
ll
OPEN ACCESS
Protocol
Protocol to decode representations from EEG
data with intermixed signals using temporal
signal decomposition and multivariate
pattern-analysis
Ádám Takács,

Shijing Yu, Moritz

Mückschel, Christian

Beste

adam.takacs@

uniklinikum-dresden.de (Á.T.)

moritz.mueckschel@

uniklinikum-dresden.de

(M.M.)

christian.beste@

uniklinikum-dresden.de (C.B.)

Highlights

A protocol for

decoding temporally

decomposed EEG

signal

Steps for Residue

iteration

decomposition (RIDE)

and handling the

decomposed data

Steps for subsequent

multivariate pattern

analysis (MVPA) with

different toolboxes
Recommendations

for combined RIDE-

MVPA research

applications

Takács et al., STAR Protocols

3, 101399
The electroencephalogram (EEG) is one of the most widely used techniques in cognitive

neuroscience. We present a protocol showing how to combine a temporal signal decomposition

approach (RIDE, Residue iteration decomposition) with multivariate pattern analysis (MVPA) to

obtain insights into the temporal stability of representations coded in distinct informational

fractions of the EEG signal. In this protocol, we describe pre-processing of human EEG data,

followed by the set-up and use of MATLAB-based toolboxes for RIDE and MVPA analysis.

Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional

guidelines for laboratory safety and ethics.

June 17, 2022 ª 2022

https://doi.org/10.1016/

j.xpro.2022.101399

mailto:adam.takacs@uniklinikum-dresden.de
mailto:adam.takacs@uniklinikum-dresden.de
mailto:moritz.mueckschel@uniklinikum-dresden.de
mailto:moritz.mueckschel@uniklinikum-dresden.de
mailto:christian.beste@uniklinikum-dresden.de
mailto:christian.beste@uniklinikum-dresden.de
https://doi.org/10.1016/j.xpro.2022.101399
https://doi.org/10.1016/j.xpro.2022.101399
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xpro.2022.101399&domain=pdf


ll
OPEN ACCESS
Protocol
Protocol to decode representations from EEG data with
intermixed signals using temporal signal decomposition
and multivariate pattern-analysis

Ádám Takács,1,2,3,* Shijing Yu,1,2 Moritz Mückschel,1,2,4,* and Christian Beste1,2,*
1Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden,
Schubertstrasse 42, 01309 Dresden, Germany

2University Neuropsychology Center, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01309 Dresden, Germany

3Technical contact

4Lead contact

*Correspondence: adam.takacs@uniklinikum-dresden.de (Á.T.), moritz.mueckschel@uniklinikum-dresden.de (M.M.),
christian.beste@uniklinikum-dresden.de (C.B.)
https://doi.org/10.1016/j.xpro.2022.101399
SUMMARY

The electroencephalogram (EEG) is one of the most widely used techniques in
cognitive neuroscience. We present a protocol showing how to combine a tem-
poral signal decomposition approach (RIDE, Residue iteration decomposition)
with multivariate pattern analysis (MVPA) to obtain insights into the temporal
stability of representations coded in distinct informational fractions of the EEG
signal. In this protocol, we describe pre-processing of human EEG data, followed
by the set-up and use of MATLAB-based toolboxes for RIDE and MVPA analysis.
For complete details on the use and execution of this protocol, please refer to
Petruo et al. (2021).
BEFORE YOU BEGIN

The electroencephalogram (EEG) is one of the most widely used techniques in cognitive neurosci-

ence. The EEG signal and event-related processes in this signal reflect the combination of various

signals from different sources (Huster et al., 2015; Nunez et al., 1997; Stock et al., 2017). Likewise,

distinct fractions of information are concomitantly coded in the EEG and important to consider,

e.g., in the context of goal-directed behavior (Dippel et al., 2017; Folstein and Van Petten, 2008;

Takacs et al., 2020b). This is also reasonable in light of overarching theoretical concepts of cognitive

functions stating that perceptual processes, motor processes and the relationship between these

are stored in a common representational format (Hommel, 2009). When taking such ‘‘common cod-

ing’’ concepts seriously, it is necessary to consider the existence of separable codes in the neuro-

physiological (EEG) signal (Takacs et al., 2020a, 2020b). This has been shown to be achievable using

residue iteration decomposition (RIDE) (Ouyang et al., 2015a). However, likewise the concept of

‘‘representations’’ is central in contemporary cognitive neuroscience. Many theoretical frameworks

deal with how representations are being formed, retrieved and operated with. Thus, it is also neces-

sary to consider the representational content of such signals more closely. The dynamics of the

representational content can be examined using multivariate pattern analysis (MVPA) (Carlson

et al., 2011; King and Dehaene, 2014; Prochnow et al., 2021; Takacs et al., 2020a, 2021).

It is likely that any of this concomitantly coded information shows a distinct profile in how represen-

tations are activated and deactivated. Combining an EEG signal decomposition with MVPA is there-

fore useful to shift the focus from where in the brain a cognitive function can be observed to how

several aspects of information are concomitantly represented and enable goal-directed behavior.
STAR Protocols 3, 101399, June 17, 2022 ª 2022
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

mailto:adam.takacs@uniklinikum-dresden.de
mailto:moritz.mueckschel@uniklinikum-dresden.de
mailto:christian.beste@uniklinikum-dresden.de
https://doi.org/10.1016/j.xpro.2022.101399
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xpro.2022.101399&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


ll
OPEN ACCESS Protocol
Any research relying on ‘‘common coding’’ principles may benefit from such a method because this

method enables a fine-grained analysis of the different constituents of commonly coded informa-

tion. The protocol presented is useful for all occasions where neurophysiological processes in the

EEG are temporally locked to external events and where it is not possible to separate processes

based on different spatial information (i.e., based on the scalp topography), using independent

component analysis (ICA). ICA is only effective when there are independent source components

that have different spatial weights and fluctuate independently in time (Ouyang et al., 2015a). When-

ever the applicability of ICA is limited (e.g., because there are sources with highly correlated source

activity but different scalp distributions, or sources with uncorrelated activity but highly similar scalp

topography activity) (Groppe et al., 2009), the presented procedure is still usable.

We present a protocol combining RIDE and MVPA, as recently published by Petruo et al. (2021) and

explain how RIDE can be combined with MVPA to obtain insights into the temporal stability of pro-

cesses coded in distinct informational fractions of the EEG signal.

For MVPA analysis, we first present the ADAM MVPA toolbox (Fahrenfort, 2020; Fahrenfort et al.,

2018), which allows performingmultivariate analyses on EEG orMEG data using backward decoding

(BDM) and forward encoding models (FEM).

As an alternative to ADAM, we also present the MVPA Light toolbox (Treder, 2020).

Note: All these toolboxes require Matlab. The current protocol describes how to use tempo-

rally decomposed EEG data, as derived from RIDE, for classification and temporal generaliza-

tion analysis. However, this protocol cannot substitute comprehensive manuals and tutorials

dedicated to explaining the wide variety of signal decomposition and MVPA functions and

parameters.

CRITICAL: The code presented here is shortened to the core functionality. The code does
not take into account all conditions and does not loop through all participants. Further de-

tails of these methods are available for RIDE (Ouyang et al., 2015a, 2015b), ADAM MVPA

toolbox (Fahrenfort, 2020; Fahrenfort et al., 2018), and MVPA Light toolbox (Treder,

2020).
Institutional oversight

The participants whose anonymized data have recently published by Petruo et al. (2021) were

treated in accordance with the declaration of Helsinki and the study was approved by the ethics com-

mittee of the TU Dresden.

Data collection

The combination of temporal decomposition andMVPA can be desirable in many EEG experiments.

Separately, both RIDE and MVPA have requirements on the input data, that can be used to deter-

mine the optimal sample size, the task design (e.g., trial number, trial length), number of sensors

(i.e., EEG channels), and the necessary steps of pre-processing. Performing MVPA (classification

and temporal generalization) on RIDE-decomposed data does not have additional requirements.

We present this protocol based on a study, in which EEG datasets from N=86 healthy young adults

were used (Petruo et al., 2021). To facilitate a hands-on approach, we provide a subsample of N=20

participants (OSF | Example datasets for STAR Protocol). Participants completed a switching task

that measured cognitive flexibility. In the task, a cued and a memory-based block followed each

other, 198 trials in both. Before the experiment, participants were instructed to follow three task

rules interchangeably. For further details, including specific instructions, task sets, and timing of

the paradigm, see Petruo et al. (2021). Importantly, the application of the current protocol does

not require more detailed information on the task or theoretical knowledge on cognitive flexibility.
2 STAR Protocols 3, 101399, June 17, 2022

https://osf.io/4qgp2/?view_only=45b7b82699174db2a5aa61bbf77ba8bb


ll
OPEN ACCESSProtocol
Optional: For the interested reader, we recommend the method sections of previous papers

that successfully combined RIDE and MVPA to study stimulus-response binding (Takacs et al.,

2020a), response-response binding (Takacs et al., 2021) and inhibitory control (Prochnow

et al., 2021).

