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Abstract: The development of new gonorrhoea treatment guidelines typically considers the resistance-
inducing effect of the treatment only on Neisseria gonorrhoeae. Antimicrobial resistance in N. gonor-
rhoeae has, however, frequently first emerged in commensal Neisseria species and then been passed
on to N. gonorrhoeae via transformation. This creates the rationale for considering the effect of gono-
coccal therapies on resistance in commensal Neisseria. We illustrate the benefits of this pan-Neisseria
strategy by evaluating three contemporary treatment options for N. gonorrhoeae—ceftriaxone plus
azithromycin, monotherapy with ceftriaxone and zoliflodacin.
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1. Introduction

Neisseria gonorrhoeae (NG) causes the disease gonorrhoea, which is an important cause
of urethritis, cervicitis and proctitis. NG has developed resistance to every class of antimi-
crobial used to treat it [1]. Antimicrobial resistance (AMR) is not, however, inevitable. There
are large differences in the prevalence of AMR between different countries [2]. In some
populations, such as the Northern Territories of Australia, there is so little AMR that oral
penicillin can still be used to treat NG [2,3]. In other countries such as China, high levels
of resistance to azithromycin (18.6%) and reduced susceptibility to ceftriaxone (12.2%)
compromise even these last-line, single-dose therapies [4]. In general, the prevalence of
AMR to a range of antibiotics has increased in most countries. Thus, the World Health
Organization’s Global Gonococcal Antimicrobial Surveillance Programme (GASP) has
found continuing high-level resistance to penicillin, tetracycline and ciprofloxacin around
the world. It has also found increasing resistance to azithromycin and the emergence of de-
creased susceptibility and resistance to cephalosporins such as cefixime and ceftriaxone [5].
Cephalosporin and macrolide resistance in NG is of particular concern. In the United States
(USA), the percentage of isolates with reduced susceptibility (MIC ≥ 2.0 µg/mL) increased
from 0.6% in 2013 to 4.6% in 2018 [6]. Likewise, in the 24 countries participating in the
European Gonococcal Antimicrobial Surveillance Programme (Euro-GASP), azithromycin
resistance increased from 5.3% in 2011 to 13.3% in 2018 (MIC > 1.0 µg/mL) [6]. Whilst
there have only been a limited number of isolates with ceftriaxone reported from Europe
and the USA, the high prevalence of reduced susceptibility to ceftriaxone reported from
China and elsewhere is a major concern [4].

The key determinant of AMR is antimicrobial exposure [7]. As the antimicrobials
used to treat gonorrhoea are an important driver of this antimicrobial exposure, treatment
guidelines are based in part on minimising the probability that they will induce AMR in
NG [6,8]. Treatment of NG will, however, also select for AMR in commensal Neisseria, which
are an important component of the oropharyngeal microbiome. These commensal Neisseria
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can then transfer this resistance to NG [9]. Since horizontal gene transfer (HGT) has played
a crucial role in the genesis of AMR in NG, we make a case for explicitly incorporating
treatment effects on commensal Neisseria when evaluating prospective therapies for NG.
We describe this as the pan-Neisseria perspective.

