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Abstract

Understanding plant community responses to combinations of biotic and abiotic factors is critical for predicting ecosystem
response to environmental change. However, studies of plant community regulation have seldom considered how
responses to such factors vary with the different phases of the plant growth cycle. To address this deficit we studied an
aquatic plant community in an ecosystem subject to gradients in mute swan (Cygnus olor) herbivory, riparian shading, water
temperature and distance downstream of the river source. We quantified abundance, species richness, evenness, flowering
and dominance in relation to biotic and abiotic factors during the growth-, peak-, and recession-phases of the plant growth
cycle. We show that the relative importance of biotic and abiotic factors varied between plant community properties and
between different phases of the plant growth cycle. Herbivory became more important during the later phases of peak
abundance and recession due to an influx of swans from adjacent pasture fields. Shading by riparian vegetation also had a
greater depressing effect on biomass in later seasons, probably due to increased leaf abundance reducing light intensity
reaching the aquatic plants. The effect of temperature on community diversity varied between upstream and downstream
sites by altering the relative competitiveness of species at these sites. These results highlight the importance of seasonal
patterns in the regulation of plant community structure and function by multiple factors.

Citation: Wood KA, Stillman RA, Clarke RT, Daunt F, O’Hare MT (2012) Understanding Plant Community Responses to Combinations of Biotic and Abiotic Factors
in Different Phases of the Plant Growth Cycle. PLoS ONE 7(11): e49824. doi:10.1371/journal.pone.0049824

Editor: Martin Heil, Centro de Investigación y de Estudios Avanzados, Mexico

Received June 27, 2012; Accepted October 17, 2012; Published November 14, 2012

Copyright: � 2012 Wood et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was funded by a Centre for Ecology & Hydrology Algorithm Studentship (number NEC3579) from the Natural Environment Research Council
(www.nerc.ac.uk). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: kevinwoodecology@hotmail.co.uk

Introduction

Vascular plants are critical to the structure, functions and

service provision in a wide range of ecosystems [1]. The roles of

plants within ecosystems can vary with changes in plant

community structure and function, for example changes in

abundance or species composition [2,3,4,5]. Thus in order to

understand how the roles of plants within ecosystems will vary over

time it is necessary to quantify how plant community structure and

function respond to the range of biotic and abiotic factors found in

nature. Among the key factors that may regulate plant community

structure and function are herbivory [6,7,8,9], temperature

[10,11], light availability [12,13,14] and concentrations of

growth-limiting nutrients [15,16]. However, few studies address

how such additive and interactive biotic and abiotic factors

regulate plant community structure and function over time.

In temperate regions, plants typically exhibit seasonal cycles of

growth and recession mediated by strong changes in growth rates

[17]. Such seasonal differences in growth rate can mediate the

response to biotic and abiotic factors [18]. The factors which affect

plant community properties may also exhibit temporal gradients;

for example, seasonal variance in herbivore densities can mediate

the effect of grazing on the plant community [18,19]. Therefore

the factors which regulate plant community structure and function

may vary between different phases of the plant growth cycle, due

to variance in plant growth rate, changes in the magnitude of the

biotic and abiotic factors, and the strength of the responses of

plants to these factors.