Note: We use EEG data that was recorded in a dimly lit room with 60 Ag/AgCl electrodes,

placed in equidistant positions in an elastic cap (EasyCap, Germany). BrainAmp amplifiers

and the Recorder software (Brain Products, Germany) were used to collect data at 500 Hz sam-

pling rate. The ground and reference electrodes were located on the following coordinates:

q = 58, 4 = 78 and q= 90,4 = 90, respectively. The current protocol can be used with any avail-

able research-grade EEG system.
Pre-processing of EEG data

Following data collection, we pre-process the EEG data in BrainVision Analyzer 2 software package

(Brain Products, Germany). The pre-processing pipeline (1) follows previous studies that used the

same task (Petruo et al., 2017, 2018; Wolff et al., 2016), (2) and ensured that requirements of the

RIDE are met (see Preparation one: setting up RIDE).

Note: MVPA does not necessarily benefit from the applied pre-processing (van Driel et al.,

2021). Furthermore, most pre-processing steps that are crucial for MVPA can be performed

in ADAM (Fahrenfort et al., 2018), see also defining the configuration settings. However, given

the lack of standards of pre-processing EEG data for MVPA (Takacs et al., 2020a) and the

added value of the RIDE-MVPA combination, we recommend using pre-processed data. Spe-

cifically, we conduct filtering, ICA-decomposition for ocular and cardiovascular artifact correc-

tion, segmenting, baseline-correction, and residual artifact rejection before RIDE

decomposition:

1. Down-sample EEG recordings to 256 Hz.

2. Filter the data with a band-pass filter of 0.5–20 Hz and a notch filter at 50 Hz (slope of 48 dB/oct).

3. Inspect the data manually to remove breaks and larger technical artifacts.

4. Use an ICA decomposition (infomax algorithm) to remove blinking, horizontal/vertical eye move-

ments and cardiovascular artifacts.

5. Create segments locked to the target stimulus, separately for the cue-based and the memory-

based blocks; for task repetition and task switching conditions; and for the different task sets.

a. Include only correctly responded trials. Segments start -200ms before target presentation and

last 1,000 ms after that.

Note: Neither the current protocol nor the original study (Petruo et al., 2021) introduced re-

sults that are specific for task sets (i.e., subconditions). However, we recommend segmenting

the EEG data to the smallest meaningful units for potential troubleshooting.

6. Run an automated artifact rejection to remove the remaining artifacts (criteria: signal amplitudes

higher or lower than G200 mV; activity smaller than 0.5 mV for at least 200 ms; higher than 200 mV

difference between two consecutive peaks within a 200 ms window).

7. Transform the segmented data to current source density (CSD, a spherical Laplace operator in

which n = 4 splines and m = 10 Legendre polynomials; Lambda = 1 3 10�5).

8. Baseline-correct the segments based on the activity preceding the target presentation (-200 to

0 ms).

9. Export the pre-processed EEG data (including all 60 channels) from BrainVision Analyzer as sin-

gle-trial, single-subject time-locked data.
STAR Protocols 3, 101399, June 17, 2022 3



ll
OPEN ACCESS

4

Protocol
CRITICAL: The pre-processing steps were introduced here as an example. The choice of
pre-processing should depend on the properties of the task, sample size, recording instru-

ments, and the recording environment. Please, adjust the steps accordingly.
Preparation: Setting up toolboxes

Timing: 30 min

Follow these steps to install all required toolboxes in Matlab.

Note: Step 15 is optional.

10. Check requirements.
a. A reasonably up-to-date PC running on Windows 10. Other operating systems may work but

have not been tested.

b. At least 8 GB of memory are recommended, more is better.

c. A recent version of Matlab (The MathWorks, Inc.) not older than Matlab 2012b is required.

Older versions may work but were not tested.

d. Matlab toolboxes: ‘Image processing toolbox’’, ‘signal processing toolbox’’ and ‘statistics

toolbox’’.

e. A recent version of EEGLAB not older than version 13.

f. A recent version of FieldTrip not older than version 2015.
11. Install EEGLAB (Delorme and Makeig, 2004).
a. Download the latest version of EEGLAB from https://eeglab.org/download/.

b. Extract the archive to a folder of your choice.

c. Install data import extension if necessary: https://eeglab.org/others/EEGLAB_Extensions.

html#data-import.
12. Install FieldTrip (Oostenveld et al., 2010).
a. Download the latest version of FieldTrip from https://www.fieldtriptoolbox.org/download/.

b. Extract the archive to a folder of your choice.
13. Install RIDE (Ouyang et al., 2015b).
a. Download the latest version of the RIDE toolbox from http://cns.hkbu.edu.hk/RIDE.htm.
14. Install ADAM toolbox (Fahrenfort et al., 2018).
a. Download the latest version of ADAM from http://www.fahrenfort.com/ADAM.htm. Alterna-

tively, you can access the files from https://github.com/fahrenfort/ADAM.

b. Extract the archive to a directory of your choice.

c. Open the ‘startup.m’ file in the ‘install’ subdirectory. The first lines of code should look like this:
d. Replace the paths specified for the FieldTrip toolbox (‘ft_path’), EEGLAB (‘eeglab_path’) and

ADAM toolbox (‘adam_path’) with the actual paths on your computer.

e. Save and close the ‘startup.m’ file.
15. Alternatives: install MVPA-Light toolbox (Treder, 2020).
a. Download the MVPA-Light toolbox from: https://github.com/treder/MVPA-Light.
STAR Protocols 3, 101399, June 17, 2022

https://eeglab.org/download/
https://eeglab.org/others/EEGLAB_Extensions.html
https://eeglab.org/others/EEGLAB_Extensions.html
https://www.fieldtriptoolbox.org/download/
http://cns.hkbu.edu.hk/RIDE.htm
http://www.fahrenfort.com/ADAM.htm
https://github.com/fahrenfort/ADAM
https://github.com/treder/MVPALight


ll
OPEN ACCESSProtocol
16. Set up the example code and data (optional).
REA

Dep

Raw

Parti

Exam

Softw

Matl

Brain

Brain

EEG

Field

Resid

Ams

MVP

Othe

Brain
a. Download the example code and datasets from https://osf.io/4qgp2/.

b. Extract the folders to a location of your choice.

c. Matlab users may follow the protocol described below in a step-by-step fashion by running

the provided codes.

d. Use ‘‘Example code/star_protocol_RIDE.m’’ and ‘‘Example_data/RIDE’’ for step Temporal

signal decomposition in RIDE.

e. Use ‘‘Example code/star_protocol_concatenate.m’’ and ‘‘Example_data/Concatenate’’ for

step Import the RIDE-decomposed data.

f. Use ‘‘Example code/star_protocol_ADAM.m’’ and ‘‘Example_data/ADAM’’ for step First-

level analysis in ADAM.

g. Use ‘‘Example code/star_protocol_ADAM.m’’ and ‘‘Example_firstlevel_results/ADAM’’ for

step Second-level analyses in ADAM.

h. Use ‘‘Example code/star_protocol_MVPALight.m’’ and ‘‘Example_data/MVPALight’’ for step

Alternative: MVPA in MVPA-Light.
KEY RESOURCES TABLE
GENT or RESOURCE SOURCE IDENTIFIER

osited data

and analyzed data (Petruo et al., 2021) https://osf.io/xuqah/

cipant information (age and gender) (Petruo et al., 2021) https://osf.io/xuqah/

ple datasets and the codes This protocol Open Science Forum: OSF | Example datasets for STAR Protocol.

are and algorithms

ab 2019a The MathWorks, Inc. RRID: SCR_001622
https://de.mathworks.com/products/matlab.html

Vision Recorder Brain Products RRID: SCR_016331
https://www.brainproducts.com/productdetails.php?id=21

Vision Analyzer Brain Products RRID: SCR_002356
http://brainproducts.com/productdetails.php?id=17

LAB (Delorme and Makeig, 2004) RRID: SCR_007292
https://eeglab.org/download

Trip (Oostenveld et al., 2010) RRID: SCR_004849
https://www.fieldtriptoolbox.org/download

ue Iteration Decomposition (RIDE) (Ouyang et al., 2015b) RRID: SCR_022174
http://cns.hkbu.edu.hk/RIDE.htm

terdam Decoding and Modeling (ADAM) (Fahrenfort et al., 2018) RRID: SCR_022172
https://github.com/fahrenfort/ADAM