2. Contemporary Monospecies Approach

Treatment guidelines for gonorrhoea consider the risk that new treatments could
induce AMR but typically only consider this effect on NG. For example, recent United States
CDC and European IUSTI NG treatment guidelines both consider resistance induction in
their recommended treatment guidelines. Neither includes commensal Neisseria in this
evaluation [6,8]. In the case of the CDC guidelines, “concerns regarding potential harm
to the microbiome” are listed as one of the reasons for changing recommended treatment
from ceftriaxone plus azithromycin (dual therapy) to ceftriaxone (monotherapy) [8]. The
IUSTI guidelines focus exclusively on resistance induction in NG and argue that because
concurrent resistance to ceftriaxone and azithromycin is extremely rare, dual therapy
has likely played a role in decreasing the prevalence of resistance to ceftriaxone and
cefixime [6]. The authors further note that there have been examples of therapy failure with
monotherapy, but none with dual therapy (Figure 1). These are among the arguments used
to recommend dual therapy as the preferred therapy for NG in the IUSTI guidelines. Thus,
whilst the CDC explicitly recommends monotherapy, IUSTI recommends dual therapy.
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Figure 1. A schematic illustration of select differences between the monospecies and pan-Neisseria approaches to evaluating
the risk of inducing resistance of proposed antimicrobial therapy for N. gonorrhoeae (NG/G). The monospecies approach only
considers the effects of the treatment on NG. It thus favours dual therapy with ceftriaxone (CRO) and azithromycin (AZM),
as this combination minimises the risk of treatment failure that could result in resistance. In the pan-Neisseria approach,
monotherapy is favoured, as this is highly efficacious at eradicating NG and does this without selecting for widespread
resistance (red bacteria) to macrolides in commensal Neisseria 14 days post-therapy (second panel). The pan-Neisseria, but
not the monospecies approach, is cognisant of the risk of the genes conferring macrolide resistance in commensal Neisseria
being passed on to a NG reinfection via horizontal gene transfer (HGT; third panel). The rationale for only representing
CRO and CRO/AZM as treatment options is that these are the predominant treatments currently recommended by the
United States CDC and European IUSTI guidelines.
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It is important to note that approaches that only consider resistance induction in the
target organism (mono-species approaches) may be more likely to favour poly-therapy
than approaches that consider resistance induction in multiple organisms (Table 1). This is
evident if we consider the example of therapy for Mycobacterium tuberculosis, wherein stan-
dard, four-drug treatment dramatically reduces the probability of the emergence of AMR
compared to single drug therapy [10]. Four drug therapy reduces the probability of AMR
emerging. This relates to the fact that a single mycobacterium is considerably less likely to
be resistant to four drugs than one drug. Resistance is caused by chromosomal mutations,
which occur at a frequency of approximately 10−6 mycobacterial replications [10]. The
probability of a single mycobacterium being resistant to one antimicrobial is thus around
10−6, but this jumps to 10−12 if two antimicrobials are considered [11]. This explains why,
when single drug therapy with streptomycin was introduced, it was rapidly followed by
resistance to streptomycin, which was not the case with quadri-therapy [10]. A key conclu-
sion is that for organisms like M. tuberculosis, where AMR is acquired via chromosomal
mutations, monotherapy selects for, and quadri-therapy prevents, the emergence of AMR.
The same principles have been shown to apply to other organisms wherein HGT is not
prominent such as other species of mycobacterium and Plasmodium falciparum [12]. The
situation is, however, more complicated in bacteria like Neisseria spp., wherein HGT plays
an important role in the genesis of AMR [13].

Table 1. Select differences between the monospecies and pan-Neisseria approaches to selecting new N. gonorrhoeae
(NG) therapies.

Monospecies Approach Pan-Neisseria Approach

Conceptual framework

Monospecies conception: NG is a
pathogen, and its control requires

optimisation of seek
and destroy activities.

Ecological conception: Commensal Neisseria are
important constituents of a healthy microbiome

and can be a source of AMR for NG and N.
meningitidis. Excessive seek and destroy

activities could induce AMR in commensals,
which could be transferred to NG.

Approach to dual therapy
(ceftriaxone + azithromycin) vs.

monotherapy (ceftriaxone) for NG

Treatment with dual therapy is favoured,
as this is more likely to eradicate NG

than monotherapy.

Dual therapy for NG is more likely to have a
negative effect on commensals (composition and
macrolide resistance) and hence, monotherapy

may be preferable.

AMR Surveillance
Surveillance in samples of NG is

sufficient, e.g., Euro GASP,
GRASP methodologies

Surveillance should be done in both NG and
commensal Neisseria in core groups, e.g.,

culture/MIC of commensal Neisseria from throat
swabs of 30 PrEP clients per centre once a year.

3. Pan-Neisseria Approach

The antimicrobials used to treat NG select for AMR in both pathogenic and com-
mensal Neisseria. This effect has been shown for cephalosporins, fluoroquinolones and
macrolides [14–16]. The genetic mutations responsible for this AMR can be readily taken
up from these commensals by NG via transformation [17].

