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Abstract

Background: Patient distances can be calculated based on signs and symptoms derived from an ontological
hierarchy. There is controversy as to whether patient distance metrics that consider the semantic similarity between
concepts can outperform standard patient distance metrics that are agnostic to concept similarity. The choice of
distance metric can dominate the performance of classification or clustering algorithms. Our objective was to
determine if semantically augmented distance metrics would outperform standard metrics on machine learning
tasks.

Methods: We converted the neurological findings from 382 published neurology cases into sets of concepts with
corresponding machine-readable codes. We calculated patient distances by four different metrics (cosine distance, a
semantically augmented cosine distance, Jaccard distance, and a semantically augmented bipartite distance).
Semantic augmentation for two of the metrics depended on concept similarities from a hierarchical neuro-
ontology. For machine learning algorithms, we used the patient diagnosis as the ground truth /abel and patient
findings as machine learning features. We assessed classification accuracy for four classifiers and cluster quality for
two clustering algorithms for each of the distance metrics.

Results: Inter-patient distances were smaller when the distance metric was semantically augmented. Classification
accuracy and cluster quality were not significantly different by distance metric.

Conclusion: Although semantic augmentation reduced inter-patient distances, we did not find improved
classification accuracy or improved cluster quality with semantically augmented patient distance metrics when
applied to a dataset of neurology patients. Further work is needed to assess the utility of semantically augmented
patient distances.
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Background and related work

Patients present with signs (what the physician finds on
examination) and symptoms (patient complaints). We
group signs and symptoms under the more general term
findings [1]. Distance metrics play an important role in
advancing precision medicine, machine learning, and pa-
tient phenotyping [2—12]. Patient distances can be calcu-
lated based on findings that have been converted to
machine codes based on concepts from a hierarchical
ontology.

signs

+ symptoms=findings=dconceptsdmachine codes.

In this study, we examine whether the semantic aug-
mentation of distance metrics with concept similarities
improves the classification and clustering of neurology
patients.

Distance metrics

A variety of similarity and distance metrics are available.
These have been used to calculate distances between pa-
tients [13-16], documents [17-19], and phenotypes [4,
5, 9, 10, 12]. If similarity and distance metrics are nor-
malized to a scale of 0.0 to 1.0, the distance between A
and B is the complement of the similarity.

distance (A, B) = 1 - similarity (A, B). (1)

The distance between two patients is different than
the distance between two medical concepts. Patients are
complex and can be represented as a collection of many
concepts. Inter-patient distances are many-to-many
comparisons; inter-concept distances are one-to-one
comparisons. Metrics that work for concept distances
are generally different from metrics to calculate dis-
tances between patients. Melton et al. [16] comment that
“semantic distance measures the relative closeness be-
tween two concepts .... Inter-patient distance compares
the relative closeness between two cases (sets of patient
data).”

The implementation of distance metrics for neuro-
logical patients based on findings is challenging. First,
neurological findings are recorded as unstructured free
text. Second, examiners use a variety of equivalent terms
to represent the same meaning: hyperreflexia is equiva-
lent to increased reflexes; Babinski sign is equivalent to
extensor plantar response; and so on. Third, the number
of findings may vary from patient to patient. Fourth,
converting unstructured text into machine-readable
codes is difficult [20, 21].

The SNOMED CT ontology and the UMLS Metathe-
saurus allow the consolidation of multiple synonymous
terms under the same concept [22, 23]. Both terminolo-
gies assign unique machine-readable codes to a concept.
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We have identified 1204 core concepts from the UMLS
Metathesaurus as a neuro-ontology for capturing find-
ings of the neurological examination [24]. This curated
neuro-ontology has three characteristics that make it
well-suited for patient distance calculations: 1) it is
monohierarchic, 2) the neurologic similarity of concepts
has organized its hierarchy, and 3) it contains neurologic
concepts absent from SNOMED CT [24].

When findings are converted to concepts and repre-
sented as machine-readable codes, patients can be in-
stantiated mathematically as a set (an unordered
collection of findings) or as a vector (ordered array of el-
ements of fixed length). If a patient is represented as a
set, each finding is added to the set as a unique element.
The cardinality of the set (number of set elements) is
equal to the number of findings. If a patient is repre-
sented as a vector, each finding is represented as an
element of the vector. The number of elements is equal
to the number of potential findings. A variety of distance
metrics can be used with vectors, including Manhattan,
Euclidean, cosine, Pearson correlation, Hamming, Min-
kowski, and others [25]. Commonly used distance met-
rics in patient similarity studies are Jaccard,
Mahalanobis, Euclidean, and cosine [15, 26]. Haase et al.
[27] have suggested a bipartite matching algorithm for
set similarity (eq. 2) where |A| is the number of ele-
ments in set A and sim(a, b) is the similarity between a
concept a from set A and b is a concept from set B.

Sim (A, B) = ﬁ*z masyes(sim(a, b)). @)

Bipartite similarity metrics resembling eq. 2 have been
used to calculate patient distances [16].

Hierarchical ontologies such as SNOMED CT and the
UMLS Metathesaurus allow the calculation of distances
between concepts [28-36]. Concept distances derived
from hierarchal ontologies show modest correlations
with the distance judgments of human experts [35, 37,
38]. The distance metrics for both sets and vectors can
be augmented by considering the similarity between
concepts [13, 14, 19]. Melton et al. [16] compared com-
puted patient distances with an expert opinion on pa-
tient distance based on chart review. They did not find
that semantic augmentation of the distance metric en-
hanced correlation with expert opinion and that correl-
ation between experts and computed patient distances
was low regardless of semantic augmentation. Mabotu-
wana et al. [19] examined document similarity using a
cosine distance metric after converting document con-
cepts to a binarized vector. In a classification task that
involved determining whether a radiological report was
a head CT scan or an abdomen CT scan, they found the
accuracy of a k-nearest neighbor classifier increased
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from 86.7 to 93.1% with semantic augmentation of the
document vector based on the SNOMED CT concept
hierarchy. Mabotuwana et al. found that semantic aug-
mentation of inter-document distances increased the
separation between the centroid of the head CT scan re-
ports and the centroid of the abdomen CT reports. Jia
et al. [14] examined the ability of patient distances gen-
erated by ICD-10 diagnoses to predict hospital length of
stay. Although they explored a variety of distance met-
rics, including cosine, Jaccard, and bipartite matching,
they came to no definite conclusion as to whether se-
mantic augmentation (based on a concept hierarchy) im-
proved classification accuracy. In the Human Phenotype
Ontology (HPO), Kohler et al. [12] have implemented a
semantically augmented distance metric to assist in
matching unknown patients to archetypical patients in
the Online Mendelian Inheritance in Man (OMIM) data-
base. Girardi et al. [13] calculated distances between pa-
tients with diseases of the gall bladder, thyroid, or
appendix and hernias based on ICD-10 diagnosis codes.
They found that a semantically augmented patient dis-
tance metric outperformed a Jaccard distance on a clus-
tering task and that a semantically augmented patient
distance increased the distance between within-diagnosis
centroids and between diagnosis centroids.