To date few studies have examined the regulation of plant

community structure and function in shallow, lowland rivers,

despite the high abundances and keystone roles of plants within

these ecosystems [16,20]. In such ecosystems three main phases of

the plant growth cycle can be observed: plant growth is strong in

spring (April-June), peak abundances are reached in July and

declines occur thereafter [12,21,22]. The relative importance of

community drivers may also vary between these different phases of

the plant growth cycle. Mute swans (Cygnus olor Gmelin 1789) use

this resource seasonally, switching from riparian pasture in winter

and spring to the river during summer and autumn [23]. Seasonal

growth and fall of leaves on riparian trees varies light availability

for aquatic plants [24]. Water temperature also shows a distinct

seasonal pattern, peaking around July [25]. Seasonal changes in

water depth and discharge, which increase downstream, mean that

the distance downstream of the river source must also be

considered in the context of temporal variation in the regulation

of plant community structure and function [26]. Swan herbivory,

riparian shading, and the factors correlated with distance

downstream are known to decrease the growth rates of aquatic

plants within shallow temperate rivers [11,16,20]. Changes in

PLOS ONE | www.plosone.org 1 November 2012 | Volume 7 | Issue 11 | e49824



water temperature may increase or decrease plant growth

depending on the identity of the species within the community,

with the competitive abilities of each species varying with

temperature [11]. Whilst swan herbivory also directly reduces

abundance through consumption and non-consumptive destruc-

tion [20,27], the reported selective grazing of apical meristems

means that the growth rate of grazed plants is much lower than

that of ungrazed plants [20]. This loss of potential future growth is

believed to have a strong negative effect on future plant biomass

[28]. Reductions in plant growth and abundance are also likely to

have affects on flowering and community composition. The

strength of the effect of each factor, on both individual plants and

the community, is likely to depend on the magnitude of that factor.

For example, in some ecosystems a certain factor has such a high

magnitude that it appears to be the sole regulator of the plant

community, whereas in other ecosystems weaker effects are

reported for a greater number of factors [1,7,13,14,18]. Further-

more, the different species within a community typically exhibit

unequal tolerances of these factors, which may lead to changes in

plant abundance and community composition [29,30]. However,

no studies to date have examined how shallow river plant

communities regulation by multiple biotic and abiotic factors

varies across the different phases of the plant growth cycle.

In this study we address how the single, additive or interactive

effects of biotic and abiotic factors regulate a suite of plant

community properties: plant community structure and function,

measured as abundance, flowering and dominance of the most

abundant species, and species richness and evenness. We

considered two biotic factors, herbivory and shading by riparian

vegetation, and two abiotic factors, water temperature and

distance downstream of the river source, over three phases in

the growth cycle of a chalk river plant community, growth-phase

(May), peak-phase (July), and recession-phase (September). We

tested three hypotheses regarding the regulation of each of our

plant community properties across the different phases of the plant

growth cycle. As temperature, shade and distance downstream

affect plant growth rate, we expected the strongest effects of these

factors in the growth phase of the plant growth cycle (H1). We

expected progressively stronger negative effects of swan herbivory

as the plant community moved from the growth to the recession

phases, due to the greater swan numbers and decreased plant

growth rates in these later phases (H2). Given the complex

relationship between temperature and the growth of different plant

species, we expected the effects of temperature on the plant

community to be interactive with, as well as additive to, our other

measured factors (H3).

Methods

Research Ethics
This study was conducted on private land and thus we gained

permission to access the study sites and to carry out our field

studies from the three landowners, the Freshwater Biological

Association, Moreton Estate, and the Ilcington Angling Club.

Therefore, all necessary permissions were obtained for the

described field studies. No UK Home Office permission was

required for the described observational study of mute swans as

the observational sampling does not qualify as a procedure

requiring a licence under the Animals (Scientific Procedures) Act

1986.

Study Sites
The River Frome (Dorset, UK) is a shallow (typically ,1.5 m

depth) mesotrophic chalk river, within a catchment of 414 km2

[26,31]. The aquatic plant community is dominated by Ranunculus

penicillatus ssp. pseudofluitans (Syne) S.D. Webster (hereafter R.

pseudofluitans), with Potamogeton perfoliatus (L.), Elodea canadensis

(Michx.), Zannichellia palustris (L.), Callitriche obtusangula (Le Gall),

Sparganium emersum (Rehmann), Oenanthe fluviatilis (Coleman),

Nasturtium officinale (Aiton), and Myriophyllum spicatum (L.) also

present in greater abundances at sites further from the river source

[12,20,22]. Twenty sites, each consisting of a 500 m length of

river, were selected along a 44 km length of river between Maiden

Newton (50u469N, 02u349W) and West Holme (50u419N,

02u109W), which is known to be within the hydrological (i.e.

velocity and discharge) and geomorphological (i.e. channel profile)

limits of the wider River Frome catchment [32]. Sites were

selected to be representative of the catchment in terms of land use,

channel morphology, riparian tree species (Salix spp. and Alnus

glutinosa L.), hydrology and sediment; all sites were on the main

channel with $75% gravel substrate, and were bordered by

terrestrial pasture fields, reflecting the dominant characteristics of

the study system [12,25,26,31,32,33].