This process of transformation has played a critical role in the emergence of NG resis-
tance to both cephalosporins and macrolides [17–19]. Mosaic versions of penA are a crucial
determinant of gonococcal cephalosporin resistance [17]. These mosaic penAs emerged
via multiple independent acquisitions of sections of the penA gene from a number of com-
mensal Neisseria, including N. cinerea, N. mucosa, N. subflava and N. lactamica [17,20,21].
Likewise, transformation from commensal Neisseria has played an important role in the
emergence of resistance to azithromycin in NG. As an example, NG has taken up portions
of the genes coding for the mtrCDE efflux pump from commensal Neisseria [18,19]. This has
enabled it to more effectively pump out azithromycin from the intracellular compartment
and thereby become less susceptible to azithromycin.
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The available evidence suggests that high levels of antimicrobial consumption are the
major determinant of the increase in commensal AMR during the past few decades [14,15,22].
There are a number of different types of antimicrobial consumption that can result in
commensal AMR (Figure 2), and it is useful to consider this selection pressure at both the
individual and population levels [13]. As illustrated in Figures 1 and 3, dual therapy at the
level of an infected individual would very likely eradicate NG but not commensal Neisseria.
In part, this is related to differences in resilience.
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Figure 2. Model of relationship between zoliflodacin consumption for 3 indications and induction of
zoliflodacin resistance in N. gonorrhoeae (NG: red) and commensal Neisseria (blue). Zoliflodacin is a
promising, novel anti-gonococcal therapy that also shows promise for a range of other infections.
Zoliflodacin (ZF) usage could select for AMR directly in NG via 1. ZF used to treat NG, 2. ZF
used to treat other STIs and 3. ZF used to treat other infections. It could also select for AMR in
commensal Neisseria via 4. ZF used to treat NG, 5. ZF used to treat other STIs or 6. ZF used to treat
other infections. Each of these could select for ZF resistance in commensal Neisseria, which could
then be transferred to NG via transformation (7). The probability of ZF inducing AMR in NG (1,2,3)
and commensal species (4,5,6) could be determined via in vitro experiments. These experiments
could also estimate the efficiency of transformation given the co-occurrence of NG and a specific
commensal Neisseria (7). The commensal Neisseria in the figure is bigger than NG to reflect the orders
of magnitude of the higher prevalence of commensal Neisseria.
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Figure 3. Schematic illustration of the importance of considering the selection of antimicrobial resistance in N. gonorrhoeae
(left) and commensal Neisseria (right) at both the individual (top) and population levels (bottom). Whereas dual therapy
with ceftriaxone/azithromycin (AB; red arrows) eradicates N. gonorrhoeae in an infected individual, it only reduces the
abundance of commensal Neisseria. The resilience of commensal Neisseria results in their returning to baseline abundance
in a process that selects for resistant isolates. The greater the decline in abundance of commensal abundance, the greater
the ‘force of resistance’ (grey arrows). At a population level, high exposure to ceftriaxone/azithromycin will push the
prevalence of both N. gonorrhoeae and commensal Neisseria species below the equilibrium prevalences (100% for commensals
and 0.1–10% for N. gonorrhoeae, depending on sexual network connectivity). This will select for resistance to these agents in
both N. gonorrhoeae and commensal Neisseria. (CFU: colony forming units).