Machine learning

Machine learning is increasingly used in the analysis of
patient data. Machine learning is divided into supervised
and unsupervised learning [39]. The prototypical tasks
for supervised learning are classification and regression
[40]. Although there are many machine learning classi-
fiers, some commonly used classifiers include naive
Bayes, logistic regression, k-nearest neighbor, and ran-
dom forest [40]. Naive Bayes utilizes probabilities de-
rived from predictor variables to select class
membership. Logistic regression is a statistical method
that fits parameters to a logistic equation to predict class
membership. k-nearest neighbor classifiers utilize dis-
tances between cases to predict class membership. Ran-
dom forest classifiers use an ensemble of decision trees
to predict class membership. The most common use of
unsupervised learning algorithms is for the clustering of
cases into homogeneous groups. Although many cluster-
ing algorithms are available, two of the most commonly
used clustering algorithms are k-means clustering and
agglomerative clustering [41]. Both of these algorithms
utilize inter-case distances to form homogeneous clus-
ters of cases. Indices of machine learning classification
quality include precision, recall, F1, and accuracy [42].
Indices of machine learning clustering quality include
homogeneity, completeness, Rand index, V-score, silhou-
ette score [43—45]. Distance metrics are frequently used
to generate patient distance matrices that drive the
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clustering or classification of patients. Since the per-
formance of machine learning clustering and classifica-
tion algorithms can be assessed objectively, we have
hypothesized that the semantic augmentation of distance
metrics with inter-concept distances would improve the
performance of these algorithms.

To test this hypothesis, we created four test groups of
patients abstracted from textbooks. We investigated four
classifiers (naive Bayes, logistic regression, random for-
ests, and k-nearest neighbor) and two clustering algo-
rithms (agglomerative and k-means) across four distance
metrics. We tested whether semantic augmentation of
the distance metrics improved clustering or classification

quality.

Methods

Case abstraction

We created a dataset of 382 neurological patients se-
lected from a convenience sample [46] of 1028 published
teaching cases [47-58]. We abstracted 2616 findings
from the case studies (mean 6.7 + 3.4 findings per pa-
tient). Findings were transcribed verbatim from source
materials. An abstractor manually selected one of the
1204 available terms in the neuro-ontology that best rep-
resented the finding and added the UMLS CUI code
[24]. Table 1 illustrates the case abstraction method for
a patient with Parkinson disease.

Distance metrics
We implemented four inter-patient distance metrics in
Python [59]. The Jaccard distance is the complement of
the Jaccard similarity [60]. If A and B are the sets of
findings from patient A and patient B, the Jaccardg (A,
B) is shown by eq. (3), and Jy, is the Jaccard similarity.
Iaccarddist(Av B) =1- Isim(Aa B) =1- % (3)
The augmented bipartite distance is based on the
metric of Melton et al. [16] after augmenting it with the
inter-concept distance proposed by Wu and Palmer [29].
If patients A and B are represented as a set of findings
such that a ¢ A and b ¢ B, the augmented bipartite dis-
tance is shown by eq. (4) and is supported by egs. (5),
(6), and (7).

agumented bipartite distance (A, B)
D (A,B) +D (B, A)

= 5 . (4)
D(A,B) = ﬁ* Z minpp dist (a,b). (5)
D(B,A) = ﬁ* Z mingep dist (a,b). (6)

beA
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Table 1 lllustration of case abstraction method. The first column is findings from a case of Parkinson disease in Neuroanatomy
through Clinical Cases [47] and is reproduced with the permission of the author. The second column is the abstractor’s
interpretation of the finding, and the third column is the UMLS CUI [24]

Original Finding

"micrographia”

“mask-like decreased facial expression”

“asymmetrical bradykinesia”

"cogwheel rigidity”

“en bloc turning”

"Exhibited retropulsion of two steps when pulled gently backward”
“no extinction of the glabellar reflex (Myerson sign)”

“4 Hz tremor of the head and all extremities, worse at rest”

“Slow, stiff gait with stooped posture, short steps, decreased arm swing”

Interpretation Cul

micrographia C0240341
mask-like facies C0424448
bradykinesia C0233565
cogwheel rigidity C0151564
difficulty turning body C0555095
retropulsion C0277845
Myerson sign C4293666
resting tremor C0234379
decreased arm swing C2938985
stooped posture C4476759
slow gait C1851908
marche a petit pas C0427169

 2xdepth(LCS) -
depth (a) + depth(b)

dist (a,b) =1

For eq. (7), we used the hierarchical structure of the
neuro-ontology and the method of Wu and Palmer [29]
to calculate the dist (a, b) as the semantic distance be-
tween concept a and concept b. LCS is the lowest com-
mon subsumer in the hierarchical ontology for concepts
a and b; depth(a) is the number of levels from the root
concept to concept a; depth (b) is the number of levels
from the root concept to concept b, and depth (LCS) is
the number of levels from the root concept to the LCS.
Based on eq. (7), the dist (a, b) for each inter-concept
distance was stored as a nxn lookup table where the
number of possible concepts was # = 1204. Values from
this lookup table were used in egs. (5) and (6) to itera-
tively find the minimum inter-concept distance for each
concept from patient A compared to the concepts in pa-
tient B. Cosine distances between patients (1 — cosine
similarity) were calculated by standard methods (eq. 8).
If patient A and patient B are represented as vectors of
findings from a; to a, and from b, to b, the vector is
binarized, so that a; or b; is 1 if the finding is present
and O if the finding is absent. Patient vectors were repre-
sented as a one-dimensional array of length n=1204,
where n is the potential number of findings.

> (aixb;)

(VEZa?)#(y/bd)
(8)
We calculated an augmented cosine distance between
patients according to the method of Mabotuwana et al.

[19] Patients were represented as one-dimensional arrays
as in the cosine distance above. We used the hierarchical

cosine distance(A,B) =1 -

structure of the neuro-ontology [24] to find an ordered
list of ancestors for each concept. For each of the 1204
concepts in the neuro-ontology, we created a semantic-
ally augmented vector. The formula for augmentation
was 1/(1 + n) where n =0 for the index concept, n =1 for
the parent concepts, n =2 for the grandparent concepts,
etc. Descendent concepts (children) in the neuro-
ontology were not augmented. Ancestor hierarchy was
determined by the neuro-ontology, which is mono-
hierarchical [24]. Augmentation vectors were stored in
an nxn lookup table (7 = 1204). Semantically augmented
patient vectors were created for each patient by travers-
ing a list of concepts for each patient and adding the
augmented concept vector to the patient vector to ob-
tain a summary patient vector. After semantic augmen-
tation of the vectors, inter-patient distances were
calculated by eq. 8.

For all metrics, distances were positive, symmetric,
and normalized between 0.0 and 1.0. Distances for each
distance metric were stored in a square nxn matrix (7 =
382 patients) before input to classification or clustering
algorithms.