Estimating Required Sample Size
To derive an estimate of the sample size required to accurately

measure plant biomass we undertook intensive biomass sampling

at six sites in early March 2010. At each site 30 samples were

taken; sampling protocol is detailed in the next section. Bootstrap

resampling with replacement was used to derive the relationships

between sample size and accuracy of measuring mean plant

biomass. For each analysis, n samples were selected randomly from

the datasets of abundance samples (g dry Wt m22) and the mean

was calculated. 10,000 iterations of this process generated a

frequency distribution of mean biomass values derived from a

sample size of n, from which the mean and 95% confidence

intervals were calculated, where RCI was the range between the

lower 5 and upper 95 percentiles of the Bootstrap frequency

distribution. We calculated the percentage error of our biomass

measurements by calculating RCI as a percentage of the mean

biomass for a given value of n; data from all sites were pooled to

yield mean (695% CI) values. Error decreased as sample size

increased, but did not decrease below 637.6% even where n = 30

(Figure 1). As the greatest decrease in error occurred as n

Figure 1. The mean ±95% CI percentage error associated with
estimates of mean biomass (g dry Wt m22) at a site for a given
number of samples.
doi:10.1371/journal.pone.0049824.g001
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increased from 1 to 10 we selected n = 10 for our main study as a

compromise between accuracy and sampling effort.

Plant Abundance
Each month between March and September 2010, the mean

percentage plant cover (65%; all species within the river channel)

at each site was estimated visually from the river bank for 10 m

reaches spaced equally over the site (two reaches per 100 m length

of riverbank; total 10 reaches per site). A previous study found that

visual observations yield estimates of plant cover that are strongly

related (R2
(adj) = 59%) to values gained by instream measurements,

although there is a tendency for visual observations to overestimate

cover by 27% [22]. However, given that this overestimate is

consistent across sites and months, it should not have influenced

our ability to detect between-site and between-phase differences.

At each site, 10 plant samples per month were taken using a

0.00785 m2 cylindrical hand corer [22]. To select a 10 m reach

for in-stream sampling, each 500 m site was divided into 50

equally sized sections, and each month a random number

generator was used to select the biomass sampling reach. Within

each, corer sampling locations were selected by generating

random co-ordinates that were located in-stream (60.25 m) using

fixed tape measures along the bank and across the river. For each

core the centre of the plant stand, of whichever species were

present, closest to the co-ordinates was sampled. Biomass sampling

locations were not fixed across months to minimise the risk of the

removal of plant material influencing subsequent samples [22]. In

the laboratory, non-plant material was discarded and the sample

dried to constant weight at 60uC using a Heraeus Kelvitron T

oven (Thermo Fisher Scientific, Loughborough, UK). Dry mass

was measured (60.01 g) on a Sartorius PT120 balance (Sartorius

GMBH, Germany).

R. pseudofluitans Flowering
We recorded the percentage of R. pseudofluitans stands on which

flowers were observed at each site in each month between March

and September 2010. We counted flowering stands at the reaches

where plant cover was estimated and calculated the mean. As R.

pseudofluitans stands grow they frequently merge with other stands

and move across the river bed in response to gradients in flow and

sediment characteristics; thus distinct stands are not maintained

across the season [22,34]. Therefore, after the first incidences of

flowering we were unable in any given month to distinguish

between ‘new’ stands flowering for the first time and ‘old’ stands

still flowering from the previous month. We adopted a conserva-

tive approach to stand independence in assuming that stands

flowering in one month were also flowering in any subsequent

months where flowering was observed at that location. Therefore

we took the highest monthly percentage of stands flowering (Fmax)

as our estimate of flower abundance for that site; this approach

was consistent across sites and thus should not have affected our

ability to detect between-site differences.