NG at an individual level has little or no resilience. Effective antimicrobial ther-
apy leads to eradication, with close to zero probability of recurrence without reinfection
(Figure 4). Commensal Neisseria, in contrast, are highly resilient. Numerous studies have
confirmed that close to 100% of all humans are colonised by specific, commensal Neisseria
species in various oropharyngeal niches [23–27]. For example, although their distribution
and abundance varied, N. mucosa, N. subflava and N. flavacens were all found to be present
in the oral microbiomes of all persons included in the Human Microbiome Project [28]. This
proportion remains remarkably constant despite various antimicrobial challenges [15,25].
For example, the proportion of individuals colonised by commensal Neisseria is unchanged
14 days post-dual ceftriaxone/azithromycin therapy [15,29]. We do not understand the
factors underpinning this remarkable resilience of commensal Neisseria, but there is increas-
ing evidence that they are better considered as synergists that provide a number of vital
functions to their human hosts [23–27]. Whatever the mechanism, the available evidence
suggests that commensal Neisseria are able to withstand broad spectrum antimicrobials
and antiseptic mouthwashes that are able to eradicate other bacteria. We hypothesise that
the universal presence of commensal Neisseria, combined with their resilience, increases
the probability of AMR emerging in high-antimicrobial-exposure settings in two ways.
Firstly, the higher prevalence increases the probability of antimicrobial exposure and hence
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bystander AMR selection [30]. This is evident if we consider that a species that is present
in 100% of a population will be much more likely to be exposed to antimicrobials used
for any indication than a species whose prevalence is 1%. The second factor is what we
have termed the ‘force of resistance’ effect (Figure 3). This refers to the extent to which
antimicrobial consumption depresses a species prevalence below its equilibrium preva-
lence in a particular population. Consider a species that has an equilibrium prevalence
of 100% and a high propensity to return to 100% prevalence post-antimicrobial exposure.
If antimicrobial therapy drives prevalence down to 20%, this will likely exert a greater
selection pressure for the emergence of AMR than if the prevalence was driven down to
95% [9,13]. The ‘force of resistance’ effect is likely largely determined by the extent to
which the prevalence of a bacterial species is reduced below its equilibrium prevalence
at a population level or below its normal abundance at an individual level. In the case of
NG, the ‘force of resistance’ only operates at a population level, wherein the equilibrium
prevalence of a population is determined by its sexual network connectivity [9]. If this
prevalence is reduced with widespread antimicrobial consumption, then the greater the
decline, the greater the selection pressure for AMR to emerge (which would enable the NG
to return to its equilibrium prevalence; Figure 3 and [9]). In the case of commensal Neisseria,
this ‘force of resistance’ operates at both individual and population levels (Figure 3). One
of the population-level mechanisms for AMR to spread within commensals is illustrated in
Figure 4, where high antimicrobial consumption leads to relative extinction of susceptible
strains and hence an increase in the transmission of resistant strains between individuals
via activities such as kissing, which has been shown to be a mechanism for the spread of
commensal Neisseria [31,32].
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Figure 4. An illustration of individual- and population-level mechanisms that select for antimicrobial
resistance (AMR) in commensal Neisseria, using the example of zoliflodacin (ZF). (A) In the individual
level selection scenario (top), Martha takes ZF, and this eradicates the ZF-susceptible Neisseria (blue
bacteria), leaving Martha with predominantly ZF-resistant Neisseria (red bacteria) post-treatment. (B)
Recent studies have found that commensal Neisseria can be transmitted by kissing. Population-level
selection of AMR by widespread use of ZF (bottom) works by eradicating the susceptible Neisseria
from Paul and Pedro, leaving only resistant Neisseria to be transmitted by both of them to others.

If this line of reasoning is correct, then it would follow that high antimicrobial con-
sumption would be manifested in earlier and higher AMR in commensal Neisseria than
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NG. Furthermore, there should be a correlation between antimicrobial consumption and
antimicrobial susceptibility in commensal Neisseria. Whilst more evidence is required in
this regard, the available evidence is generally supportive. The commensal Neisseria MICs
of azithromycin and ceftriaxone are significantly higher in HIV preexposure prophylaxis
(PrEP) clients in Belgium than those from the general Belgian population, whose consump-
tion of these antimicrobials is considerably lower (unpublished data). In men who have
sex with men (MSM) taking PrEP in Belgium, we have found that the median MIC for
the most prevalent commensal, N. subflava, for example, increased from 1 in historical
samples (1980–2000) to 176 mg/L in 2019 [15]. When we explored the potential drivers
of this increase in resistance, we found that the azithromycin used for dual therapy of
NG resulted in a macrolide consumption of 9.5 to 12 (DID) defined daily doses/1000
inhabitants/day [33,34]. This is approximately 4 to 7 times higher than the thresholds
estimated to induce macrolide resistance in a range of bacterial species [35]. In vitro ex-
periments demonstrated that NG was able to acquire macrolide resistance from DNA
extracts from these highly macrolide-resistant N. subflavas via transformation [36]. The
results for ceftriaxone were similar—there has been a large rightward shift in the MICs of
commensal Neisseria in MSM taking PrEP and exposed to high levels of cephalosporins.
These commensals were found to contain a number of mutations in penA, porB, and mtrCDE
that can be taken up by NG and result in macrolide and cephalosporin resistance [29].

There is also considerable supportive evidence for the resilience of commensal Neis-
seria. As already noted, one study found that oropharyngeal commensal Neisseria were
as abundant 14 days post-therapy with ceftriaxone/azithromycin as pre-treatment [29].
This study also found that the median azithromycin and ceftriaxone MICs of all isolated
Neisseria were higher in the post-treatment isolates [15,29]. Likewise, a study of commensal
Neisseria in MSM in Vietnam found high cephalosporin MICs that were strongly correlated
with recent receipt of a cephalosporin [14]. These findings suggest that whilst dual ther-
apy is highly efficacious in eradicating NG and other susceptible Neisseria, it selects for
macrolide- and cephalosporin-resistant commensal Neisseria (and other bacteria). In the
case of oral streptococci, macrolide consumption has been shown to result in an increase
in the proportion of isolates with macrolide resistance—an effect that persists for over
6 months [37]. Azithromycin’s effect on the abundance of resistance-associated genes in
the gastrointestinal tract may persist for four years [38,39].