Test groups

We divided the dataset of 382 patients into four test
groups by diagnosis (Table 2). Each test group consisted
of patients with eight related diagnoses. Each diagnosis
occurred at least four times (mean 11.9 +5.9) in the test
group. Test groups were composed of competing diag-
noses for a common presenting neurological complaint
(a patient with weakness, a patient with abnormal move-
ments, a patient with altered mental status, and a pa-
tient with cranial neuropathy). Diagnoses were selected
to emulate the differential diagnosis a neurologist might
consider when evaluating a patient complaint.
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Table 2 Four test groups and 32 diagnoses used in clustering and classification analyses. The first column is an abbreviation used in

Tables and Figures. Typical findings are listed illustratively for non-neurologists and are not meant to be a definitive reference on

each condition

Test Group Typical Findings N
Patient with weakness Group 1 148
GBS Guillain Barré syndrome* weakness, areflexia, sensory loss, paresthesias 20
MYL myelopathy weakness, sensory level, urinary retention, hyperreflexia 29
CE cauda equina leg weakness, urinary retention, sensory loss 6
ALS amyotrophic lateral sclerosis weakness, hyperreflexia, fasciculations 21
MS multiple sclerosis weakness, sensory changes, hyperreflexia, diplopia 19
MYO myopathy proximal muscle weakness 15
MG myasthenia gravis weakness, diplopia, ptosis 18
PN polyneuropathy weakness, sensory loss, hyporeflexia 20
Patient with abnormal movements Group 2 75
HD Huntington disease* chorea, personality change 16
PAR Parkinson disease* tremor, bradykinesia, rigidity 19
PSP progressive supranuclear palsy bradykinesia, rigidity, gaze palsies 8
SND striatonigral degeneration bradykinesia, rigidity 8
ET essential tremor tremor 7
HB hemiballismus hemiballismus 4
DYS dystonia dystonia 9
WIL Wilson disease* tremor, ataxia, dystonia, bradykinesia, personality change 4
Patient with altered mental status Group 3 102
LBD Lewy body dementia dementia, bradykinesia, hallucinations 6
B12 B;, deficiency paresthesias, confusion, weakness, sensory loss 9
NPH normal pressure hydrocephalus urinary incontinence, dementia, gait apraxia 14
AW acute Wernicke encephalopathy* confusion, diplopia, ataxia, disorientation 19
cJD Creutzfeldt-Jakob disease* myoclonus, personality change, memory loss, disorientation 12
ALZ Alzheimer disease® amnesia, dementia 16
FTD frontotemporal dementia aphasia, dementia, executive dysfunction 14
SDH subdural hematoma headache, lethargy, weakness, confusion 12
Patient with cranial neuropathy Group 4 67
BPV benign positional vertigo vertigo 9
MNR Meniere disease* vertigo, dizziness, hearing loss 7
RH Ramsay Hunt syndrome* facial weakness, hearing loss 6
BEL Bell palsy* facial weakness 10
THD third nerve palsy diplopia, ptosis 8
AN acoustic neuroma tinnitus, hearing loss, nystagmus "
ON optic neuritis blurred vision, papilledema 6
TN trigeminal neuralgia face pain 10

*The non-possessive form of eponymous diseases has been used uniformly [61]

Classification and clustering

For the classification tasks, we assessed the ability to as-
sign correctly diagnoses based on findings. The ground
truth labels were the diagnoses from the abstracted pa-
tient histories, and the features were the abstracted find-
ings. Naive Bayes, logistic regression, random forest, and

k-nearest neighbor classifiers were compared. We used
the Orange 3.25 default hyperparameters for naive
Bayes. For logistic regression, we set regularization = L2,
and for random forest, we set the number of trees = 10.
For the k-nearest neighbor classifier, we used uniform
distance weighting and k=5 after the empirical
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evaluation of all k values between 2 and 15. We used
classification accuracy and a balanced F1 score to assess
classification performance based on 10-fold cross-
validation [42]. In a separate analysis, we found mean F1
scores and mean accuracy scores did not differ statisti-
cally (df =1, p > .05) between the 10-fold cross-validation
method and the random sampling validation method.

For both the agglomerative clustering algorithm (Ward
linkage) [62] and the k-means clustering algorithm, we
chose a hyperparameter of number of clusters = 8 based
on the known number of diagnoses in the test groups
(Table 2). We used the silhouette score, homogeneity
score, completeness score, V-score, adjusted Rand index,
and mutual information index to assess cluster quality
[42-45, 59].

Statistical methods

We used SPSS 26 (IBM Corporation) for analysis of vari-
ance, line plots, and box plots. We used Orange 3.25.0
for the k-nearest neighbor, logistic regression, naive
Bayes, and random forest classifications. We used scikit-
learn 0.23.1 for agglomerative clustering and k-means
clustering [59]. All performance measures for clustering
and classification were normalized to a 0 to 100 scale.

Results

We examined inter-patient distances for 382 patients di-
vided into 4 test groups of eight diagnoses (Table 2).
Inter-patient means differed by distance metric (Fig. 1,
one-way ANOVA, df=3, F=5820, p <.001). Post hoc
means testing (Bonferroni p <.05) showed all means dif-
fered (p<.05) with the augmented bipartite distance
metric having the lowest inter-patient mean distance
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and the Jaccard distance metric having the highest mean
inter-patent distance.

The mean within-diagnosis patient distance was less
than mean between-diagnosis patient distance for all the
four-distance metrics (Fig. 2, two-way ANOVA, means
differ by group, df =1, F = 3050, p <.001 and means dif-
fer by distance metric, df =3, F=2936, p<.001). All
pairwise mean comparisons by the group and by dis-
tance metric were significant (post hoc Bonferroni test,
p <.05).

We found a significant difference in mean patient dis-
tances by diagnosis (Fig. 3, two-way ANOVA, means dif-
fer by diagnosis, df=31, F=107, p<.001, and means
differ by distance metric, df =3, F = 1351, p <.001). Post
hoc Bonferroni testing showed that 60% of the pairwise
patient distance means differed by diagnosis (P <.05).
For the 32 diagnoses shown in Fig. 3, trigeminal neural-
gia has the lowest mean within-diagnosis patient dis-
tance (less than all other 31 diagnoses, pairwise
comparisons, p<.05) and multiple sclerosis had the
highest within-diagnosis mean patient distance (greater
than all other diagnoses, pairwise comparisons, p < .05).

We performed 64 classification analyses (4 distance
metrics x4 test groups x4 classifiers). The four test
groups were altered mental status, abnormal movement,
cranial neuropathy, and weakness (Table 2). The four
distance metrics were cosine, augmented cosine, aug-
mented bipartite, and Jaccard (see Methods). The four
classifiers were naive Bayes, logistic regression, random
forest, and k-nearest neighbor (k =5). Classes were un-
balanced in the test groups (Table 2). Each classification
task involved selecting the correct diagnosis from one of
eight competing diagnoses for each of the patients in the
test group. The performance was measured by

: l

.60

Distance

.40

AUGMENTED
BIPARTITE

AUGMENTED COSINE

Fig. 1 Box-plots inter-patient distances by metric. Means differ by distance metric, (one-way ANOVA, df =3, F =5820, p < .001). All of the means
differed by Bonferroni post hoc test (p < .05) with the Jaccard distance the largest and the augmented bipartite the smallest

+ *

COSINE JACCARD
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Fig. 2 Mean within-diagnosis distance compared to mean between-diagnosis. The within-diagnosis means offer information on patient-to-patient
variability within a diagnosis; between-diagnosis means offers information on the degree of separation between patients with one diagnosis from
patients of another diagnosis. Mean inter-patient distances were highest for cosine and Jaccard metrics, lowest for augmented bipartite and

augmented cosine metrics (post hoc Bonferroni test, p <.05). Within-diagnosis mean distances are lower than between-diagnosis mean distances

for all metrics (post hoc Bonferroni test, p <.05)

classification accuracy and F1. Classification perform-
ance varied by classifier for both classification accuracy
(two-way ANOVA, main effect, df=3, F=7.8, p <.001)
and F1 (two-way ANOVA, main effect, dF =3, F=10.1,
p <.001). Bonferroni post hoc testing showed that the
naive Bayes classifier underperformed the logistic regres-
sion and k-nearest neighbor classifiers on both perform-
ance measures (p <.05).