A Light (Treder, 2020) RRID: SCR_022173
https://github.com/treder/MVPA-Light

r

Amp Brain Products RRID: SCR_009443
https://www.brainproducts.com/productdetails.php?id=1
STEP-BY-STEP METHOD DETAILS

Temporal signal decomposition in RIDE

Timing: 20 s per dataset, depending on computing power

In this step, we apply the RIDE algorithm to EEG data. First, we import epoched, single-trial EEG

data in Matlab using the EEGLAB toolbox and prepare the data for RIDE. Second, we extract the

trial-specific reaction times (RT). Third, we set the configuration for the decomposition and run

RIDE. Fourth, we extract single-trial decomposed data from the RIDE toolbox output. Finally, we
STAR Protocols 3, 101399, June 17, 2022 5

https://osf.io/4qgp2/
https://osf.io/xuqah/
https://osf.io/xuqah/
https://osf.io/4qgp2/?view_only=45b7b82699174db2a5aa61bbf77ba8bb
https://de.mathworks.com/products/matlab.html
https://www.brainproducts.com/productdetails.php?id=21
http://brainproducts.com/productdetails.php?id=17
https://eeglab.org/download
https://www.fieldtriptoolbox.org/download
http://cns.hkbu.edu.hk/RIDE.htm
https://github.com/fahrenfort/ADAM
https://github.com/treder/MVPA-Light
https://www.brainproducts.com/productdetails.php?id=1


ll
OPEN ACCESS Protocol
convert the single-trial data into a data format that can be used by the ADAM toolbox and MVPA-

Light toolbox.

Note: If preferred, open ‘‘Example code/star_protocol_RIDE.m’’ in Matlab to follow this sec-

tion while using the deposited data. Sample datasets for this step are in the folder ‘‘Example_-

data/RIDE’’. This folder contains input data for RIDE.

1. Import EEG data.

RIDE requires epoched single-subject and single-trial data as input. Each dataset should contain tri-

als of one condition and one subject only.

CRITICAL: Use datasets that are free of any artifacts and are baseline corrected. All chan-
nels containing non-brain activity must be discarded beforehand.
6

Note: The trials are stimulus-locked. The RIDE toolbox requires data in a 3-dimensional ma-

trix, where the first dimension is sampling points, the second is channels, the third is trials

(sample x channel x trial).
a. Import data in BrainVision Core Data Format 1.0 (exported from Brain Vision Analyzer using

EEGLAB and EEGLAB bva-io plugin.
b. Permute the data matrix into the required input format sample x channel x trial as described

above.

2. Extract reaction times.

Note: To separate the R component related signal, a vector containing the trial-specific

reaction times (RTs) in milliseconds must be passed to RIDE. The length of this vector
STAR Protocols 3, 101399, June 17, 2022



ll
OPEN ACCESSProtocol
must be equal to the size of the third dimension (i.e., trial dimension) of the EEG data

matrix.

a. Extract the RTs from the event information variable available in EEGLAB after importing the

EEG data.

CRITICAL: In EEGLAB, the locking point in each trial is coded by ‘‘TLE’’ in the ‘EEG.event.-
type’ field. The script looks for the first occurrence of a response-type event representing

the response (i.e., ‘‘S1’’ or ‘‘S2’’ for left or right keypress). The trial-specific RTs are

computed using the number of data points between the specific TLE event and the

response event.
3. Configure and run RIDE.

All parameters used for RIDE are passed in a struct variable ‘cfg’. See the essential parameters
below. For a comprehensive list, please refer to the RIDE manual available on the RIDE website

(http://cns.hkbu.edu.hk/RIDE.htm).

a. Configure the parameters.
i. cfg.comp.name: A cell variable specifying the components to be extracted. Decompose

the signal into three components ‘S’, ‘C’ and ‘R’. ‘S’ refers to ERP component clusters

that are locked to the stimulus onset and ‘R’ refers to component clusters locked to the

RT. ‘C’ refers to a central component cluster not locked to either stimulus or response.

For details, please refer to Ouyang et al. (2015b).

ii. cfg.comp.twd: Ouyang et al. (2015b) uses time window functions to optimize the decom-

position of the components. For each component, a time window in ms must be specified

that constrains the decomposition to the time window where the specific component is

supposed to occur. The latencies of the typical event-related potentials as determined

by visual inspection of the data provide a good orientation here. The S-component time

window should cover ERPs associated with perceptual and attentional processes. The

C-component time window should span response selection-associated potentials. The
STAR Protocols 3, 101399, June 17, 2022 7

http://cns.hkbu.edu.hk/RIDE.htm


ll
OPEN ACCESS

8

Protocol
time window of the R-component covers processes directly associated with the response

and is specified relative to the trial-specific RT.

Note: Specify the time windows as used by Petruo et al. (2021).

iii. cfg.comp.latency: The RIDE decomposition aims to estimate the latency of the

C-component. Therefore, the C-component is specified as ‘unknown’ here. The latencies

of the S-component are assumed to be 0, the latencies of the R component are given by the

RTs.

iv. cfg.samp_interval: The temporal resolution of the data in ms, which is the temporal differ-

ence between two consecutive data points.

v. cfg.epoch_twd: The time window of each trial in ms, which is the time of the first and last

sample point in each trial.

b. Create the RIDE configuration by calling the function ‘RIDE_cfg’ and passing the ‘cfg’ struct

variable.

c. Start the decomposition by calling the function ‘RIDE_call’ and passing the ‘data’ matrix var-

iable and the ‘cfg’ configuration variable.
4. Extract single-trial, decomposed component data.

The output variable of RIDE_call (‘results’) contains, among others, the fields ‘s’, ‘c’, ‘r’. These repre-

sent the decomposed, latency-corrected and averaged S-, C- and R-components.

CRITICAL: For later MVPA analysis, we need data on the single-trial level, which is not part
of the default RIDE output. The single-trial data can be extracted with the RIDE toolbox
STAR Protocols 3, 101399, June 17, 2022



ll
OPEN ACCESSProtocol
function ‘move3’. This function shifts every single trial 3-D data (sample x channel x trial) by

a relative lag.
a. Subtract themove3 transformedC and R component data from the undecomposed single-trial

data (to yield the S cluster data). The output is single-trial, decomposed data.

Note: In contrast to the averaged ‘RIDE_call’ output, we do not apply latency shift here.
5. Save single-trial data in EEGLAB format.

a. Use the original EEGLAB ‘EEG’ variable.
b. Overwrite the ‘data’ field with the specific RIDE decomposed component data.

Note: In the following example, move the C-component data matrix back into the original

EEG variable and save the EEG variable as EEGLAB .set file.

c. Repeat this step also for S and R component data.

d. Apply a baseline correction to the data before exporting.

The reason for this is that the data may not be properly baseline-aligned after the RIDE decompo-

sition. For MVPA, applying baseline correction is highly recommended. In the example, we use the

EEGLAB function ‘pop_rmbase’ with a time window of -200 to 0 ms relative to the locking point.

Optional: The ADAM toolbox also provides several preprocessing functions, including base-

line correction.

CRITICAL: During the detection of the RTs, make sure to detect the correct response
event. Depending on the type of experimental paradigm or segmentation, multiple

response events may exist or response events may be missing for specific trials (e.g., if

the segmentation contains hit trials but also miss trials).
STAR Protocols 3, 101399, June 17, 2022 9



ll
OPEN ACCESS Protocol
MVPA in ADAM

Timing: 30 min per dataset, depending on the computing performance

In this step, we conduct a set of diagonal decoding (i.e., classification across time) and temporal

generalization analyses on the decomposed EEG data by using the ADAM toolbox (Fahrenfort

et al., 2018). After the RIDE decomposition, single-trial data are available for RIDE S-, C- and

R-component. In the following section, we analyze the C-component data. First, we import the

RIDE-decomposed datasets into FieldTrip format. Second, we describe how to run first- and sec-

ond-level analyses in ADAM. The code example below is based on examples provided by Fahrenfort

et al. (2018) and uses the same parameters as the ones deposited by Petruo et al. (2021).

Note: We only present an exemplary analysis of certain classes/conditions of the RIDE

C-component here. Except for folder names, none of the other aspects of the following steps

is specific to a given RIDE component type. Thus, the order of the different components used

for MVPA is irrelevant. Similarly, if RIDE was defined with a lower (i.e., without R-component)

or higher number (i.e., two C-components) of components, that should also work just as

described in the current example. That is, an iteration with the R-component data can be

left out or the C-component can be run twice (first with C1-component and then with C2-

component).