4. Differences Stemming from Monospecies and Pan-Neisseria Approaches

These findings suggest important difference between the monospecies and pan-
Neisseria approaches as regarding therapeutic choices for NG (Figure 1; Table 1). The
monospecies approach only considers the risk of resistance induction in NG. It is thus
more likely to favour dual therapy, as this combination may minimise the risk of treatment
failure, which could result in resistance [6]. The pan-Neisseria approach, however, incor-
porates the effect of proposed therapies on AMR in commensal Neisseria. It is likely to be
more circumspect about dual therapy that includes azithromycin, especially considering
that its long half-life means the drug is present for at least 2 to 4 weeks post-treatment in
decreasing concentrations [40]. This azithromycin tail poses little risk of induction of AMR
from a monospecies perspective (as the NG has been eradicated) [40] but a large risk for
inducing AMR from a pan-Neisseria perspective, as commensal Neisseria are in the process
of reconstituting their populations during this period [9,30].

As already noted, dual therapy in conjunction with screening for NG in MSM PrEP
cohorts results in very high consumption levels of macrolides-9.5 to 12 DID [33,34]. Whilst
we do not know what the thresholds for the emergence of AMR are in commensal Neisseria,
the fact that this consumption is 4- to 7-fold higher than the thresholds for inducing AMR in
other organisms and the very high azithromycin MICs of commensal Neisseria spp. isolated
from these PrEP cohorts suggests that the macrolide resistance threshold is considerably
lower than 12 DID.
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To ascertain variables such as these resistance inducing thresholds, the pan-Neisseria
approach would advocate introducing surveillance of commensal Neisseria antimicrobial
susceptibility in key populations (Table 1). The other variables that could be obtained from
such a process and be used to model the relationship between antimicrobial consumption
and AMR in NG and commensals are detailed in Figure 2. This figure describes the six main
pathways linking antimicrobial consumption and AMR in NG/commensal Neisseria. The
relative importance of these pathways may vary by type of antimicrobial considered. Thus,
macrolides such as azithromycin appear to be particularly adept at inducing NG resistance
indirectly via the commensal pathway [18]. This has important implications for the use
of macrolides for a range of infections/indications. Macrolides are frequently used for
treatment of infections caused by organisms such as Chlamydia trachomatis, Mycoplasma gen-
italium and Streptococcus pneumoniae, where alternative agents are available [41–43]. They
are also used long-term to prevent exacerbations of chronic obstructive pulmonary disease.
The pan-Neisseria approach would recommend that bystander selection be considered
when developing treatment guidelines for these infections.

An important criticism of the pan-Neisseria approach is that whilst HGT was important
in the genesis of macrolide and cephalosporin resistance, these events were infrequent,
and the majority of spread of this resistance has been clonal [1,18,19]. Whilst there is merit
in this argument, there is also evidence that episodes of HGT in penA, mtrCDE, gyrA and
other loci have been frequent in the pathogenic Neisseria [16,17,20,21]. Whilst there are
no longitudinal studies evaluating the incidence of HGT in NG, a study that followed
up with a cohort for 6 months found high incidence of HGT between N. meningitidis and
N. lactamica. Evidence of HGT between these two Neisseria species during the follow-
up period was detected in 15 loci in the two individuals that were co-colonised by both
bacteria at baseline [44]. Finally, the clonal spread of these mosaic genes within NG is
itself strongly influenced by antimicrobial consumption [45,46]. By including consideration
of AMR in commensal Neisseria, one may be able to detect the emergence of AMR at an
earlier and reversible stage and use this information to reduce consumption of the relevant
antimicrobial in the target population.

5. Application of the Pan-Neisseria Approach to Novel Treatments

We end by illustrating how the pan-Neisseria approach could be used to evaluate the
promising novel anti-NG agent, zoliflodacin, currently in phase 3 trials (Figure 2) [47].
Following the monospecies approach, current in vitro evaluations of this agent have been
limited to assessing how easily zoliflodacin resistance can be induced in NG [48–50]. Like-
wise, assessments of the prevalence of pre-existing, resistance-conferring gyrB mutations
have been considered in NG and not commensal Neisseria [47]. A pan-Neisseria approach
would complement these activities by including a panel of commensal Neisseria in these
evaluations. If zoliflodacin resistance could be induced in commensal Neisseria relatively
easily in vitro, then one could assess how easily this resistance could be transformed into
NG in subsequent experiments.