Classification performance of the distance metrics
was comparable regardless of classifier (Figs. 4-5, two-

way ANOVA, df=3, p >.05) or diagnosis group (two-
way ANOVA, Figs. 6-7, df =3, p >.05). Classifier per-
formance was comparable when performance was
measured by classification accuracy (Figs. 4) or by F1
(Fig. 5). Performance differed by diagnosis group
(Figs. 6 and 7) for both classification accuracy (two-
way ANOVA, df=3, F=10.2, p<.001) and the F1
score (two-way ANOVA, df=3, F=7.4, P <.001). Post
hoc Bonferroni testing showed the classification ac-
curacy score, and the F1 score was higher for the
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Fig. 3 Mean within diagnosis distance by diagnosis in ascending order. Greater within-diagnosis mean patient distance suggests greater
variability of clinical presentation within a diagnosis. Diagnoses that are most variable in clinical presentation are to the right of the x-axis. Within-
diagnosis mean patient distances vary by diagnosis (two-way ANOVA, df =31, p <.05)
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Fig. 4 Performance of classifiers by distance metric assessed by classification accuracy. Classification performance on classifiers did not vary by
distance metric (p > .05). The k-nearest neighbor and logistic regression classifiers outperformed the naive Bayes classifier (Bonferroni post hoc

cranial nerve group than the other three diagnosis
groups (p <.05).

We performed 32 clustering analyses (4 distance met-
rics x 4 test groups x 2 clustering algorithms). The two
clustering algorithms were agglomerative clustering with
Ward linkage and k-means clustering. Distances were in-
putted as pre-computed nxn matrices. For both cluster-
ing algorithms, the number of clusters was set at eight
based on the known number of different diagnoses in
each diagnosis group. Cluster quality was assessed by

silhouette score, adjusted Rand Index (ARI), adjusted
mutual information (AMI), completeness, homogeneity,
and V-measure. Cluster quality did not differ by cluster
algorithm (agglomerative versus k-means) on any of the
cluster quality measures (Fig. 8, two-way ANOVA, df=
1, p >.05).

For both k-means clustering and agglomerative clus-
tering, the distance metric did not significantly affect
cluster quality (Figs. 9 and 10, two-way ANOVA, df=3,
p >.05). Cluster quality was better for the cranial nerve
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naive Bayes

Fig. 5 Performance of classifiers by distance metric assessed by balanced F1. Balanced F1 did not vary by distance metric (two-way ANOVA, df =
3, p>.05). Naive Bayes underperformed the k-nearest neighbor and logistic regression classifiers (p < .05)
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Fig. 6 Mean performance of all classifiers by test group assessed by classification accuracy. Classification accuracy did not vary by distance metric
(two-way ANOVA, df =3, p > .05). Classification accuracy was higher for the cranial nerve group than the other diagnosis groups (Two-way
ANOVA, df =3, p < .01, post hoc Bonferroni test, p <.05)

group (Fig. 11) than the other three groups, the move-
ment group was better than the weakness group (Bon-
ferroni post hoc test, p<.05; Groups differ two-way
ANOVA, df =3, F =20.3, p <.001). The higher quality of
the cranial nerve clustering with greater within-cluster
homogeneity than the weakness group clustering is illus-
trated in the stacked bar charts Figs. 12 and 13.

Discussion
We examined four distance metrics for calculation of
the distances between neurology patients based on

findings: Jaccard distance, cosine distance, augmented
cosine distance and augmented bipartite distance. To
calculate the Jaccard and augmented bipartite distances,
we represented patients as unordered lists of elements of
variable length (sets). To calculate the cosine and aug-
mented cosine distances, we represented patients as or-
dered arrays of fixed length (vectors).

For the Jaccard and cosine distances, the matching of
concepts between patients was binary (“all or none”). Se-
mantic similarity between concepts was not considered.
Consider a patient A that has the finding resting tremor,
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Fig. 7 Mean performance of all classifiers assessed by F1 by test group and distance metric. F1 did not vary by distance metric (Two-way ANOVA,
df =3, p>.05). F1 varied significantly by diagnosis group (df =3, p <.001, F1 was higher for the cranial nerve test group, p <.05, post hoc
Bonferroni test)
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clustering algorithm (two-way ANOVA, df =1, p > .05)

and a patient B that has the finding postural tremor.
When calculating the Jaccard distance or the cosine dis-
tance, the semantic similarity between resting tremor
and postural tremor would not contribute to the prox-
imity between these two patients (each metric would
value the similarity between resting tremor and postural
tremor as ‘0’). The semantically augmented distance met-
rics behave differently. These augmented distance met-
rics move patients closer together when patients
manifest semantically similar findings, even if they are
not exact matches. The augmented cosine distance

considers that postural tremor and resting tremor have a
common immediate ancestor tremor. Hence, the tremor
element of the vectors for patient A and patient B is
augmented with a value of 0.5 (see Methods and [19]).
This semantic augmentation of the vectors for patients
A and B increases their similarity and moves the patients
closer together when the cosine distance is calculated
(eq. 8). The augmented bipartite distance considers that
resting tremor and postural tremor are siblings in the
neuro-ontology hierarchy and have a Wu Palmer dis-
tance of 0.25 (eq. 7); moving patients A and B closer
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A

(egs. 5 and 6). The augmented cosine distance metric
moves the patients closer because postural tremor and
resting tremor have tremor as a common ancestor in the
neuro-ontology. The augmented bipartite distance
metric moves the patients closer because resting tremor
and postural tremor are siblings in the neuro-ontology.
For each of the 382 patients in the dataset (n =382),
we calculated the mean patient distance to patients with
the same diagnosis and the mean distance to patients
with different diagnoses (Fig. 2). Within-diagnosis pa-
tient distances were lower than between-diagnosis pa-
tient distances for all of the metrics (Fig. 2). Patients of
the same diagnosis should be closer to each other than
those with a different diagnosis. Sematic augmentation

of the distance metrics makes patients more similar,
moves them closer together, and reduces mean patient
distances. Augmented cosine and augmented bipartite
patient distances were lower than cosine and Jaccard pa-
tient distances (Fig. 1, Bonferroni post hoc test, p <.05).
For each patient, the difference between its mean dis-
tance to other patients with the same diagnosis and its
mean distance to other patients with different diagnosis
(Fig. 2) is important because it is this difference between
within-diagnosis and between-diagnosis distances that
contributes to the ability of clustering and classification
algorithms to use distances to cluster or classify patients
by patient distance successfully [63, 64]. The difference
between mean within-diagnosis distance and mean-
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Cluster

Fig. 12 Distribution of ground truth diagnoses by cluster for the
cranial nerve test group. K-means clustering with Jaccard distance
metric. Each color represents a different ground truth diagnosis.
Each column represents a different computed cluster. Homogeneity
for the cranial nerve group is greater than for the weakness group
(see Fig. 13)

between diagnosis distance differed by metric (df=3,
F=49, p <.001) with the largest differences found with
the cosine and augmented cosine metrics and the
smaller differences found with the augmented bipartite
and Jaccard metrics (Bonferroni post hoc test, p <.05).