Plant Community Composition
Estimates of community composition were based on plant

percentage cover values for the 10 m reaches described above, for

all plant species within the wetted river channel (i.e. excluding

vegetation on river banks). The percentage of the plant community

comprised by R. pseudofluitans is hereafter termed ‘R. pseudofluitans

dominance’. Species evenness (J’) per month at each site was

calculated as:

J 0~H= ln Sð Þ

where H is Shannon’s diversity index and ln S is the natural

logarithm of species richness [35].

Biotic and Abiotic Variables
Surveys of each site were carried out once per month between

February and September 2010; sites were surveyed by walking

upstream along one bank with the total number of each age class

of swan recorded [20]. Swans were aged as ‘adult’, ‘juvenile’, or

‘cygnet’ from plumage [36]. Swans were identified using a

Swarovski STS 80HD (20660) tripod-mounted telescope (Swar-

ovski AG, Austria). Such repeated monthly site visits are a well-

established method of quantifying the use of a site by mute swans

[37,38,39]. Swans have a very high detection probability (0.94)

due to their large size, conspicuous plumage and tolerance of

humans [39]. We did not expect large-scale within-month

movements between sites which could have affected our estimates

of grazing pressure for three reasons: (i) breeding swans were

limited to specific sites by the need to rear cygnets which could not

fly or travel far from their natal site [36]; (ii) non-breeding swans

move to a new river site after depleting the available food biomass

below a threshold (typically the mean available in the area) which

typically takes several weeks [23]; (iii) for part of our study period

(June to August) all swans were flightless due to their annual moult,

which severely limited their ability to disperse quickly between

sites [36]. Swan biomass density, a measure of grazing pressure,

was estimated as the total (kg ha21) at each site in each month in

that phase according to the formula:

Swan biomass density~
CountA

:MassAð Þz CountJ
:MassJð Þ

z CountC
:MassCð Þ

 !
=A,

where CountA, CountJ, and CountC = total number of adults,

juveniles, and cygnets respectively observed at the site during the

month. MassA, MassJ, and MassC = mean mass (kg) of adults

(10.8 kg), juveniles (8.8 kg), and cygnets (May = 0. 3 kg, Ju-

ne = 2.8 kg, July = 5.5 kg, August = 7.3 kg, September = 8.8 kg)

respectively [36,40]. A = area (ha) of the site.

Water temperature was measured at each site in each month

between March and September 2010 at the mid-point of the site

(i.e. 250 m downstream of the upstream boundary). A thermom-

eter (Breaksafe Thermometer, Brannan, UK) attached to a stake

was placed in the middle of the river so that the tip of the

thermometer was 0.15 (60.005) m beneath the water surface and

not in contact with the stake. The thermometer was left in place

for 20 (61) minutes after which the temperature value (60.5uC)

was recorded. The rapid, turbulent flows of chalk rivers

homogenise temperatures within a reach [32]. As chalk rivers

are predominantly fed by groundwater inputs throughout their

catchment [41,42] they exhibit relatively small diurnal tempera-

ture fluctuations [25]. However, to minimise the confounding

effects of any such fluctuations on our analyses, we avoided

measuring temperature between 11:00 and 15:00, the warmest

period of the day when air temperature is most likely to increase

water temperature. Shading was estimated once per month at each

site as the percentage (65%) of the riverbanks covered by

terrestrial vegetation $3 m in height at each site at which in-

stream plant cover was estimated; we made 10 estimates of

shading (i.e. 10610 m) at each site, from which a mean value was

calculated. Distance downstream (km) of the source (50u509N,

Plant Community Responses in Space and Time
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02u369W) was measured from Explorer Maps 117 and OL15

(Ordinance Survey, UK).