It may be objected that we have no evidence of HGT ever having taken place in gyrB
in N. gonorrhoeae. Whilst this is true, we have good evidence that HGT in gyrA played an
important role in the genesis of fluoroquinolone resistance in N. meningitidis. A study in
Shanghai found that 99.3% of commensal Neisseria and 67.7% of N. meningitidis isolates
were resistant to fluoroquinolones, and that HGT from commensals was responsible for
fluoroquinolone resistance in over half the N. meningitidis isolates [16]. The most plausible
reason for this extremely high prevalence of fluoroquinolone resistance in Neisseria species
is the high consumption levels of fluoroquinolones in the general population [16]. In silico
analyses of gonococcal and commensal gyrA from around the world have revealed that
HGT has played a similarly important role in the genesis of fluoroquinolone resistance in
N. gonorrhoeae (unpublished data).

These findings provide the motivation to include surveillance of commensal Neisseria
susceptibility to zoliflodacin in clinical trials and implementation projects of zoliflodacin.
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This could complement conventional AMR surveillance that monitors zoliflodacin MICs
in NG. It would be particularly important to do in core groups with high exposure to
anti-gonococcal therapies, such as PrEP cohorts [51]. Such a surveillance system could
act as an early warning system for the emergence of zoliflodacin AMR in NG. One might
find that zoliflodacin resistance was easily transformed from commensals into NG, and
zoliflodacin AMR emerged faster in commensals than NG. If this was the case, then one
could decide to switch/cycle the recommended NG treatment from zoliflodacin to another
agent once predefined resistance thresholds in commensal Neisseria were crossed.

The pan-Neisseria approach builds on the insights of authors such as Bacquero et al.,
who have noted the utility of conceptualising epidemics of AMR as occurring simulta-
neously in multiple species [52]. They noted that epidemics of extended spectrum beta
lactamase (ESBL) resistance in Gram negative bacteria occurred in a range of species rather
than a single species. Excess use of cephalosporins resulted in outbreaks of ESBL producers
in multiple species, partly driven by these species sharing the resistance-conferring en-
zymes with one another. In a similar vein, other authors have found correlations between
fluoroquinolone resistance in various Gram negatives and N. gonorrhoeae at a country
level [53]. In all cases, a key underlying driver of AMR is excessive antimicrobial con-
sumption. This creates the rationale to select early warning species that can be used in
surveillance programs to provide an alert when antimicrobial consumption is becoming
excessive. Commensal Neisseria may be useful for this purpose, particularly in populations
with a high STI incidence [14,15].

The pan-Neisseria approach raises a large number of important research questions.
How does AMR in commensals vary by time and population (including core groups with
different intensities of antimicrobial exposure)? Are there thresholds for the emergence
of AMR in commensals? Is AMR reversible? How effective would antimicrobial cycling
be to prevent AMR? What is the probability of HGT between Neisseria spp. in vivo? Do
antimicrobial induced changes to commensal Neisseria populations have other adverse
health effects?

Ultimately, all knowledge is underpinned by theory. An optimal theory of the de-
terminants of gonococcal AMR should provide an accurate portrayal of all the important
determinants in a way that illustrates the interrelationships and the relative importance of
the various determinants and facilitates proportionate and effective responses [54]. If the
theory conceals certain determinants, then it should be replaced by a theory which does
not do this [54,55]. From the evidence we have reviewed, we conclude that a pan-Neisseria
theoretical approach should be preferred to a monospecies approach, as it provides a more
complete understanding of the genesis and spread of AMR in NG.

6. Conclusions

The development of new gonorrhoea treatment guidelines typically considers the
resistance-inducing effect of the treatment only on Neisseria gonorrhoeae. Antimicrobial
resistance in N. gonorrhoeae has, however, frequently first emerged in commensal Neisseria
species and then been passed on to N. gonorrhoeae via transfer of the relevant resistance
genes. This creates the rationale for considering the effect of gonococcal therapies on
resistance in commensal Neisseria as well as on N. gonorrhoeae.
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Abbreviations

AMR antimicrobial resistance
AZM azithromycin
CRO ceftriaxone
GASP Global Gonococcal Antimicrobial Surveillance Programme
NG N. gonorrhoeae
ZF zoliflodacin
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