Classification and clustering

We evaluated four different classifiers on four different
test groups of patients. We used F1 and classification ac-
curacy (Figs. 4 and 5) as measures of classification

20- cE
N MYO
15- B MS
B MYL
10+ B MG
B PN
5- B GBS
M ALS
0_

12 3 45 6 7 8
CLUSTER

Fig. 13 Distribution of ground truth diagnoses by cluster for the
weakness test group. K-means clustering with Jaccard distance
metric. Each color represents a different ground truth diagnosis.
Each column represents a different computed cluster. Homogeneity
for the weakness group is less than for the cranial nerve group. (see
Fig. 12)
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performance. There were differences in classifier per-
formance, with the logistic regression classifier and the
k-nearest neighbor classifier outperforming the naive
Bayes classifier (Figs. 4 and 5). In retrospect, the selec-
tion of the naive Bayes classifier was ill-suited for this
study since this classifier assumes feature independence
(not likely to hold among neurological patients) and is
oriented towards using probabilities rather than dis-
tances for classification. Importantly, we found no effect
on classification performance related to the distance
metric. Classification performance did vary by test group
(Figs. 6 and 7). Post hoc testing showed that the classifi-
cation performance was better for the cranial nerve test
group. A likely explanation for the better classification
performance with the cranial nerve group is that mem-
bers of this group (Table 2) had tighter within diagnosis
inter-patient distances (i.e., less variability in presenta-
tion). As illustrated in Fig. 3, the diagnoses of the cranial
nerve test group (TN, MNR, RH, ON, BEL, BPV, THD,
and AN) are primarily on the left-hand side of the x-
axis, and they have lower mean intra-diagnosis variability
in their clinical presentations.

We evaluated two different clustering algorithms (ag-
glomerative clustering and k-means clustering) on the
four test groups of patients (Table 2). Except for the sil-
houette score, the clustering performance measures de-
pend on the ground truth diagnosis label derived from
the patient case studies. The silhouette score measures
cluster quality independent of ground truth. Cluster
quality did not differ by cluster algorithm (Fig. 8). Clus-
ter quality did not vary by distance metric for either the
k-means algorithm or the agglomerative algorithm (Figs.
9 and 10). Cluster quality did differ by patient test group
with post hoc testing showing that the cranial nerve test
group had higher cluster quality than the other test
groups (Fig. 11). Visual inspection of Figs. 12 (cranial
nerve test group) and Fig. 13 (weakness test group) show
how with an 8-cluster solution, cluster homogeneity is
higher in the cranial nerve group than the weakness test
group. In Figs. 12 and 13, each color represents a differ-
ent ground truth diagnosis label, and each column rep-
resents a computed cluster. The better performance on
clustering of the cranial nerve group likely reflects the
same factors intrinsic to this group of patients that led
to better classification performance (see above). There is
less variability in clinical presentation from patient to
patient in this test group, within-diagnosis patient dis-
tances are lower (Fig. 3), and there is likely less sign and
symptom overlap with other diagnoses.

The failure to find an improvement in clustering or
classification performance with semantically augmented
distance measures was somewhat surprising. Others
have found improvements in the clustering of patients
[13] or classification of documents [19] with
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semantically augmented distance metrics. However, Mel-
ton et al. [16] did not find improved concordance with
domain experts when inter-patient distance calculations
were augmented with concept semantic similarity infor-
mation. Although semantically augmented distance met-
rics move patients closer (Fig. 1), these smaller inter-
patient distances may not translate into improvements
in clustering or classification performance unless these
smaller distances create a greater gap between mean
within-diagnosis distance and mean between-diagnosis.
From Fig. 2, it seems likely that for patients with a given
diagnosis, semantic augmented distance places them
closer to other patients with the same diagnosis. The
problem is that semantically augmented distances push
these patients closer to other patients with a different
diagnosis. If the net effect of semantic augmentation is
to make each patient closer to patients with the same
diagnosis and patients with a different diagnosis, there
will be no net gain in the ability to cluster or classify pa-
tients by diagnosis. The non-intuitive failure of semantic
augmentation to improve classification and clustering
performance can be illustrated by returning to the hypo-
thetical patient A with resting tremor and the hypothet-
ical patient B with postural tremor. If the diagnosis of
patient A is Parkinson disease and the diagnosis of pa-
tient B is essential tremor (as is likely), then semantically
augmented distance metrics will move patient A closer
to B. However, since the diagnosis of patient A and pa-
tient B are different, moving patient A closer to patient
B will deprecate classification and clustering perform-
ance in this case.

Implications for neurological diagnosis

The accuracy of diagnosis for the 32 neurological diag-
noses in this study ranged from 76 to 86% with the k-
nearest neighbor classifier (Fig. 4). In one study, human
experts made neurologic diagnoses at the bedside with
an accuracy of 77% [65]. Liu et al. [66] observe “machine
learning methods can only be as good as the information
in the training set ... machine-learning methods should
not be able to exceed the performance of extremely
careful and experienced clinicians .... ” Machine learning
can offer insights into which diseases are more variable
in presentation than others (Fig. 3) and which diagnostic
problems are more challenging to solve than others
(Fig. 6). Furthermore, machine learning may offer im-
provements in patient matching strategies for large re-
positories of archetypal disease profiles such as the
Online Mendelian Inheritance in Man [4, 5, 12].

Limitations

One limitation of this study is that we did not consider
the severity of deficits, such as weakness or ataxia. When
deficits were present, they were binarized as either
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present or absent and not graded in severity. Another
limitation is that some of the diagnosis classes were nar-
rower than others. Although some of the diagnosis clas-
ses were specific (Huntington disease, Alzheimer disease,
and Parkinson disease), others were more general, such
as polyneuropathy, myopathy, and meningitis. This deci-
sion to use more general categories for some diagnosis
classes reflects the reality that signs and symptoms alone
are unlikely to distinguish specific causes of meningitis,
polyneuropathy, or myopathy without additional ancil-
lary testing. Another limitation is that we did not com-
pare the computed patient distances to expert opinion
for any of the distance metrics. The validity of the re-
sults would be improved by a larger dataset of patients,
preferably in the thousands rather than in the hundreds.
A further limitation of the study is that we utilized pub-
lished cases from the textbooks of neurology rather than
de-identified patient records from electronic medical re-
cords. We used manual abstraction of concepts from
case histories instead of natural language processing
(NLP) [67-70]. We chose manual abstraction rather
than NLP because we wanted to carefully curate a data-
base of test patients with minimal coding errors, and our
initial experience with MetaMap indicated that extensive
post-processing was needed to ensure accuracy. Future
advances in NLP could make the conversion of signs
and symptoms in electronic health records to machine-
readable codes more accurate and efficient. Inter-rater
reliability for abstracting clinical cases into UMLS codes
or SNOMED CT codes is another concern [20, 21].

Conclusions

Neurological signs and symptoms from case histories
can be represented as UMLS concepts from a neuro-
ontology. We examined four different distance metrics
for the calculation of inter-patient distances. All of the
distance metrics provided useful patient distances that
could be utilized by machine learning classification and
clustering algorithms. Semantically augmented metrics
that used the semantic similarity between neurological
concepts to calculate patient distances yielded lower pa-
tient distances than more traditional distance metrics
without semantic augmentation. When each of the four
distance metrics was tested on four classifiers and two
clustering algorithms, all distance metrics performed
similarly without a discernible improvement due to se-
mantic augmentation. Further work is needed to deter-
mine the utility of semantically augmenting patient
distance metrics with inter-concept distances.