Statistical Analyses
All statistical analyses were carried out using SPSS version 19

(IBM, US), with a statistically significant result attributed where

p,0.05. Normality of the residuals and homogeneity of variance

were confirmed for all data with Kolmogorov-Smirnov and

Levene tests respectively. To address effects on plant community

properties differences in (i) plant dry weight biomass (g m22), (ii)

plant cover (%), (iii) Fmax (%), (iv) R. pseudofluitans dominance (%),

(v) species richness, and (vi) species evenness, were tested with

General Linear Models (GLMs), with mean swan biomass

(kg ha21), shading (%), temperature (uC) and distance from source

(km) as covariates. Separate GLMs were carried out on each of the

three phases of the plant growth cycle identified by [12]; growth

(March to mid-May), peak (mid-May to mid-July) and recession

(mid-July to September). We used the mean values for that factor

for the month of plant sampling and the two preceding months (i.e.

for the growth-phase values were means of March, April and

May). We allowed a one-month overlap, i.e. a partial ‘sliding

window’ whereby May contributed to both growth- and peak-

phases, whilst July contributed to both peak- and recession-phases.

This sliding window acknowledges the soft boundaries between

phases, as in reality May can comprise both growth- and peak-

phases, whilst July can comprise both peak- and recession-phases

[12,22]. We tested all additive and two-way interaction terms,

sequentially removing the least significant term until we achieved a

final model that consisted only of significant terms. We used

Pearson correlations to test for correlations between our explan-

atory factors in each phase of the plant growth cycle; significantly

correlated factors were not permitted in the same model. We

modelled all combinations of uncorrelated variables and from

these selected the model with the highest R2
adj value as our best

model.

Results

Spatiotemporal Variation and Correlations in Biotic and
Abiotic Factors

Mean (695% CI) swan biomass densities increased from

21.8610.7 kg ha21 in March to 116.7664.7 kg ha21 in June,

declining sharply to 70.9644.9 kg ha21 in July before increasing

slightly to 89.0657.8 kg ha21 in September (Figure 2a). There

was little temporal intra-site variation in riparian shading, which

ranged between 5–45% (Figure 2b). Mean water temperature

increased from 10.260.3uC in March to 18.060.6uC in July,

declining thereafter to 13.960.3uC in September (Figure 2c).

Distances downstream ranged between 86.8–130.4 km from river

source.

For the growth-phase we detected that shading and temperature

(r = 0.53, p = 0.015) and distance downstream and swan biomass

density (r = 0.50, p = 0.027) were positively correlated. In contrast,

shading and swan biomass density (r = 20.47, p = 0.036) and

distance downstream and shading (r = 20.61, p = 0.005) were

negatively correlated. For the peak-phase only a single negative

correlation between distance downstream and shading was

detected (r = 20.52, p = 0.019). This negative correlation between

distance downstream and shading was also found for the recession-

phase (r = 20.49, p = 0.028), as was a positive correlation between

shading and temperature (r = 0.50, p = 0.024). For R. pseudofluitans

flowering negative correlations between shading and swan biomass

density (r = 20.47, p = 0.037) and distance downstream and

shading (r = 20.52, p = 0.019) were found. No other statistically

significantly correlations were detected for any phase.

Effects of Biotic and Abiotic Factors on the Plant
Community

Mean (695% CI) plant dry weight biomass increased from a

March minimum of 38.567.1 g m22 to 576.46217.2 g m22 in

July, declining thereafter (Figure 3a). Plant biomass in the peak-

phase decreased with greater shading in the peak-phase, and

decreased with increasing swan biomass density and shading in the

recession-phase (Table 1). Mean (695% CI) plant cover

increased from 16.162.7% in March to 52.769.6% in July,

declining thereafter (Figure 3b). During the peak-phase, plant

cover was negatively related to swan biomass density and positively

Figure 2. Observed spatiotemporal variance in (a) swan
biomass density, (b) riparian shading, (c) water temperature
at the 20 sites.
doi:10.1371/journal.pone.0049824.g002
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related to distance downstream. Furthermore, there was an

interaction between swan biomass density and temperature such

that cover decreased with greater swan densities at low temper-

atures (#14.3uC) but showed no response to swan densities at

higher temperatures. Finally, there was an interaction between

temperature and distance downstream, such that cover decreased

with temperature at low distances (,110 km downstream of

source), but had no effect at greater distances. As with plant

biomass, cover was negatively related to swan biomass density and

shading in the recession-phase (Table 1). However, no factors or

interactions were statistically significant for the growth-phase.

