ex-vivo from 

mice injected with LIN28B knockdown compared to scrambled control (Supplemental Fig. 

1c).

Together, these data suggest a deregulation of LIN28B/let-7 axis in a proportion of patients 

with MM and can function as a novel therapeutic target of MYC regulation in MM.

MYC and cell cycle pathways are highly enriched in cells with high expression of LIN28B

To control for possible off-target effect of shRNAs and for incomplete LIN28B knockdown 

mitigating the observed phenotype, we next used CRISPR/Cas9 technology to knock-out 

(KO) LIN28B in the MOLP-8 cell line. Single guide RNAs (sgRNA) targeting exons 2 and 3 

of LIN28B were used (Supplemental Fig. 2a). Significant decrease in LIN28B protein levels 

were observed, indicating high frequency LIN28B KO in the cell population. MYC protein 

level were similarly decreased (Fig. 4a). Moreover, LIN28B KO resulted in de-repression of 

let-7, which was consistent with the shRNA experiment (Fig. 4b). Moreover, LIN28B KO 

led to the reduced proliferation by thymidine uptake assay (Fig. 4c).

For further characterization of the LIN28B/let-7 axis in MM, we performed RNA-

sequencing of the LIN28B CRISPR-KO cells and GFP sgRNA control cells in triplicate. 

LIN28B was confirmed to be the most significantly down-regulated gene in LIN28B-

silenced cells (Fig. 5a), confirming efficient knock-out. We then queried the top 150 down 

regulated genes in LIN28B KO cells against the MSigDB ‘H’ hallmark, ‘c2’ canonical 

pathways and ‘c3’ transcription factor target gene sets. The 10 most enriched gene sets were 

present in E2F cell cycle pathway regulation (Fig. 5b). Of note, E2F2, a let-7 target gene, 

was one of the most down-regulated genes in LIN28B KO cells. Moreover, we found a 

significant enrichment of let-7 target genes in control compared to LIN28B KO cells (Fig. 

6a). Using an unsupervised GSEA analysis of the whole data set against the MSigDB ‘H’ 

hallmark gene sets, we found that MYC pathway gene set was in the top 5 genes sets, which 

further suggests that the LIN28B/let-7 axis regulates MYC in MM. Moreover, significant 
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enrichment of MYC pathway in control cells was also validated using several MYC pathway 

gene sets (Fig. 6b). These results support a model where LIN28B represses let-7, thereby 

enriching let-7 targets such as E2F2 and MYC in MM.

Given that LIN28B has been reported to act both in a let-7-dependent and independent 

manner33, we next asked whether the functional role of LIN28B is mediated via let-7 in 

MM. We thus performed a rescue experiment by transfection of a let-7 inhibitor into 

LIN28B-KO MOLP-8 cells. We observed a significant decrease of let-7 family members in 

LIN28B KO cells plus the anti-let-7 (Fig. 6c). Let-7 inhibition also significantly rescued cell 

proliferation (Supplemental Fig. 2b), indicating that let-7 is likely the main target of direct 

regulation by LIN28B, in let-7 dependent manner in MM.

Deregulation of let-7 in MM

Given that we demonstrated that LIN28B regulates MM proliferation through let-7, we 

sought to define the direct role of let-7 in MM. We first assessed the expression level of let-7 
family members in primary bone marrow MM CD138+ cells compared to healthy control 

CD138+ bone marrow plasma cells by qRT-PCR. Let-7 miRNAs were lower in plasma cells 

from six patients with relapsed MM and in four MM cell lines, as compared to plasma cells 

from three healthy donors (Fig. 7a). To determine whether let-7 directly regulates MYC in 

MM, we transfected a let-7b mimic into MM.1S cells (Supplemental Fig. 3a) and observed a 

reduction of cell proliferation (Fig. 7b) as well as a decrease level of MYC protein 

(Supplemental Fig. 3b). To validate these findings in patient samples, we assessed the 

correlation between let-7 and MYC expressions in publicly available gene expression 

profiling with matched miRNA array from MM patients (GSE16558). We found a 

significant inverse correlation between expression of let-7b and g and the expression level of 

MYC in a cohort of 60 patients (Fig. 7c). These data support the idea that LIN28B acts in a 

let-7-dependent manner in MM and suggest that low expression levels of let-7 in MM 

patients contributes to MYC dysregulation and tumor proliferation.

Let-7 as a potential therapeutic target that regulates MYC in MM

We next sought to confirm the importance of let-7 in MM in vivo and to assess whether let-7 
could serve as a therapeutic strategy to directly target MYC in MM. We therefore developed 

a let-7 Locked Nucleic Acid (LNA)-GapmeR mimic, which was designed based on the seed 

region of let-7 miRNAs to efficiently mark let-7 target genes for degradation by RNAse H. 