Abbreviations

CUI: UMLS concept unique identifier; UMLS: Unified Medical Language
System; SNOMED CT: is a registered name of SNOMED International.;
NLP: Natural language processing; HPO: Human Phenotype Ontology;
OMIM: Online Mendelian Inheritance in Man



Hier et al. BMC Medical Informatics and Decision Making

Acknowledgments
We thank Professor Hal Blumenfeld for permission to reproduce details of
the Parkinson case in Table 1 [47].

Authors’ contributions

Research design by DBH. Data collection by SUB, DBH, and JK. Data analysis
by DBH, DCW, GO, SA, BA, and JK. Manuscript writing and editing by DBH,
DCW, GO, SA, BA, SUB, and JK. All authors have read and approved this
manuscript.

Funding

Partial support for this research was received from the Missouri University of
Science and Technology Intelligent Systems Center, the Mary K. Finley
Missouri Endowment, the National Science Foundation, the Lifelong
Learning Machines program from DARPA/Microsystems Technology Office,
and the Army Research Laboratory (ARL); and it was accomplished under
Cooperative Agreement Number W911NF-18-2-0260. The research was also
sponsored by the Leonard Wood Institute in cooperation with the ARL and
was accomplished under Cooperative Agreement Number W911 NF-14-2-
0034. The views and conclusions contained in this document are those of
the authors. They should not be interpreted as representing the official pol-
icies, either expressed or implied, of the Leonard Wood Institute, the ARL, or
the United States Government. The United States Government is authorized
to reproduce and distribute reprints for Government purposes notwithstand-
ing any copyright notation herein.

Availability of data and materials

Neurology cases are available at https://doi.org/10.17632/z3d6hwrdmh.2
Inter-concept distances are available at https://doi.org/10.17632/svrx3wgcn4.
3

Inter-patient distances are available at https://doi.org/10.17632/svrx3wgcn4.4

Ethics approval and consent to participate
The Institutional Review Board of the University of Illinois at Chicago
approved this work. No consent to participate was required for this work.

Consent for publication
Not applicable.

Competing interests
None to report.

Author details

'Department of Neurology and Rehabilitation, University of lllinois at
Chicago, Chicago, IL 60612, USA. 2Department of Internal Medicine, Texas
Tech University Health Sciences Center, Lubbock, TX, USA. *Department of
Electrical and Computer Engineering, Missouri University of Science and
Technology, Rolla, MO 65401, USA. “Department of Mathematics and
Statistics, Missouri University of Science and Technology, Rolla, MO 65401,
USA.

Received: 27 March 2020 Accepted: 12 August 2020
Published online: 26 August 2020

References

1. Campbell WW. Diagnosis and localization of neurologic disease, Chapter 53.
In Dejong's The neurologic examination. 7" edition. Lippincott Williams and
Wilkins, Philadelphia, 2013, pp. 769-795.

2. Beaulieu-Jones B, Finlayson SG, Chivers C, Chen |, McDermott M, Kandola J,
Dalca AV. Trends and Focus of Machine Learning Applications for Health
Research. 2019;2:1-12. https://doi.org/10.1001/jamanetworkopen.2019.14051.

3. Parimbelli E, Marini S, Sacchi L, Bellazzi R. Patient similarity for precision
medicine: a systematic review. J Biomed Inform. 2018;83:87-96. https://doi.
0rg/10.1016/}jbi.2018.06.001.

4. Xue H, Peng J, Shang X. Predicting disease-related phenotypes using an
integrated phenotype similarity measurement based on HPO. BMC Syst Biol.
2019;13:1-12. https://doi.org/10.1186/512918-019-0697-8.

5. PengJ, Xue H, Shao Y, Shang X, Wang Y, J. Chen J. Measuring phenotype
semantic similarity using Human Phenotype Ontology, Proc. 2016 IEEE Int.
Conf. Bioinforma. Biomed. BIBM 2016. (2017) 763-766. doi:https://doi.org/10.
1109/BIBM.2016.7822617.

(2020) 20:203

20.

22.
23.

24,

25.

26.

27.

Page 14 of 15

Pai S, Bader GD. Patient similarity networks for precision medicine. J Mol
Biol. 2018;430:2924-38. https://doi.org/10.1016/jjmb.2018.05.037.

Yang S, Stansbury LG, Rock P, Scalea T, Hu PF. Linking big data and
prediction strategies: tools, pitfalls, and lessons learned. Crit Care Med. 2019;
47:840-8. https://doi.org/10.1097/CCM.0000000000003739.

Raghupathi W, Raghupathi V. Big data analytics in healthcare: promise and
potential. Heal Inf Sci Syst. 2014;2:1-10. https://doi.org/10.1186/2047-2501-2-
3.

Deng Y, Gao L, Wang B, Guo X. HPOSim: an r package for phenotypic
similarity measure and enrichment analysis based on the human phenotype
ontology. PLoS One. 2015;10:1-12. https://doi.org/10.1371/journal.pone.
0115692.

Su S, Zhang L, Liu J. An effective method to measure disease similarity
using gene and phenotype associations. Front Genet. 2019;10:1-8. https://
doi.org/10.3389/fgene.2019.00466.

Alanazi HO, Abdullah AH, Qureshi KN. A critical review for developing
accurate and dynamic predictive models using machine learning methods
in medicine and health care. J Med Syst. 2017;41. https://doi.org/10.1007/
s10916-017-0715-6.

Kohler S, Schulz MH, Krawitz P, Bauer S, et al. Clinical diagnostics in human
genetics with semantic similarity searches in ontologies. Am J Hum Genet.
2009;85:457-64. https://doi.org/10.1016/j.ajhg.2009.09.003.

Girardi D, Wartner S, Halmerbauer G, Ehrenmuiller M, Kosorus H, Dreiseit! S.
Using concept hierarchies to improve calculation of patient similarity. J
Biomed Inform. 2016,63:66-73. https.//doi.org/10.1016/}jbi.2016.07.021.

Jia Z, Lu X, Duan H, Li H. Using the distance between sets of hierarchical
taxonomic clinical concepts to measure patient similarity. BMC Med. Inform.
Decis. Mak. 2019;19:1-11. https://doi.org/10.1186/512911-019-0807-y.
Sharafoddini A, Dubin JA, Lee J. Patient Similarity in Prediction Models
Based on Health Data: A Scoping Review. JMIR Med Inform. (2017) 5(1):€7.
Published 2017 Mar 3. doihttps://doi.org/10.2196/medinform.6730.

Melton GB, Parsons S, Morrison FP, Rothschild AS, Markatou M, Hripcsak G.
Inter-patient distance metrics using SNOMED CT defining relationships. J
Biomed Inform. 2006;39:697-705. https://doi.org/10.1016/j,bi.2006.01.004.
Boyack KW, Newman D, Duhon RJ, Klavans R, Patek M, Biberstine JR,
Schijvenaars B, Skupin A, Ma N, Borner K. Clustering more than two million
biomedical publications: Comparing the accuracies of nine text-based
similarity approaches, PLoS One. 6 (2011). doi:https://doi.org/10.1371/journal.
pone.0018029.

LJ. Garcia Castro LJ, R. Berlanga R, A. Garcia A, In the pursuit of a semantic
similarity metric based on UMLS annotations for articles in PubMed Central
Open Access, J. Biomed. Inform. (2015) 57: 204-218. doi:https://doi.org/10.
1016/}jbi.2015.07.015.