6. Import the RIDE-decomposed data.

Note: Matlab users can open ‘‘Example code/star_protocol_concatenate.m’’ to follow this

section while using the deposited data. Sample datasets as input for this step are in the folder

‘‘Example_data/Concatenate’’.
10 STAR Protocols 3, 101399, June 17, 2022



ll
OPEN ACCESSProtocol
CRITICAL: ADAM requires single-trial datasets in EEGLab or FieldTrip format as input
(Fahrenfort et al., 2018). All experimental conditions that should be analyzed using

MVPA must be stored in one dataset. Since each RIDE output file contains only trials of

one experimental condition, we need to concatenate the datasets first. To be able to asso-

ciate each trial with its condition, we add a trial information field [1 3 number of trials],

coding each trial with a condition-specific numerical value. For example, the first condition

is coded as 1, the second as 2, and so on. In ADAM it is possible to define classes based on

several numeric codes defined in this step.
a. Import the RIDE decomposed output into FieldTrip data format using the FieldTrip function

‘ft_preprocessing’.

b. Append the datasets using the function ‘ft_appenddata’.

c. Add information on the trial-class association by adding a FieldTrip ‘trialinfo’ field (dimension

number of trials x 1) to the FieldTrip EEG dataset.

d. The aggregated dataset is saved as a Matlab file. Sample datasets for this step can be found in

the folder ‘‘Example_data/Concatenate’’.
STAR Protocols 3, 101399, June 17, 2022 11



ll
OPEN ACCESS Protocol
7. Perform the first-level analysis.

Configure the first-level analysis, i.e., single-subject level, in ADAM.

Note: Sample data as input for the following steps can be found in the folder ‘‘Example_data/

ADAM’’. Matlab users can run the code star_protocol_ADAM. Check the toolbox paths in the

startup file of ADAM beforehand.

a. Define the input files:
12
i. Specify the datasets for subjects 1–4. More subjects can be added by adding additional

lines.

Note: Exemplary datasets of N=20 subjects are available for this stage. Subject IDs are arbi-

trarily given between 001 and 023 during recruitment. In case of no-shows, incomplete task

performance, equipment failure, etc., the ID number was skipped and not re-used.
b. Define the classes.
i. Define the relevant conditions as classes. This is essential to train a classifier to differentiate

between experimental conditions based on the decomposed EEG data. In this example, we

classify C-component data by differentiating between Task repetition trials in the cued

block and Task repetition in the memory block:
Note: Similarly, the cue versus memory block effect can be computed for Task repetition. The

code examples below specify all the sub-conditions and their combinations. We recommend

using the smallest meaningful units (conditions) in the experiment to define the classes. This

can be used later for secondary analyses, sanity checks, troubleshooting, etc.

Optional: All the class names below refer to the data type (‘‘_stC’’ as single-trial C-component

data). This might seem redundant since in our case, C-component, S-component, and

R-component datasets were created separately for each subject. We have also kept the three
STAR Protocols 3, 101399, June 17, 2022



ll
OPEN ACCESSProtocol
component types separately when the segmented file formats were created as input files for

ADAM. Therefore, it is not possible to mix up data and classes from different components.

However, in this case, a redundant naming convention can be useful to easily recognize

different parts of the code that would be otherwise largely indistinguishable.
c. Configure the first-level analysis. Define the general configuration parameters in this step.

Non-essential parameters are marked as ‘‘optional’’.
i. Create an empty variable ‘cfg’.

ii. cfg.class_spec: Specify classes. In the example code below, we will classify the observed

EEG activity as (1) belonging to a cued task repetition or (2) a memory-based task repe-

tition.

iii. cfg.datadir: Specify input files location. In our example, input files were stored separately

for each component type.

iv. cfg.filenames: Specify input file names. In this example, the input files were specified in

the variable ‘filenames’ in a previous step.

v. cfg.outputdir: Specify output folder for the results of the first-level analysis.

vi. cfg.model (optional): Specify the selected MVPA model.

Note: The ‘BDM’ backward decoding model is used to predict the experiment’s condition

(class) based on the neurophysiological pattern. To build the predictive model, ADAM em-

ploys Linear Discriminant Analysis (LDA) as a default setting. Another option for model selec-

tion would be the forward encoding model (FEM). From the application point of view, BDM

should be used to investigate a categorical relationship between EEG data and classes, while

FEM should be used in case of a continuous relationship between classes and the neurophys-

iological data. In the current protocol, the aim is to classify behaviors of Task repetition and

Task switching by differentiating between cued and memory-induced situations. Response

selection prompted by a cue or by an internal memory are discrete categories, therefore,
STAR Protocols 3, 101399, June 17, 2022 13



ll
OPEN ACCESS

14

Protocol
BDM was selected. To perform FEM in ADAM, see (Fahrenfort, 2020). BDM is the default

setting in ADAM, therefore, this line is optional in the code.

vii. cfg.raw_or_tfr (optional): Perform classification on time-domain data (‘raw’) or on time-

frequency data (‘tfr’). The default setting in ADAM is ‘raw’. If ‘tfr’ is selected, ADAM will

perform a time-frequency decomposition prior to the classification using the FieldTrip

toolbox. The current protocol does not cover this type of analysis, in case of interest,

please refer to (Fahrenfort et al., 2018). Of note, choosing ‘tfr’ will significantly increase

the processing time required for classification.

viii. cfg.nfolds (optional): Define the number of folds. Using a value of 5, the classifier will be

trained on 80% of the data, and tested on the remaining 20% of the data, iterating this

process until all data points have been tested (5-fold training). The average of the consec-

utive test folds will be used as a final performance index. The number of folds can be

increased up to the number of trials in the input file, however, it is not a common practice

to use more than ten folds. The default setting is 10, that is, the classifier will be trained on

90% of the data and tested on the remaining 10% of the data. In the current protocol, a

5-fold configuration yielded good classification accuracy and stable generalization pat-

terns. We recommend testing this parameter for every research project.

Note: It is not possible to provide an optimal number for the different research applications.

As a general recommendation, if a lower number of folds yields classification around the

chance level, try to use more folds.

ix. cfg.class_method (optional): Select the performancemetric. Here, we choose the area un-

der the curve (AUC). AUC is the default setting in ADAM, therefore, this line can be skip-

ped. However, since this parameter is essential for interpreting the results, we recom-

mend keeping this line for clarity. This measure originates from signal detection theory

and refers to the area under the receiver operating characteristic. That is, when cumula-

tive true positive rates are plotted against the cumulative false-positive rates, the total

area covered will determine the AUC value. AUC is the default setting in ADAM. Other

included options are accuracy, d’, hit rate, and false alarm rate (Fahrenfort et al., 2018).

x. cfg.crossclass: Compute temporal generalization. If ‘yes’ is specified, a complete matrix

will be computed between training and testing time points. If this parameter is ‘no’

(default setting), only a subset of this data will be available (i.e., when testing and training

on the same time point).

Note: It is recommended to set cfg.crossclass to ‘yes’, since this step does not increase

computing time significantly, however, it provides more options for subsequent analyses

(Fahrenfort et al., 2018). In the current protocol, performing a temporal generalization anal-

ysis on RIDE decomposed data was the main goal, therefore, the whole matrix was

calculated.

xi. cfg.channelpool (optional): Select number and types of channels. ‘ALL NOSELECTION’

selects all available channels for decoding, which is also the default setting. The number

of channels will partially determine the number of features in decoding. Generally, a

larger number of features can increase the success of classification. Features that

contribute to the classification will receive a larger weight than features with a low contri-

bution. However, if it is assumed that certain areas should contribute more to the model,

the relevant channels can be preselected in this step, which in turn, can further boost the

classification performance. In the case of task switching, there was no such hypothesis,

therefore, ‘ALL NOSELECTION’ was used to allow the model a non-biased channel

weighting and to keep the number of features on maximum, at least for the channels.

Of note, results of the first-level analysis will be saved in a folder named after the channel
STAR Protocols 3, 101399, June 17, 2022



ll
OPEN ACCESSProtocol
selection. That is, the results of the first-level analysis will be located in a new subfolder

called ‘ALL NOSELECTION’.

xii. cfg.resample (optional): Perform resampling. To reduce computation time, we down-

sample the data to 55 Hz. Importantly, lowering the sampling rate inevitably leads to in-

formation loss, which might affect the accuracy of the classification. We have tested this

possibility and re-calculated some of our results on 256 Hz. Since there was no observable

difference between the models of 55 Hz and 256 Hz data, we have kept the 55 Hz results

(Petruo et al., 2021). For new research projects, we recommend a similar approach. Initial

exploration on low-resolution data and a subsequent validation with a higher resolution

can provide the optimum between computation time and classification accuracy. The

default setting is ‘no’.

xiii. cfg.erp_baseline (optional): Perform baseline correction. Here, baseline correction was

applied already in a previous step. The default setting is ‘no’. To run baseline correction

in ADAM, add this parameter to the provided code and specify the beginning and the end

of the baseline time window in seconds. For example, a 200ms baseline period before the

stimulus presentation would be cfg.erp_baseline = [-.2, .0].