R. pseudofluitans stands flowered between April and July, reaching

a maximum of 26.7612.1% in June (Figure 3c). There was a

negative relationship between maximum monthly percentage of R.

Figure 3. Mean ±95% CI plant (a) dry weight biomass, (b) cover, (c) R. pseudofluitans dominance, (d) species richness, and (e) species
evenness.
doi:10.1371/journal.pone.0049824.g003
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pseudofluitans stands flowering (Fmax) and swan biomass density

(Table 1). Mean (695% CI) R. pseudofluitans dominance of the

plant community decreased over the season, from 95.364.5% in

March to 68.969.2% in September (Figure 3d). Whilst no

models were significant for the growth-phase, dominance during

both the peak- and recession phases declined with increasing

temperature and distance; furthermore, there was an an interac-

tion between temperature and distance such that dominance

decreased with elevated temperatures at upstream sites (,110 km

from source) but increased with elevated temperatures at sites

further downstream (Table 1).

Mean (695% CI) species richness per site increased from

1.760.4 in March to 5.860.8 in September (Figure 3e). In the

peak-phase richness increased with greater temperatures and

distance downstream; we also detected an interaction between

temperature and distance downstream, such that species richness

increased with temperature at low distances (,110 km down-

stream of source), but decreased with temperature at greater

distances downstream. Species richness was positively related to

distance downstream in the recession phase (Table 1). However,

no models were statistically significant for the growth-phase. Mean

(695% CI) species evenness increased from 0.1560.10 in March

to 0.5260.10 in September (Figure 3f). As with all other plant

community metrics, no models were statistically significant for the

growth phase. However, evenness was positively related to swan

biomass density during the peak-phase. In the recession-phase,

evenness increased positively with temperature and with distance

downstream, with an interaction between temperature and

distance, such that evenness increased with temperature at low

distances (,110 km downstream of source), but decreased with

temperature at greater distances downstream (Table 1).

Discussion

Our results demonstrate that whether factors singularly,

additively or interactively regulate plant community structure

and function depends strongly on the phase of the plant growth

cycle. Previous research on relative biotic and abiotic regulation of

plant communities has largely ignored within-year cycles of plant

growth and recession, despite the ubiquity of such cycles in

temperate ecosystems [17]. The influence of distance from river

source on the plant community highlights the importance of

considering spatial, as well as temporal, patterns in plant

community structure and function. Due to the multiple roles of

plants within ecosystems, quantifying the range of plant commu-

nity responses to multiple biotic and abiotic factors is critical to

understanding the impact of environmental change on plant-

dominated ecosystems [43,44].

Our results suggested that none of our four measured factors

regulated plant community properties during the growth phase,

when growth rates of lowland river plants are known to be at their

maximum [12]. The growth rates of plants, and thus their ability

to replace tissues lost to disturbances, are greater during the

growth-phase compared with the peak- and recession-phases [12].

Therefore, in contrast to our first hypothesis (H1) neither

temperature, shading or distance downstream had their greatest

effect during the growth-phase. Rather, effects of these three

Table 1. The general linear models (GLMs) that explained the greatest percentages of between-site variance in each plant
community metric.

Plant community metric
Phase of plant
growth cycle F P R2

(adj) Equation

Plant biomass Growth – – – n/a

Peak 8.89 0.008 28.3% = (713.00 (6197.80) + (28.56 (61.04) ? Shade)

Recession 5.92 0.011 34.1% = 498.44 (694.91) + (21.87 (60.59) ? SwanBD) + (29.47 (63.76) ?

Shade)

Plant cover Growth – – – n/a

Peak 44.58 ,0.001 91.6% = (211.32 (64.41) ? SwanBD) + (1.84 (62.73) ? Temp) + (6.97 (62.14) ?

Dist) + (0.78 (60.31) ? (SwanBD ? Temp)) + (20.46 (60.15) ? (Temp ?