We first tested the ability of the let-7 LNA-GapmeR to decrease let-7 target genes in vitro. 
MM.1S cell line was cultured in presence of a control probe or three different concentrations 

of let-7 LNA GapmeR (10nM, 100nM and 1uM). By qRT-PCR we observed a consistent 

decrease of MYC, KRAS, CCND1, E2F6, DICER1 and HMGA1 expression levels in 

parallel to increased concentration of the GapmeR (Supplemental Fig. 4a). We next tested 

the let-7 LNA-GapmeR in vivo in a xenograft mouse model. SCID/bg mice were injected 

with 5×106 MM.1S GFP+Luc+cells intravenously, followed by intraperitoneal (i.p.) 

injections of let-7 LNA-GapmeR two times a week. The treatment was well tolerated and 

did not induce obvious toxicity or weight loss. The tumor growth was evaluated by BLI, and 

was significantly reduced in the group of mice that received let-7 LNA-GapmeR as 

compared to the control group, p=0.018 (Fig. 8a and Supplemental Fig. 4b). This was 
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associated with consequent significant survival benefit, p=0.026 (Fig. 8b). Ex-vivo, MM 

cells were analyzed for MYC expression, confirming the repression of MYC in the let-7 
LNA-GapmeR group (Fig. 8c). This experiment provides proof of principle that let-7 could 

represent a new therapeutic approach targeting MYC in MM.

Discussion

In this study, we describe the role of the LIN28B/let-7 axis in MM and identify let-7 as a 

potential new therapeutic approach for targeting MYC. High expression of LIN28B in MM 

is associated with both adverse outcomes and MYC overexpression. LIN28B represses let-7 
expression in MM cells, resulting in deregulation of MYC protein and cell proliferation in 
vitro and in vivo. A pathway enrichment analysis in LIN28B KO cells reveals the 

importance of the MYC and E2F cell cycle pathways within the LIN28B/let-7 axis. 

Moreover, LIN28B-induced proliferation and MYC deregulation is let-7 dependent. The 

tumor growth impairment in vivo by administration of a let-7b based LNA-GapmeR 

provides proof of principle for a new therapeutic option to target MYC in MM 

(Supplemental Fig. 5).

Let-7 miRNAs have been described as tumor suppressor in several cancers, by targeting 

major oncogenic pathways9. Copy number loss34–36 or epigenetic silencing37 of individual 

let-7 family members has been reported in some cancers. In MM, several let-7 genes are 

located in frequently deleted regions, such as let-7g at 3p21, let-7i at 12q14, or let-7a-2 at 

11q24. These copy number aberrations might participate in deregulation of the LIN28B/let-7 
axis in MM. Here, we have described a mechanism of regulation of let-7 miRNAs in MM 

involving LIN28B, which inhibits let-7 miRNAs, resulting in deregulation of the MYC and 

E2F cell cycle pathways. Although LIN28B has been reported in liver cancer to act through 

both let-7-dependent and let-7-independent manners24, our findings suggest the 

predominance of a let-7-dependent mechanism in MM.

LIN28B is located in the 6q21 cytogenetic band, which is amplified in some cases of 

neuroblastoma, resulting in LIN28B overexpression25. In MM, previously published CGH 

array did not find amplification at 6q21 locus38. The increased expression of LIN28B might 

therefore result from epigenetic changes such as altered methylation or histone modification 

or deregulation of upstream processes. MiR-125b was reported to inhibit LIN28B in 

embryonic stem cells as well as in some case of cancers25, 39, 40. Interestingly, miR-125b is 

located in 11q23, which is frequently deleted in MM. Of note, let-7 miRNAs themselves 

have also been reported to regulate LIN28B expression, in a feedback loop manner41. 

Moreover, a recent report suggests that inactivation of DIS3 increases LIN28B expression in 

MM42, by impairing its mRNA degradation. DIS3 is an exosome endoribonuclease involved 

in the turnover and degradation of mRNA in the cytoplasm. Strikingly, DIS3 is one of the 

most frequently mutated genes in MM43, 44, further suggesting a central role for LIN28B/
let-7 axis in MM.

Despite key roles for MYC in MM, there are very few therapeutic options targeting MYC. 

Previous studies attempted to target MYC by using a bromodomain inhibitor to target BET 

proteins, which regulate MYC6, 7. The clinical impact of these inhibitors is being elucidated 
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in early phase clinical trials with some potentially promising results in hematological 

malignancies. Our findings provide proof of principle that therapeutic use of let-7 can allow 

the repression of multiple oncogenes concurrently in MM. We show that in vivo use of let-7 
effectively regulates MYC, which is an essential regulator of tumor progression in MM and 

other cancers. Our findings indicate the importance of let-7 regulation in MM and suggest 

that let-7 may be an effective therapeutic option that can directly target MYC in MM.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. LIN28B expression level in MM
LIN28B expression level in MM patients, compared to healthy individuals, by analysis of 

(a) Left panel: GSE16558 (5 normal donor plasma cells and 65 plasma cell samples from 

patients with newly diagnosed MM) and right panel: GSE24080 – containing 22 normal 

donor plasma cell samples - and GSE2658 – 559 plasma cell samples from patients with 

newly diagnosed patients - both from UAMS, which were normalized using GeneSpring. (b) 
Kaplan-Meier analysis of 542 patients with MM of the Total Therapy 2 cohort (GSE2658). 