Note: Baseline correction is a linear transformation, users can freely choose when to apply it

(before or during ADAM).
Pause point: Double-check the configuration.

d. Start the classification by running the function ‘adam_MVPA_firstlevel’. The output i.e., results

of the first-level analysis are stored in the specified output folder.
8. Perform the second-level analyses.

First, calculate the group-level decoding performance when training and testing were performed on

the same time points. This is also known as diagonal decoding. Training and testing data are
STAR Protocols 3, 101399, June 17, 2022 15



ll
OPEN ACCESS Protocol
separated and iterated according to the ‘cfg.nfolds’ settings in Configure and run first-level analysis.

Second, perform a temporal generalization analysis, which tests the generalizability of the classifier

to other time points. In secondary or group-level analyses.

Note: ADAM applies t-tests across the individual datasets to compare classification perfor-

mance against a reference level (Fahrenfort et al., 2018). Classification performance was

defined during the first-level analysis in ‘cfg.class_method’. Here, we use AUC, therefore,

the reference is the chance level of a binary choice (AUC = 0.5). For more details about

AUC and alternative performance metrics, see ‘cfg.class_method’ in the step Configure and

run first-level analysis. Input files are provided in ‘‘Example_firstlevel_results_ADAM’’. The

related code in the depository is star_protocol_ADAM.m.

a. Perform diagonal decoding.
16
i. Evaluate the success of the decoding process by calculating AUC values on the group

level. Specifically, the ‘adam_compute_group_MVPA’ function extracts the results of

the first level analyses and calculate the available group statistics on them.

ii. Define the input folder with the parameter ‘cfg.startdir’.

Note: In our example, C-component results of the first-level analysis contrasting Cue and

Memory block Task Repetition classes (‘‘Example_firstlevel_results_ADAM/Task repeti-

tion’’). Running the code example below opens a pop-up window that allows the selection

of subfolders. Choose the folder that contains the ‘‘ALL_NOSELECTION’’ subfolder.

The subfolder ‘‘All_NOSELECTION’’ was generated according to the ‘cfg.channelpool’

setting. Importantly, if the files of the first level results need to be moved, make sure that

they are still located directly in a folder that is named according to the used ’cfg.channelpool’

setting. Troubleshooting: Problem 3: Cannot load data in the second-level analysis of

ADAM.

iii. Specify the time window of the analysis in the field ‘cfg.timelim’ (optional). For the sample

data, select the entire trial length, starting from the baseline period (-200 ms–1,000 ms).

Time intervals have to be defined as milliseconds.

CRITICAL: This step is important if the input files contain larger segments than the inter-
est of the group-level analysis. If the entire segment lengths in the input data are to be

analyzed, this line can be skipped.
iv. Specify correction method for multiple comparisons. Importantly, any group-level analysis

is subject to the multiple comparison problem. ADAM has two methods for controlling

multiple comparisons: cluster-based permutation testing and False Discovery Rate

(FDR). In the first option, significant t-tests in adjacent time points constitute a cluster

that is equivalent to the sum of the individual t-values in that cluster. This process is

then iterated according to the ‘cfg.iterations’ setting. After the iteration, observed cluster

sizes can be compared against the null distribution of cluster sizes under random permu-

tation, which then allows the computation of the corrected p-values. If FDR was chosen,

the correction takes into account the expected proportion of false discoveries (for details,

see Fahrenfort et al., 2018). PreviousMVPA studies that used RIDE-decomposed EEG data

all used cluster-based permutation testing, therefore, for the example datasets, select

‘cluster_based’ in ‘cfg.mpcompcor_method’.

Note: The selection of correction methods should depend on the consideration of the

researcher. There is no known aspect of classifying RIDE data that would necessitate either

cluster-based or FDR correction.
STAR Protocols 3, 101399, June 17, 2022



ll
OPEN ACCESSProtocol
v. Set the number of iterations (optional). Since the default value is also 1000, the command

line of ‘cfg.iterations’ can be left out completely without changing the group-level results.

Note: Generally, high iteration numbers lead to more accurate cluster-based p-values, how-

ever, more iterations would significantly increase computation time. Therefore, if initial ex-

plorations are needed with the parameters of the decoding analysis, iterations between

250-500 can be used to obtain an estimate of the group-level classification performance. Af-

ter the parameter space has been set, the final results can be evaluated with 1,000 or more

iterations. If the results show spurious clusters, the iteration number might need to be

increased above 1000.

vi. Specify the time dimensions for training and testing. The parameter ‘cfg.reduce_dims’

should be used to specify our interest within the matrix of training and testing time points.

In the example below, ‘diag’ limits the group-level extraction of decoding performance to

the case when the classifier was trained and tested on the same points (i.e., the diagonal

axis of the testing X training time points matrix). Results are saved in a structure array type

of variable and named as ‘mvpa_stats’ in our example (see section expected outcomes).

vii. Visualize the results with adam_plot_MVPA. This command will prompt a pop-up window

in which group-level AUC values (y-axis) are depicted alongwith the analyzed time window

(x-axis, as earlier defined in cfg.timelim) and compared with the corrected significance

level. Customized plots can also be generated in ADAM (for details, see Fahrenfort

et al., 2018).
b. Temporal generalization.

Apply the group-level analysis to the whole matrix of testing and training time points. This method is

called temporal generalization and its function is to test the generalizability of the classifier to other

time points (Fahrenfort et al., 2018; Grootswagers et al., 2016; King and Dehaene, 2014).

Note: It is also possible to specify a time window and/or frequency range for training and

testing data. These functions are out of the scope of the current protocol, for their description,

see Fahrenfort et al. (2018).
STAR Protocols 3, 101399, June 17, 2022 17



ll
OPEN ACCESS Protocol
Alternative: MVPA in MVPA-Light

Timing: 30 min per dataset, depending on the computing performance

The classification across time and temporal generalization analyses on the decomposed EEG data

can be alternatively performed using the MVPA-Light toolbox (Treder, 2020). MVPA Light has a

larger selection and customization of classifiers and numerous options of performance metrics

than ADAM. Furthermore, it includes the option of a searchlight analysis, which is useful for the

source estimation of the classification results. Since this is not a feature of ADAM, we recommend

MVPA Light for research questions that concern neural source localization.

Note: Similar to ADAM, single-trial single-subject data is required for MVPA-Light. All MVPA

analyses (classification across time, temporal generalization) are performed in two levels: sin-

gle-subject level (level 1) and group level (level 2). In the following section, use the same

example of ADAM which classifies C-component data by differentiating between task repeti-

tion trials in the cued block and task repetition trials in the memory block. The following steps

include single-subject level classification across time, temporal generalization, and corre-

sponding group-level statistics and visualization. To classify S-component and

R-component data and to differentiate other conditions, please replace the dataset with

the respective RIDE-decomposed dataset and follow the same steps.

Optional: Use ‘‘Example code/star_protocol_MVPALight.m’’ and ‘‘Example_data/

MVPALight.

CRITICAL: The steps 9, 10, and 11 must be performed for all subjects, which can best be
done using loops.
9. Import the RIDE-decomposed data.

MVPA-Light uses a 3-D [trials3 features3 time points] array as data input, where features represent

electrode channels or voxels. The trials of all classes must be concatenated in a single variable. The

condition associated with a certain trial of the aggregated dataset is coded by a numeric value (1 for

the first condition, 2 for the second condition) in the trialinfo field (number of trials 3 1).

CRITICAL: Some classifiers (e.g., Support Vector Machine) rely on the value of these class
labels (e.g., 1 as positive, -1 as negative) to evaluate the classification performance. Labels
18 STAR Protocols 3, 101399, June 17, 2022



ll
OPEN ACCESSProtocol
with other numerical codes rather than 1 and 2 cause distortion of classification

performance.
a. Import the RIDE decomposed output into FieldTrip data format using the FieldTrip function

‘ft_preprocessing’.

b. Append the datasets using the function ‘ft_appenddata’.

c. Add information on the trial-class association by adding the field ‘trialinfo’ to the FieldTrip

EEG dataset.

d. Use the FieldTrip function ‘ft_timelock’ with the parameter cfg.keeptrials set to ‘yes’ to

permute the data to a 3-D matrix. This function can also be used to make a channel or time

window selection (parameter ‘cfg.channel’ and ‘cfg.latency’).