Dist))

Recession 14.12 ,0.001 58.0% = 65.29 (610.61) + (20.18 (0.04) ? SwanBD) + (21.01 (60.24) ? Shade)

R. pseudofluitans flowering – 5.74 0.028 20.0% = 47.27 (68.99) + (20.21 (60.09) ? SwanBD)

R. pseudofluitans dominance Growth – – – n/a

Peak 4.14 0.024 33.1% = 3526.86 (61262.91) + (2234.48 (687.65) ? Temp) + (231.23
(610.82) ? Dist) + (2.12 (60.75) ? (Temp ? Dist))

Recession 7.46 0.002 50.5% = 4694.43 (61350.60) + (2314.00 (693.36) ? Temp) + (242.61
(611.68) ? Dist) + (2.89 (60.81) ? (Temp ? Dist))

Plant species richness Growth – – – n/a

Peak 5.35 0.010 40.7% = 2220.61 (6100.92) + (14.95 (67.00) ? Temp) + (2.00 (60.87) ? Dist) +
(20.13 (60.06) ? (Temp ? Dist))

Recession 238.97 ,0.001 92.2% = 0.05 (60.01) ? Dist

Plant species evenness Growth – – – n/a

Peak 6.00 0.025 20.8% = 0.30 (60.07) + (0.002 (60.001) ? SwanBD)

Recession 5.19 0.011 39.8% = 247.33 (613.83) + (3.27 (60.96) ? Temp) + (0.43 (60.12) ? Dist) +
(20.03 (60.01) ? (Temp ? Dist))

The relevant mean (6 SE) parameter values for swan biomass density (SwanBD), shading (Shade), water temperature (Temp) and distance downstream of source (Dist),
are given for each equation; n/a indicates that no statistically significant model was detected.
doi:10.1371/journal.pone.0049824.t001
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factors were detected in the later phases of the plant growth cycle.

The strong negative effect of riparian shading on plant biomass

(peak- and recession-phases) and cover (recession-phase) probably

occurred as light limitation increased as the leaves on riparian

trees matured and thus the trees became denser. For the majority

of the growth phase riparian tree leaves would have been present

only as buds, which would block less light than mature leaves.

Reduced light availability, due to shading by riparian vegetation,

inhibits photosynthetic activity and thus growth of higher plants

and regulates algal communities too which, suggests that light

availability is a key determinant of structure and function across

aquatic ecosystems [11,21,24,44,45,46]. Whilst the percentage

occurrence of tall vegetation is the primary determinant of shading

for small river systems such as ours [24], additional factors such as

the height and species composition of the vegetation, and the river

width and orientation, may also affect the influence of shading.

The seasonal increase in mean water temperature, and the

between-site variance in temperature, perhaps increased the

importance of temperature as a regulatory factor. Whilst intra-

site variation in water temperature was small, which is typical of

groundwater-fed chalk rivers [25], sites with higher temperatures

typically had higher plant cover in the peak-phase, probably due

to increased photosynthetic activity and thus growth, particularly

in Potamogeton species [11,47]. However, increased temperatures

could have a slightly negative effect on plant cover at the sites

closest to the source, as indicated by the distance downstream-

temperature interaction in the peak-phase. Increased temperatures

are known to inhibit growth of R. pseudofluitans, which is most

dominant within the plant community at sites closer to the river

source [48]. Thus sites further downstream, with greater

proportions of species which benefit from higher temperatures,

such as Potamogeton perfoliatus, Callitriche obtusangula and Elodea

canadensis, were less affected by increased temperature [47,49]. As

a parameter in our analyses, distance downstream was a proxy for

the complex changes in morphology, hydrology and nutrient status

that occur between upstream and downstream sites in a river

catchment [16]. As such, it is difficult to determine the precise

mechanisms by which distance downstream affected the plant

community, or why such effects were greater in the peak- and

recession-phases. In particular, distance downstream positively

affected plant cover during the peak phase. In shallow rivers

downstream sites typically have greater discharge, depth, nutrient

concentrations, and channel width and a lower bed surface slope

and water velocity [22,25,33]. Higher nutrient concentrations

found at downstream sites are likely to favour the growth of

pondweed species over R. pseudofluitans [15]. The inclusion of

larger-leaved pondweed species in the plant community may in

part explain the higher observed plant cover at our downstream

sites. At depths exceeding 0.35 m, R. pseudofluitans biomass is

known to be negatively related to depth due to reduced light

availability [12]; the depth at many of the downstream sites in our

study may have exceeded this threshold. Further studies, which

measure these factors directly and relate them to changes in plant

community structure and function are required. Our two measures

of plant abundance were regulated by similar suites of factors,

although the percentage of variance explained by our best model

was consistently greater for cover compared with biomass.