Mabotuwana T, Lee MC. Cohen, Solal EV. An ontology-based similarity
measure for biomedical data-application to radiology reports. J Biomed
Inform. 2013;46(5):857-68. https://doi.org/10.1016/j.jbi.2013.06.013.

Andrews JE, Richesson RL, Krischer J. Variation of SNOMED CT coding of
clinical research concepts among coding experts. J Am Med Inform Assoc.
(2007) Jul-Aug;14(4):497-506.

Chiang MF, Hwang JC, Yu AC, Casper DS, Cimino JJ. Starren J. AMIA Annu
Symp Proc: Reliability of SNOMED-CT Coding by Three Physicians using Two
Terminology Browsers; 2006. p. 131-5.

Bhattacharyya SB. Introduction to SNOMED CT. Singapore: Springer; 2016.
Bodenreider O. The Unified Medical Language System (UMLS): integrating
biomedical terminology, Nucleic Acids Research. (2004) 32, issue suppl_T1,
Pages D267-D270, https://doi.org/10.1093/nar/gkh061.

Hier DB, Brint SU. A Neuro-ontology for the neurological examination. BMC
Med Inform Decis Mak. 2020,20:47. https://doi.org/10.1186/512911-020-1066-
7.

Choi SS, Cha SH, Tappert CC. A survey of binary similarity and distance
measures, WMSCI 2009 - 13th world multi-conference Syst. Cybern.
Informatics, jointly with 15th Int. Conf. Inf. Syst. Anal. Synth. ISAS 2009 - Proc
3 (2009) 80-85.

Tashkandi A, Wiese |, Wiese L. Efficient in-database patient similarity analysis
for personalized medical decision support systems. Big Data Res. 2018;13:
52-64. https.//doi.org/10.1016/j.bdr.2018.05.001.

Haase P, Siebes R, van Harmelen F. Peer selection in peer-to-peer networks
with semantic topologies. In: Bouzeghoub M, Goble C, Kashyap V.,
Spaccapietra S. (eds) semantics of a networked world. Semantics for grid
databases. ICSNW 2004. Lecture notes in computer science. (2004) vol 3226.
Springer, Berlin. Heidelberg. . https://doi.org/10.1007/978-3-540-30145-5_7.


https://doi.org/10.17632/z3d6hwrdmh.2
https://doi.org/10.17632/svrx3wgcn4.3
https://doi.org/10.17632/svrx3wgcn4.3
https://doi.org/10.17632/svrx3wgcn4.4
https://doi.org/10.1001/jamanetworkopen.2019.14051
https://doi.org/10.1016/j.jbi.2018.06.001
https://doi.org/10.1016/j.jbi.2018.06.001
https://doi.org/10.1186/s12918-019-0697-8
https://doi.org/10.1109/BIBM.2016.7822617
https://doi.org/10.1109/BIBM.2016.7822617
https://doi.org/10.1016/j.jmb.2018.05.037
https://doi.org/10.1097/CCM.0000000000003739
https://doi.org/10.1186/2047-2501-2-3
https://doi.org/10.1186/2047-2501-2-3
https://doi.org/10.1371/journal.pone.0115692
https://doi.org/10.1371/journal.pone.0115692
https://doi.org/10.3389/fgene.2019.00466
https://doi.org/10.3389/fgene.2019.00466
https://doi.org/10.1007/s10916-017-0715-6
https://doi.org/10.1007/s10916-017-0715-6
https://doi.org/10.1016/j.ajhg.2009.09.003
https://doi.org/10.1016/j.jbi.2016.07.021
https://doi.org/10.1186/s12911-019-0807-y
https://doi.org/10.2196/medinform.6730
https://doi.org/10.1016/j.jbi.2006.01.004
https://doi.org/10.1371/journal.pone.0018029
https://doi.org/10.1371/journal.pone.0018029
https://doi.org/10.1016/j.jbi.2015.07.015
https://doi.org/10.1016/j.jbi.2015.07.015
https://doi.org/10.1016/j.jbi.2013.06.013
https://doi.org/10.1093/nar/gkh061
https://doi.org/10.1186/s12911-020-1066-7
https://doi.org/10.1186/s12911-020-1066-7
https://doi.org/10.1016/j.bdr.2018.05.001
https://doi.org/10.1007/978-3-540-30145-5_7

Hier et al. BMC Medical Informatics and Decision Making

28.

29.

30.

31

32,

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.
47.
48.
49.
50.
51.

52.
53.

54.

55.

Rada R, Hafedh M, Bicknell E, Blettner M. Development and Application of a
Metric on Semantic Nets. IEEE transactions on systems, Man and
Cybernetics (1989) 19(1): 17-30.

Wu Z, Palmer M. Verb semantics and lexical selection. In Proceedings of the
32nd Annual Meeting of the Associations for Computational Linguistics,
(1994) pp 133-138.

Leacock C, Chodorow M. Combining local context and WordNet similarity
for word sense identification. WordNet. 1998. https://doi.org/10.7551/
mitpress/7287.003.0018.

Resnik P. Using information content to evaluate semantic similarity in a
taxonomy. (1995) http://arxiv.org/abs/cmp-1g/9511007.

Jiang JJ, Conrath DW. Semantic Similarity Based on Corpus Statistics and
Lexical Taxonomy. In Proceedings of International Conference Research on
Computational Linguistics (ROCLING X). (1997) Taiwan, pp 19-33, https//
www.aclweb.org/anthology/097-1002.

Lin D. An Information-Theoretic Definition of Similarity, ICML 1998

Proceedings of the Fifteenth International Conference on Machine Learning.

(1998) Pages 296-304, July 24-27, 1998.

Lee W, Shah N, Sundlass K, Musen M. Comparison of Ontology-based
Semantic-Similarity Measures. Medical College of Wisconsin, Milwaukee, WI,
Symp. A Q. J. Mod. Foreign Lit. (2008) 384-388.

Mclnnes BT, Pedersen T. Evaluating semantic similarity and relatedness over
the semantic grouping of clinical term pairs. J Biomed Inform. 2015,54:329-
36. https/doiorg/10.1016/jbi.2014.11.014.

Caviedes JE, Cimino JJ. Towards the development of a conceptual distance
metric for the UMLS. J Biomed Inform. 2004;37:77-85. https.//doi.org/10.
1016/}.jbi.2004.02.001.

Al-Mubaid H, Nguyen HA, A cluster-based approach for semantic similarity
in the biomedical domain, Annu. Int. Conf. IEEE Eng. Med. Biol. Proc. (2006)
2713-2717.

Pedersen T, Pakhomov SVS, Patwardhan S, Chute CG. Measures of semantic
similarity and relatedness in the biomedical domain. J Biomed Inform. 2007;
40:288-99. https://doi.org/10.1016/jbi.2006.06.004.

The MathWorks Inc. What is machine learning?, Retrieved at https://www.
mathworks.com/discovery/machine-learning.html.

The Mathworks Inc. Supervised learning workflows and algorithms.
Retrieved at https//www.mathworks.com/help/stats/supervised-learning-
machine-learning-workflow-and-algorithms.html.

The Mathworks Inc. Unsupervised learning. Retrieved at https://www.
mathworks.com/discovery/unsupervised-learning.html.