Note: For classification across time and temporal generalization, all-time points and all elec-

trode channels are recommended to be included in further MVPA.
10. Set parameters for first-level analysis.

A set of parameters need to be specified in MVPA-Light to perform first-level analysis, i.e., single-

subject level analysis. These parameters determine the preprocessing steps, classification algo-

rithms, and the expected outcome metrics. All parameters are assigned to a structure variable ‘cfg’.
STAR Protocols 3, 101399, June 17, 2022 19



ll
OPEN ACCESS Protocol
Note: We only describe a few parameters that are necessary or frequently used in the single-

subject level MVPA. For further parameters and hyperparameters please refer to Treder

(2020).

a. cfg.preprocess: MVPA-Light provides different pre-processing procedures to adapt datasets

before training the classifiers, such as sample averaging, over-/under-sampling to balance

the trial numbers of different conditions.

Note: It is recommended to preprocess the data with undersampling or oversampling if the

numbers of trials in the two conditions strongly differ.

b. cfg.classifier: This is the most important configuration which decides the algorithm used for

MVPA. MVPA-Light provided numerous classifiers with flexible customizing settings for each

of them. The default classifier is ‘lda’ (linear discriminant analysis), which is especially time

efficient. For noisy datasets, the more robust classifier ‘svm’ is recommended. For each clas-

sifier, its hyperparameters can also be specified in the field ‘cfg.hyperparameter’.

Note: It is strongly recommended to try out different classifiers and hyperparameters to finally

decide the proper classifier which fits the specific research goal.

c. cfg.metric: Specify the measures for classification output.

Note: ‘Accuracy’ represents the fraction correctly predicted the class in each participant.

Another important one is ‘auc’ that represents the area under the curve. Notably, ‘auc’ is

only used for binary classification. Other metrics such as ‘confusion’, ‘precision’ can also be

used as the output. Several metrics can be included in one calculation through a configuration

resembling this: ‘cfg.metric’ = {‘accuracy’, ‘auc’,’confusion’}.

d. cfg.cv: Specify the type of cross-validation. Cross validation is also provided in MVPA-Light

through configuring ‘cv’ and other related parameters. The parameter ‘cfg.cv’ specifies the

cross-validation type which can be chosen from ’kfold’,’holdout’, and so on.

Note: When cfg.cv=’kfold’, all data are split into k folds (the number of k is defined in ‘cfg.k’

with a default value of 5). In each iteration, one fold is held out and used as testing set, the rest

folds are training set. This process is iterated until every fold serves as testing set for once.

When cfg.cv=’holdout’, a fraction of data is held out and used as testing data and the rest

are used as training data.The number of fraction is defined by setting ‘cfg.p’. Cross validation

can also be repeated with new randomly assigned folds when setting ‘cfg.repeat’ and the final

result is the average of all repetitions.

11. Run the first-level analyses. After the parameters and class labels have been properly specified,

the first-level analysis for each subject can be performed. MVPA-Light provides different ana-

lyses using the function ‘mv_classify’.
20
a. Use the function ‘mv_acrosstime’ directly for binary classification.

b. Use the function ‘mv_timextime’ for temporal generalization.

CRITICAL: Both functions should be applied on datasets of single subjects, thus the re-
turned result is individual classification performance.
Note: For the convenience of further statistical analysis, it is recommended to run this function

in a loop and store all individual results in a cell array as shown in the code below.
STAR Protocols 3, 101399, June 17, 2022



ll
OPEN ACCESSProtocol
12. Run the statistical analyses.

Statistical analyses can be done in MVPA-Light for all MVPA tasks to evaluate the classification per-

formance. Different statistical methods can be employed through configuration to fit the results

generated from the subject-level MVPA.
a. Select a metric from the classification outcome. Here we use ‘auc’ for statistics.

b. Specify statistical methods and requirements in ‘cfg_stat.test’ and corresponding parameter

settings. Statistical analyses should be done in all timepoints for binary classification and

temporal generalization.

i. Select a cluster-based permutation test to identify time points where significant classifica-

tion performance occurred. For each time point, the statistic design follows the purpose of

the experiment design and classification goal.

ii. Choose a within-subject design and compare the ‘auc’ of the group with the chance level

0.5 to evaluate the classification performance of the classifier. The following code

example shows one way to statistically analyze the classification performance.

Note: This code can be applied to both results of subject-level binary classification and tem-

poral generalization.
STAR Protocols 3, 101399, June 17, 2022 21



ll
OPEN ACCESS Protocol
13. Plot the results.

Use the MVPA-Light’s provided built-in functions to visualize the classification performance and cor-

responding statistics.
22
a. Calculate a grand average among all subjects using selected metrics.

i. Use the function ‘mv_combine_results’

ii. Select the proper metric via function ‘result_average’.

b. Specify parameters for plotting. The grand average classification performance can be

plotted through ‘mv_plot_result’ for classification across time and temporal generalization

using two parameters: the averaged results and timepoints for labeling x-axis.

Note: If visualization of statistical results is required, another parameter ‘mask’ from the var-

iable ‘stat_level2’ is also needed. The example of plotting the grand average classification

performance and statistics for each MVPA task is shown in the following code example.
EXPECTED OUTCOMES

Here we only present the expected outcomes using the ADAM toolbox. After conducting the sec-

ond-level analyses in ADAM, classification performance can be interpreted and optionally further

analyzed based on (1) the created plots and (2) variables that contain the exact statistics. The figures

below can be generated by using the data in ‘‘Example_firstlevel_results_ADAM’’. First, we inspect

the plots. If not specified otherwise, plots are named after the name of the folder that was selected in

the pop-up panel during the secondary analyses. That is, these are the folders that contain the ‘ALL_-

NOSELECTION’ subfolder. Figure 1 shows the plots depicting the ADAM MVPA analysis results

based on the example datasets provided in the depository.

The classification of the example dataset of C-component signal yielded images that are clearly inter-

pretable (Figure 1). The time intervals (x axis) that show higher classification accuracy on the diagonals

of panels B andD correspond to the time intervals that show significantly above chance classification in

diagonal decoding (panels A and C, respectively). For the interpretation of different temporal gener-

alization patterns, we recommend the review of King andDehaene (2014). Here, wewould like to high-

light, that not only above-chance but also below-chance classification is possible. We highlight this

possibility in an illustration (Figure 2) derived from the original study (Petruo et al., 2021).

Please, note, that the example of Figure 2 shows not only classification significantly above-chance

level (in dark red) but also classification significantly below-chance level (in dark blue). Possible in-

terpretations of this type of result can be found in the original article (Petruo et al., 2021), and in other

sources (Carlson et al., 2011; King and Dehaene, 2014).

After the visual inspection of the results, we can take a look at the quantification of the classification

performance. ADAM saves the relevant parameters in a stats array. Figure 3 depicts a screenshot of

the overview of the statistical results based on the example dataset.

The most important metrics from the stats array are the first three and the fifth one as listed in Fig-

ure 3. All the other variables record the setting of the analyses (e.g., statistical correction method as
STAR Protocols 3, 101399, June 17, 2022



Figure 1. Classification results of cue versus memory trials based on RIDE decomposed C-component EEG data

The upper panel (A and B) shows task the repetition condition, while the lower panel (C and D) shows the task

switching condition. Time zero denotes the presentation of the target stimulus.

(A) Area under the curve (AUC) decoding accuracy of the repetition condition when the classifier was trained and

tested on the same time points (diagonal decoding). Thicker curve line represents classification performance that is

significantly above the chance level.

(B) Temporal generalization plot of the repetition condition when the classifier was trained on a given time point and

tested the generalizability of the classifier to other time points. The y axis represents the training time points, while the

x axis represents the testing time points. More saturated colors in the matrix indicate good classification performance

(i.e., dark red as high AUC value).

(C) Area under the curve (AUC) decoding accuracy of the switching condition when the classifier was trained and

tested on the same time points.

(D) Temporal generalization plot of the switching condition when the classifier was trained on a given time point and

tested the generalizability of the classifier to other time points.

ll
OPEN ACCESSProtocol
cluster-based permutation; channel selection as all available ones, etc.). Specifically, ClassOverTime

contains the classification performance (in our case, AUCs) on the group level, separately for each

time point. Corresponding individual values are available in indivClassOverTime. Similarly, the vari-

ability of the classification performance can be seen in StdError and the corrected p values in pVals.