Patients were classified as high vs. low expression of LIN28B based on the mean expression 

level. LIN28B was associated with significantly worse overall survival, (p=0.0075). (c) 
MOLP-8, KMS12BM, RPMI 8226 and KMM-1 cells infected with control shRNA, or 2 

different LIN28B shRNAs, were studied for relative expression of LIN28B mRNA as 

determined by qRT-PCR.
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Figure 2. The LIN28B/let-7/MYC axis in Multiple Myeloma
(a) relative expression of mature let-7 miRNA species as determined by quantitative PCR in 

4 MM cell lines infected with control shRNA or 2 different LIN28B shRNAs. (b) Protein 

blot analysis for LIN28B and MYC expression in MOLP-8, KMS12BM, RPMI 8226 and 

KMM-1 cells infected with control shRNA or 2 different LIN28B shRNAs, and (c) 
proliferation assay by thymidine uptake over a 48hr time in the same cell lines. P values 

were obtained by two-tailed Student t test (*P < 0.05)
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Figure 3. The LIN28B/let-7 axis in data sets and in vivo
(a) GSEA analysis showing an enrichment of let-7 target genes in MM patients who display 

a high level of LIN28B expression in two independent datasets (GSE2658 and MMRC 

dataset). (b) Tumor volume and (c) survival of SCID/bg mice (5 per group) injected 

subcutaneously with 5.106 MOLP-8 cells expressing pLKO control shRNA or 

pLKO.LIN28BshRNA; average survival time was 26 days versus 33 days, respectively, P = 

0.0045. Bars indicate mean ± SD (n = 3).
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Figure 4. LIN28B KO with CRISPR/Cas9 leads to MYC regulation and Let-7 upregulation
MOLP-8 cell line was infected with a lentiCRISPR control (sgGFP) or 2 different 

sgLIN28B and studied for (a) Protein blot analysis, (b) relative expression of let-7 miRNAs 

by qRT-PCR and (c) proliferation assay by thymidine uptake. Bars indicate mean ± SD (n = 

3). P values were obtained by two-tailed Student t test (*P < 0.01).
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Figure 5. RNA sequencing and differential expression of genes downstream of LIN28B
RNA sequencing was performed with MOLP-8 lentiCRISPR control and sgLIN28B#2. (a) 
Scatter plot showing differential expression of genes ranked by Z score (metric of fold 

change and −log10 of the p value) of control cells against LIN28B-silenced cells. (b) Heat 

map of the top 150 down-regulated and up-regulated genes in LIN28B-silenced cells. Bar 

plot representing the p value of the top 10 gene sets enriched in the high-LIN28B signature.
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Figure 6. RNA sequencing and gene set enrichment analysis
(a) Gene set enrichment analysis (GSEA) for the let-7 target gene set and (b) GSEA analysis 

for several MYC gene sets in control vs. LIN28B KO cells. (c) MOLP-8 cells were infected 

with either lentiCRISPR control (sgGFP) or sgLIN28B#1, and transfected with a control 

probe or a mix of anti-let-7 b and g. Cells were studied for let-7 expression level by qRT-

PCR.
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Figure 7. Let-7 is down-regulated in MM and regulates MYC
(a) qRT-PCR analysis of let-7 family members in primary plasma cells from healthy donors 

and MM patients, as well as in 4 MM cell lines. (b) proliferation assay using thymidine 

uptake and 72 hours after transfection of a let-7b mimic or a control probe in MM.1S cells. 

Bars indicate mean ± SD (n = 3). P values were obtained by two-tailed Student t test (*P < 

0.05). (c) Correlation between let-7 and MYC expression in patients with MM. Scatter plot 

showing the correlation between let-7b and g, respectively, and MYC from GSE16558. A 

Pearson correlation coefficient and a two-tailed p value were computed for each of them.
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Figure 8. Increased expression of let-7 in vivo decreases MM proliferation
(a) Mice were followed by bioluminescence intensity (BLI), after injection of 5 million of 

MM.1S GFP+Luc+cells. SCID/bg mice (5 per group) were injected i.p. 2 times a week with 

20mg/kg of LNA control or LNA let-7 mimic. (b) Survival of the mice by Kaplan Meier 

analysis. Average survival time was 35 days in control group versus 42 days in LNA let-7 
mimic group, P = 0.0026. (c) qRT-PCR analysis of MYC in MM.1S cells ex vivo. Bars 

indicate mean ± SD (n = 3). P values were obtained by two-tailed Student t test (*P < 0.05).

Manier et al. Page 19

Leukemia. Author manuscript; available in PMC 2017 April 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Methods
	Cell and primary cells
	Lentivirus-mediated shRNA silencing
	Lentivirus-mediated CRISPR silencing
	miRNA mimic transfection
	Quantitative reverse transcription PCR
	Immunoblotting
	Proliferation assay
	RNA-sequencing
	In vivo studies

	Results
	Deregulation of LIN28B/Let-7 axis in MM
	LIN28B regulates let-7 and MYC in MM
	MYC and cell cycle pathways are highly enriched in cells with high expression of LIN28B
	Deregulation of let-7 in MM
	Let-7 as a potential therapeutic target that regulates MYC in MM

	Discussion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8