Al-Jabery KK, Obafemi-Ajayi T, Olbricht GR. Wunsch Il DC (editors).
Computational Learning Approaches to Data Analytics in Biomedical
Applications: Academic Press; 2020. https://doi.org/10.1016/B978-0-12-
814482-4.05001-4.

Rosenberg A, Hirschberg J. V-Measure: A conditional entropy-based external
cluster evaluation measure, EMNLP-CoNLL 2007 - Proc. 2007 Jt. Conf. Empir.
Methods Nat. Lang. Process. Comput. Nat. Lang. Learn. (2007) 410-420.
Rand WW. Objective criteria for the evaluation of clustering methods. J Am

Stat Assoc. 1971,66:846-50. https://doi.org/10.1080/01621459.1971.10482356.

Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis. J Comput Appl Math. 1987;20:53-65. https://
doi.org/10.1016/0377-0427(87)90125-7.

Kellar SP, Kelvin EA. Munro's statistical methods for healthcare research. 6th
ed. Philadelphia: Wolters Kluwer; 2013.

Blumenfeld H. Neuroanatomy through clinical cases. 2nd ed. Sunderland,
MA: Sinauer Associates; 2010.

Macleod M. Simpson M, pal S. Neurology. Wiley-Blackwell, West Sussex UK:
Clinical Cases Uncovered; 2011.

Noseworthy JH. Fifty neurologic Cases from Mayo Clinic. Oxford UK: Oxford
University Press; 2004.

Pendlebury ST, Anslow P, Rothwell PM. Neurological case histories. Oxford
UK: Oxford University Press; 2007.

Toy EC, Simpson E, Mancias P, Furr-Stimming EE. Case files neurology. 3rd
ed. New York: McGraw-Hill; 2018.

Waxman SG. Clinical Neuroanatomy. 28th ed. New York: McGraw Hill; 2017.
Hauser SL, Levitt LP, Weiner HL. Case studies in neurology for the house
officer. Baltimore: Williams and Wilkins; 1986.

Liveson JA, Spielholz N. Peripheral neurology: case studies in
electrodiagnosis. Philadelphia: FA Davis Company; 1979.

Gauthier SG, Rosa-Netto P. Case studies in dementia. Cambridge UK:
Cambridge University Press; 2011.

(2020) 20:203

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

Page 15 of 15

Erro R, Stamelou M, Bhatia K. Case studies in movement disorders.
Cambridge UK: Cambridge University Press; 2017.

Solomon T, Michael BD, Miller A, Kneen R. Case studies in neurological
infections of adults and children. Cambridge UK: Cambridge University
Press; 2019.

Howard J, Singh A. Neurology image-based clinical review. New York:
Demos Publishing; 2017.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, et al. Scikit-learn: machine
learning in Python. J Mach Learn Res. 2011;12:2825-30 http:/jmlr.org/
papers/v12/pedregosalia.html.

Jaccard P. The distribution of the flora in the alpine zone. New Phytol. 1912;
11:37-50. https://doi.org/10.1111/}.1469-8137.1912.tb05611 X.

Jana N, Barik S, Arora N. Current use of medical eponyms--a need for global
uniformity in scientific publications. BMC Med Res Methodol. (2009) 9:18.
Published 2009 Mar 9. doi:https;//doi.org/10.1186/1471-2288-9-18.

Ward JH. Hierarchical grouping to optimize an objective function. J Am Stat
Assoc. 1963;58:236-44. https://doi.org/10.1080/01621459.1963.10500845.

Xu R. Wunsch DC II. Clustering: Wiley-IEEE Press; 2008.

Xu R, Wunsch DC II. Clustering algorithms in biomedical research: a review.
IEEE Rev Biomed Eng. 2010;3:120-54.

Chimowitz MI, Logigian EL, Caplan LR. The accuracy of bedside neurological
diagnoses. Ann Neurol. 1990,28:78-85. https://doi.org/10.1002/ana.
410280114

Liu Y, Chen PHC, Krause J, Peng L. How to read articles that use machine
learning: Users' guides to the medical literature, JAMA - J. Am Med Assoc.
2019;322:1806-16. https://doi.org/10.1001/jama.2019.16489.

Aronson AR, Lang FM. An overview of MetaMap: historical perspective and
recent advances. J. Am. Med. Informatics Assoc. 2010;17:229-36. https://doi.
org/10.1136/jamia.2009.002733.

Savova GK, Masanz JJ, Ogren PV, Zheng J, Sohn S, Kipper-Schuler KC, Chute
CG. Mayo clinical text analysis and knowledge extraction system (CTAKES):
architecture, component evaluation and applications. J Am Med Informatics
Assoc. 2010;17:507-13. https://doi.org/10.1136/jamia.2009.001560.

Kreimeyer K, Foster M, Pandey A, Arya N, Halford G, Jones SF, Forshee R,
Walderhaug M, Botsis T. Natural language processing systems for capturing
and standardizing unstructured clinical information: a systematic review. J
Biomed Inform. 2017;73:14-29. https//doi.org/10.1016/jjbi.2017.07.012.
Reategui R, Ratté S. Comparison of MetaMap and cTAKES for entity
extraction in clinical notes. BMC Med Inform Decis Mak. 2018;18:74. https.//
doi.org/10.1186/512911-018-0654-2.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions



https://doi.org/10.7551/mitpress/7287.003.0018
https://doi.org/10.7551/mitpress/7287.003.0018
http://arxiv.org/abs/cmp-lg/9511007
https://www.aclweb.org/anthology/O97-1002
https://www.aclweb.org/anthology/O97-1002
https://doi.org/10.1016/j.jbi.2014.11.014
https://doi.org/10.1016/j.jbi.2004.02.001
https://doi.org/10.1016/j.jbi.2004.02.001
https://doi.org/10.1016/j.jbi.2006.06.004
https://www.mathworks.com/discovery/machine-learning.html
https://www.mathworks.com/discovery/machine-learning.html
https://www.mathworks.com/help/stats/supervised-learning-machine-learning-workflow-and-algorithms.html
https://www.mathworks.com/help/stats/supervised-learning-machine-learning-workflow-and-algorithms.html
https://www.mathworks.com/discovery/unsupervised-learning.html
https://www.mathworks.com/discovery/unsupervised-learning.html
https://doi.org/10.1016/B978-0-12-814482-4.05001-4
https://doi.org/10.1016/B978-0-12-814482-4.05001-4
https://doi.org/10.1080/01621459.1971.10482356
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1016/0377-0427(87)90125-7
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
https://doi.org/10.1186/1471-2288-9-18
https://doi.org/10.1080/01621459.1963.10500845
https://doi.org/10.1002/ana.410280114
https://doi.org/10.1002/ana.410280114
https://doi.org/10.1001/jama.2019.16489
https://doi.org/10.1136/jamia.2009.002733
https://doi.org/10.1136/jamia.2009.002733
https://doi.org/10.1136/jamia.2009.001560
https://doi.org/10.1016/j.jbi.2017.07.012
https://doi.org/10.1186/s12911-018-0654-2
https://doi.org/10.1186/s12911-018-0654-2

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background and related work
	Distance metrics
	Machine learning

	Methods
	Case abstraction
	Distance metrics
	Test groups
	Classification and clustering
	Statistical methods

	Results
	Discussion
	Classification and clustering
	Implications for neurological diagnosis
	Limitations

	Conclusions
	Abbreviations
	Acknowledgments
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