These metrics can be used to report the exact time intervals of successful classification. Moreover,

secondary analyses can be performed on them. For instance, we have selected time intervals based

on pVals values to run follow-up source localization analyses in sLORETA (Petruo et al., 2021). Addi-

tionally, individual classification performance values from indivClassOverTime have been used to

run correlational analyses between behavioral performance and MVPA results (Petruo et al., 2021).

LIMITATIONS

The combination of temporal signal decomposition and decoding methods seem not only feasible

but also desirable in areas of human cognition in which multiple aspects of coding are intermixed

(Petruo et al., 2021; Prochnow et al., 2021; Takacs et al., 2020a, 2021). This method combination
STAR Protocols 3, 101399, June 17, 2022 23



Figure 2. Temporal generalization plot of the switching condition when the classifier was trained on a given time

point and tested the generalizability of the classifier to other time points

The y axis represents the training time points, while the x axis represents the testing time points. More saturated

colors (dark red or dark blue) in the matrix indicate good classification performance.

ll
OPEN ACCESS Protocol
has the potential to increase the number of MVPA applications in fields where it is important to

disentangle different aspects of the EEG signal. It was suggested, that such distinction can be impor-

tant cognitive control (Petruo et al., 2021; Prochnow et al., 2021), that has the overlappingmotor and

non-motor components. However, classes should be defined even more cautiously to decode

higher-level, abstract representations. When classes represent higher-order concepts, such as level

of effort, switching between goals, or inhibition, researchers have to make sure that lower-level
Figure 3. Screenshot from ADAM that highlights the

structure of the statistical results

Classification metrics of cue versus memory trials are

based on RIDE decomposed C-component EEG data.

24 STAR Protocols 3, 101399, June 17, 2022



ll
OPEN ACCESSProtocol
aspects of the classes (e.g., physical features of the presented stimuli) do not cause artifacts. This is

why it was suggested to define classes based on the smallest meaningful units. Secondary classifi-

cation analyses that take into account lower-level attributes could exclude the possibility of faulty

class distinctions.

Importantly, signal decomposition proved to be useful to enhance the signal-to-noise ratio in the

EEG signal. However, removing noise and intermixed signals from the EEG data (e.g., removing

stimulus-related S-component signal from the motor-related R-component data) raises the possibil-

ity of overfitting. That is, if the classification fits exactly against its training data, MVPA cannot pro-

vide meaningful insight into the respective representational dynamics. For instance, an almost per-

fect classification (i.e., 0.99 or close to 0.99 AUC) could suggest overfitting. Of note, lower AUC

values do not exclude overfitting completely. Nevertheless, in the case of almost perfect classifica-

tion, we recommend investigating this issue further. A good starting point could be plotting individ-

ual results.

Troubleshooting: Problem 4: Almost perfect classification. Furthermore, the comparison between

undecomposed and RIDE-decomposed classifications might be useful even with non-perfect

models. Such comparison may help to delineate whether signal decomposition enhanced a class

distinction that was already represented in the undecomposed data albeit faintly (Petruo et al.,

2021; Takacs et al., 2021), or decomposition introduced a new pattern that was picked up by

MVPA (Takacs et al., 2020b). In the second case, cautious interpretation is needed.

The current protocol is limited to analyses of human scalp EEG data. Researchers who wish to

enhance their models by introducing multimodal information sources (e.g., EEG and near-infrared

spectroscopy; EEG and cardiovascular signal, etc.) will need to explore the feasibility of using

RIDE-decomposed EEG in combination with a variety of neurophysiological channels for MVPA.

Notably, RIDE is only one of the available methods for EEG signal decomposition. Temporal decom-

position might be performed by using other means, or researchers might want to explore different

techniques, such as spatial decomposition of the EEG signal for subsequent MVPA. We do not know

of any aspect that would prevent combining MVPA with other types of EEG signal decomposition

methods, however, those applications are beyond the scope of this protocol.
TROUBLESHOOTING

Problem 1

Incorrect baseline interval.

The average amplitudes of the RIDE decomposed data in the baseline interval (output of step 5)

differ from 0.
Potential solution

Apply baseline correction.

Apply a baseline correction using the EEGLAB function ‘pop_rmbase’ on single-trial RIDE output, as

described at the end of section temporal signal decomposition in RIDE.
Problem 2

Abnormal behavior of toolbox functions.

After using the ADAM toolbox, several FieldTrip or EEGLAB toolbox functions may not work as ex-

pected. For example, the Fieldtrip function ‘ft_definetrial’ does not accept positive values for the

‘trialdef.pre’ parameter (all steps).
STAR Protocols 3, 101399, June 17, 2022 25



ll
OPEN ACCESS Protocol
Potential solution

Reset Matlab search path.

These issues may be caused by version conflicts between toolbox functions. The MVPA-Light

toolbox installation package includes several FieldTrip and EEGLAB functions, which may be in con-

flict with regular EEGLAB/FieldTrip versions. Resetting the Matlab search path by calling the func-

tion ‘restoredefaultpath’ and should solve this.

Problem 3

Cannot load data in the second-level analysis of ADAM.

A typical error message, in this case, is ‘‘Error using adam_compute_group_MVPA>drill2data.

Cannot find data, select different location in the directory hierarchy and/or check path settings.’’

(step 8).

Potential solution

Change the level of folder selection.

This problem occurs when the incorrect directory level was selected in the path. ADAM looks for a

folder that contains the results of the first-level analysis (e.g., ‘‘ALL_NOSELECTION). Make sure that

you do not select the folder that contains the first-level result but the one above it in the folder

hierarchy.

Problem 4

Almost perfect classification.

Classification performance (output of step 8) is higher than expected (close to 0.99 or higher than in

previous research reports)

Potential solution

Inspect single subject results.

In the second-level analysis of ADAM, add the line ‘cfg.plotsubjects = true’. If individual results do

not show variability, then the design of the original classification is likely faulty.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the lead contact, Ádám Takács (adam.takacs@uniklinikum-dresden.de).

Materials availability

This study did not generate new unique reagents. We provide a subsample of N=20 participants

(OSF | Example datasets for STAR Protocol) based on data collected by Petruo et al. (2021).

Data and code availability

The example datasets and the codes generated during this protocol are available at the Open Sci-

ence Forum: OSF | Example datasets for STAR Protocol.

ACKNOWLEDGMENTS

This work was supported by Grants from the Deutsche Forschungsgemeinschaft SFB TRR 265 and

FOR 2698.
26 STAR Protocols 3, 101399, June 17, 2022

mailto:adam.takacs@uniklinikum-dresden.de
https://osf.io/4qgp2/?view_only=45b7b82699174db2a5aa61bbf77ba8bb


ll
OPEN ACCESSProtocol
AUTHOR CONTRIBUTIONS

A.T. and M.M. compiled the example data based on data collected by Petruo et al. (2021). All au-

thors wrote and revised the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.
REFERENCES
Carlson, T.A., Hogendoorn, H., Kanai, R., Mesik, J.,
and Turret, J. (2011). High temporal resolution
decoding of object position and category. J. Vis.
11, 9. https://doi.org/10.1167/11.10.9.

Delorme, A., and Makeig, S.J. (2004). EEGLAB: an
open source toolbox for analysis of single-trial EEG
dynamics including independent component
analysis. Neurosci Methods 134 (1), 9–21. https://
doi.org/10.1016/j.jneumeth.2003.10.009.

Dippel, G., Mückschel, M., Ziemssen, T., and Beste,
C. (2017). Demands on response inhibition
processes determine modulations of theta band
activity in superior frontal areas and correlations
with pupillometry – implications for the
norepinephrine system during inhibitory control.
NeuroImage 157, 575–585. https://doi.org/10.
1016/j.neuroimage.2017.06.037.

Fahrenfort, J.J. (2020). Multivariate methods to
track the spatiotemporal profile of feature-based
attentional selection using EEG. In Spatial Learning
and Attention Guidance, Neuromethods, S.
Pollmann, ed. (Springer US), pp. 129–156. https://
doi.org/10.1007/7657_2019_26.

Fahrenfort, J.J., van Driel, J., van Gaal, S., and
Olivers, C.N.L. (2018). From ERPs to MVPA using
the Amsterdam decoding and modeling toolbox
(ADAM). Front. Neurosci. 12, 368. https://doi.org/
10.3389/fnins.2018.00368.

Folstein, J.R., and Van Petten, C. (2008). Influence
of cognitive control and mismatch on the N2
component of the ERP: a review. Psychophysiology
45, 152–170. https://doi.org/10.1111/j.1469-8986.
2007.00602.x.