In accordance with our second hypothesis (H2), the strength of

swan herbivory on the plant community was stronger in the peak-

and recession-phases compared with the growth-phase. Swan

herbivory reduced plant abundance in the peak- (cover) and

recession- (biomass and cover), but not growth-, phases of the plant

growth cycle. Flowers, typically one of the most nutrient-rich plant

tissues, were also negatively related to herbivory. In chalk river

catchments most swans spend the winter and spring in the

terrestrial pasture fields adjacent to the river, entering the river in

late April or early May [20,23]. Thus herbivory became a more

important regulatory factor when swan biomass densities increased

during the peak- and recession-phases. Simultaneously, the growth

rate of aquatic plants in temperate rivers declines after the spring

period of growth [12,22]; thus plants experienced the highest

grazing pressures when they were senescing and thus their

capacity for compensatory growth was low [12,22]. This led to

substantial reductions in plant abundance as have been reported

for other aquatic ecosystems [50,51,52]. The positive relationship

between swan biomass density and species evenness in the peak-

phase, suggested grazing of the more naturally-abundant species

[29]. During the growth-phase few plant species were present, as

typically only R. pseudofluitans overwinters above-ground [12,21].

Thus changes to plant abundances during the growth-phase did

not translate into community-level effects. During the peak-phase

a greater number of species became established, thus reductions in

the abundances of dominant palatable species at grazed site

produced a more even community. However, by the recession-

phase all species were declining in abundance and thus grazing

losses did not alter evenness.

We detected several interactions between temperature and our

other measured factors, which offered support to our third

hypothesis (H3). The distance downstream-temperature interaction

was found to influence R. pseudofluitans dominance (peak- and

recession-phases), species richness (peak-phase) and species even-

ness (recession-phase), increasing community diversity at upstream

sites by increasing the relative competitiveness of species such as

pondweeds and starwort, which would otherwise be excluded by

R. pseudofluitans [47,48,49]. Lower dominance of R. pseudofluitans

and greater species richness during the peak- and recession-phases

were promoted by factors that tended to suppress the growth of the

dominant macrophyte species; greater temperature and distance

downstream have both previously been shown to depress R.

pseudofluitans growth and thus increase the relative competitiveness

of other plant species [47,48]. Presumably these effects also

underpin the observed increases in species evenness at sites during

the recession-phase which had higher temperatures and were

further downstream. The peak-phase interaction between temper-

ature and swan biomass density may indicate that at low

temperatures losses of plant cover due to swans were partially

offset by increased growth of R. pseudofluitans, the dominant species.

R. pseudofluitans productivity is negatively related to water

temperatures, so at higher temperatures this compensatory effect

would have been lost [48].

Our study demonstrates that biotic and abiotic factors can

singly, additively and interactively regulate shallow river plant

community structure and function. In particular, the contrasting

effects of temperature on plant cover illustrate the importance of

analysing how the effects of a given variable on the plant

community may vary depending on the phase of the plant growth

cycle, the magnitude of other variables, and the identity of the

species which comprise the community. For example, a previous

study found that the effects of grazing by sheep (Ovis aries L.) on

mesotrophic grassland species richness could be positive, neutral

or negative depending on the time of year and herbivore densities

[18]. In our study a single plant community was found to be

regulated by combinations of top-down (i.e. herbivory) and

bottom-up (i.e. temperature, riparian shading, downstream effects)

factors. Different suites of factors regulate different properties of

the plant community in different phases of the the plant growth

cycle; as such, our results highlight the need to consider seasonal
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patterns of growth and recession when investigating determinants

of plant community structure and function.
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