Grootswagers, T., Wardle, S.G., and Carlson, T.A.
(2016). Decoding dynamic brain patterns from
evoked responses: a tutorial on multivariate
pattern analysis applied to time series
neuroimaging data. J. Cogn. Neurosci. 29,
677–697. https://doi.org/10.1162/jocn_a_01068.

Groppe, D.M., Makeig, S., and Kutas, M. (2009).
Identifying reliable independent components via
split-half comparisons. NeuroImage 45, 1199–1211.
https://doi.org/10.1016/j.neuroimage.2008.12.038.

Hommel, B. (2009). Action control according to
TEC (theory of event coding). Psychol. Res. 73,
512–526. https://doi.org/10.1007/s00426-009-
0234-2.
Huster, R., Plis, S., and Calhoun, V. (2015). Group-
level component analyses of EEG: validation and
evaluation. Front. Neurosci. 9, 254. https://doi.org/
10.3389/fnins.2015.00254.

King, J.-R., and Dehaene, S. (2014). Characterizing
the dynamics of mental representations: the
temporal generalization method. Trends Cogn.
Sci. 18, 203–210. https://doi.org/10.1016/j.tics.
2014.01.002.

Nunez, P.L., Srinivasan, R., Westdorp, A.F.,
Wijesinghe, R.S., Tucker, D.M., Silberstein, R.B.,
and Cadusch, P.J. (1997). EEG coherency: I:
statistics, reference electrode, volume conduction,
Laplacians, cortical imaging, and interpretation at
multiple scalesEEG coherency.
Electroencephalogr. Clin. Neurophysiol. 103,
499–515. https://doi.org/10.1016/S0013-4694(97)
00066-7.

Oostenveld, R., Fries, P., Maris, E., and Schoffelen,
J.-M. (2010). FieldTrip: open source software for
advanced analysis of MEG, EEG, and invasive
electrophysiological data. Comput. Intell.
Neurosci. 2011, e156869. https://doi.org/10.1155/
2011/156869.

Ouyang, G., Sommer, W., and Zhou, C. (2015a).
Updating and validating a new framework for
restoring and analyzing latency-variable ERP
components from single trials with residue iteration
decomposition (RIDE): ERP analysis with residue
iteration decomposition. Psychophysiology 52,
839–856. https://doi.org/10.1111/psyp.12411.

Ouyang, G., Sommer, W., and Zhou, C. (2015b). A
toolbox for residue iteration decomposition
(RIDE)—a method for the decomposition,
reconstruction, and single trial analysis of event
related potentials. J. Neurosci. Methods 250, 7–21.
https://doi.org/10.1016/j.jneumeth.2014.10.009.

Petruo, V., Takacs, A., Mückschel, M., Hommel, B.,
and Beste, C. (2021). Multi-level decoding of task
sets in neurophysiological data during cognitive
flexibility. iScience 24, 103502. https://doi.org/10.
1016/j.isci.2021.103502.

Petruo, V.A., Mückschel, M., and Beste, C. (2018).
On the role of the prefrontal cortex in fatigue
effects on cognitive flexibility - a system
neurophysiological approach. Sci. Rep. 8, 6395.
https://doi.org/10.1038/s41598-018-24834-w.
Petruo, V.A., Zeißig, S., Schmelz, R., Hampe, J., and
Beste, C. (2017). Specific neurophysiological
mechanisms underlie cognitive inflexibility in
inflammatory bowel disease. Sci. Rep. 7, 13943.
https://doi.org/10.1038/s41598-017-14345-5.

Prochnow, A., Bluschke, A., Weissbach, A.,
Münchau, A., Roessner, V., Mückschel, M., and
Beste, C. (2021). Neural dynamics of stimulus-
response representations during inhibitory control.
J. Neurophysiol. 126, 680–692. https://doi.org/10.
1152/jn.00163.2021.

Stock, A.-K., Gohil, K., Huster, R.J., and Beste, C.
(2017). On the effects of multimodal information
integration in multitasking. Sci. Rep. 7, 4927.
https://doi.org/10.1038/s41598-017-04828-w.

Takacs, A., Bluschke, A., Kleimaker, M., Münchau,
A., and Beste, C. (2021). Neurophysiological
mechanisms underlying motor feature binding
processes and representations. Hum. Brain Mapp.
42, 1313–1327. https://doi.org/10.1002/hbm.
25295.

Takacs, A., Mückschel, M., Roessner, V., and Beste,
C. (2020a). Decoding stimulus-response
representations and their stability using EEG-
based multivariate pattern analysis. Cereb. Cortex
Commun. 1, tgaa016. https://doi.org/10.1093/
texcom/tgaa016.

Takacs, A., Zink, N., Wolff, N., Münchau, A.,
Mückschel, M., and Beste, C. (2020b). Connecting
EEG signal decomposition and response selection
processes using the theory of event coding
framework. Hum. Brain Mapp. 41, 2862–2877.
https://doi.org/10.1002/hbm.24983.

Treder, M.S. (2020). MVPA-light: a classification and
regression toolbox for multi-dimensional data.
Front. Neurosci. 14, 289. https://doi.org/10.3389/
fnins.2020.00289.

van Driel, J., Olivers, C.N.L., and Fahrenfort, J.J.
(2021). High-pass filtering artifacts in multivariate
classification of neural time series data. J. Neurosci.
Methods 352, 109080. https://doi.org/10.1016/j.
jneumeth.2021.109080.

Wolff, N., Roessner, V., and Beste, C. (2016).
Behavioral and neurophysiological evidence for
increased cognitive flexibility in late childhood. Sci.
Rep. 6, 28954. https://doi.org/10.1038/srep28954.
STAR Protocols 3, 101399, June 17, 2022 27

https://doi.org/10.1167/11.10.9
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.neuroimage.2017.06.037
https://doi.org/10.1016/j.neuroimage.2017.06.037
https://doi.org/10.1007/7657_2019_26
https://doi.org/10.1007/7657_2019_26
https://doi.org/10.3389/fnins.2018.00368
https://doi.org/10.3389/fnins.2018.00368
https://doi.org/10.1111/j.1469-8986.2007.00602.x
https://doi.org/10.1111/j.1469-8986.2007.00602.x
https://doi.org/10.1162/jocn_a_01068
https://doi.org/10.1016/j.neuroimage.2008.12.038
https://doi.org/10.1007/s00426-009-0234-2
https://doi.org/10.1007/s00426-009-0234-2
https://doi.org/10.3389/fnins.2015.00254
https://doi.org/10.3389/fnins.2015.00254
https://doi.org/10.1016/j.tics.2014.01.002
https://doi.org/10.1016/j.tics.2014.01.002
https://doi.org/10.1016/S0013-4694(97)00066-7
https://doi.org/10.1016/S0013-4694(97)00066-7
https://doi.org/10.1155/2011/156869
https://doi.org/10.1155/2011/156869
https://doi.org/10.1111/psyp.12411
https://doi.org/10.1016/j.jneumeth.2014.10.009
https://doi.org/10.1016/j.isci.2021.103502
https://doi.org/10.1016/j.isci.2021.103502
https://doi.org/10.1038/s41598-018-24834-w
https://doi.org/10.1038/s41598-017-14345-5
https://doi.org/10.1152/jn.00163.2021
https://doi.org/10.1152/jn.00163.2021
https://doi.org/10.1038/s41598-017-04828-w
https://doi.org/10.1002/hbm.25295
https://doi.org/10.1002/hbm.25295
https://doi.org/10.1093/texcom/tgaa016
https://doi.org/10.1093/texcom/tgaa016
https://doi.org/10.1002/hbm.24983
https://doi.org/10.3389/fnins.2020.00289
https://doi.org/10.3389/fnins.2020.00289
https://doi.org/10.1016/j.jneumeth.2021.109080
https://doi.org/10.1016/j.jneumeth.2021.109080
https://doi.org/10.1038/srep28954

	XPRO101399_proof_v3i2.pdf
	Protocol to decode representations from EEG data with intermixed signals using temporal signal decomposition and multivaria ...
	Before you begin
	Institutional oversight
	Data collection
	Pre-processing of EEG data
	Preparation: Setting up toolboxes

	Key resources table
	Step-by-step method details
	Temporal signal decomposition in RIDE
	MVPA in ADAM
	Alternative: MVPA in MVPA-Light

	Expected outcomes
	Limitations
	Troubleshooting
	Problem 1
	Potential solution
	Problem 2
	Potential solution
	Problem 3
	Potential solution
	Problem 4
	Potential solution

	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Acknowledgments
	Author contributions
	Declaration of interests
	References



