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Abstract
This paper is a summary of research that looks at the potential of fullerene-like (MO)12 nanoclusters (NCs) in drug-carrying 
systems using density functional theory. Favipiravir/Zn12O12 (− 34.80 kcal/mol), Favipiravir/Mg12O12 (− 34.98 kcal/mol), 
and Favipiravir/Be12O12 (− 30.22 kcal/mol) were rated in order of drug adsorption degrees. As a result, Favipiravir attach-
ment to (MgO)12 and (ZnO)12 might be simple, increasing Favipiravir loading efficiency. In addition, the quantum theory of 
atoms in molecules (QTAIM) assessment was utilized to look at the interactions between molecules. The FMO, ESP, NBO, 
and  Eads reactivity patterns were shown to be in excellent agreement with the QTAIM data. The electrostatic properties of 
the system with the biggest positive charge on the M atom and the largest  Eads were shown to be the best. This system was 
shown to be the best attraction site for nucleophilic agents. The findings show that (MgO)12 and (ZnO)12 have great carrier 
potential and may be used in medication delivery.
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Introduction

COVID-19, a new coronavirus, has spread practically eve-
rywhere on the globe since late 2019, generating a plethora 
of serious public health problems [1]. Due to the lack of an 
antiviral medication that has been authorized, many efforts 
have been undertaken to investigate pharmaceutical sub-
stances for the supportive therapy of the illness [2]. It is 
critical to look at current drugs as well as novel compounds 
to determine whether there’s a method to treat COVID-19 
swiftly. The structure of COVID-19’s protease was first 
discovered in early 2020 [3], spurring a substantial inves-
tigation into the efficacy of current, comparable medica-
tions on enzymatic activity [4]. In addition, identifying the 
mechanism of action of the ligand-target complex is crucial 
for moving further in the phases of drug development and 
design [5–8]. Favipiravir has recently been investigated as 
a potential COVID-19 therapy, and it has been indicated 

as a viable option. The development of efficient medicine 
delivery systems has received a lot of attention recently. 
As a consequence, nanomaterials are now often utilized to 
characterize novel drug delivery (DD) methods [5–9]. DD 
materials include zero-dimensional nanoclusters (NCs), one-
dimensional nanotubes, and two-dimensional nanosheets 
[10–20]. Theoretical investigations have been undertaken 
on fullerene-like (AB)12 (A = Mg, Al, B… and B = N, P, 
O…) NCs as more stable cages than other types of (AB)x 
structures such as nanosheets and nanotubes [21–40].

Th-symmetrical metal oxide NCs, such as (MgO)12, 
(BeO)12, and (ZnO)12, have also gotten a lot of interest 
because of their unique features.

Previous studies have demonstrated that (BeO)12 is ther-
mally stable, suggesting that it might be synthesized in this 
manner [41]. Haertelt and coworkers [42] used density func-
tional theory (DFT) and IR spectroscopy to demonstrate the 
(MgO)12 NCs’ stability. In contrast to (BeO)12 and (MgO)12 
NCs, (ZnO)12 NCs have been extensively investigated for 
their prominent roles in biomedical, gas detector, optoelec-
tronics applications, and as a catalyst [43–54]. Furthermore, 
(ZnO)x nanocages have proven outstanding efficacy in DD 
applications due to their improved biocompatibility and 
reduced cost. The  Zn12O12 NC was successfully synthesized 

 * Zhangyi Xu 
 yusijie5963349@163.com

1 Department of Pharmacy, Hospital of Wenzhou Medical 
University, Wenzhou 325000, Zhejiang, China

/ Published online: 18 February 2022

Journal of Molecular Modeling (2022) 28: 64

http://crossmark.crossref.org/dialog/?doi=10.1007/s00894-022-05054-6&domain=pdf


1 3

[55], and its many uses were investigated [56, 57]. Regard-
less, few research assessing the efficacy of such NCs in DD 
systems have been conducted. As a consequence, the present 
study focuses on adsorbing pharmaceuticals on  Zn12O12, 
 Mg12O12, and  Be12O12NCs, which have been identified as 
the optimal clusters for DD systems. The interactions of 
(MO)12 NCs and Favipiravir were investigated using DFT. 
The primary goal of this research is to conduct a theoretical 
investigation of (MO)12/Favipiravir systems to determine if 
Favipiravir-controlled administration is feasible. The density 
of state (DOS), adsorption energy, molecule electrostatic 
potential, UV–vis spectrum, and electronic characteristics 
were all found as a result of this research. The atoms’ quan-
tum theory of molecules (QTAIM) findings was also used 
to identify the interactions in terms of nature.

Computational methods

The current study used DFT calculations to better achieve 
Favipiravir energetic assessments and geometrical relaxation 
on (MO)12 complexes. This work used the generalized gra-
dient approximation, Perdew-Burke-Ernzerhof (PBE) one, 
for exchange–correlation energy functional and Grimme 
dispersion corrected PBE using Gaussian 09 to optimize 
the geometry and determine the electrical characteristics. 
Double numerical basis sets, such as polarization functions, 
have been used to illustrate atomic valent orbitals [58–61]. 
To get Favipiravir adsorption energy, the energy difference 
between the solitary NC-Favipiravir assembly and Favipira-
vir/NC complexes was discovered.

In order to determine if the expected (MO)12 NCs could 
be experimentally manufactured, the cohesive energy  Ecoh 
was computed as follows:

where  Etot denotes the overall energy of the NCs is, Ei 
represents the atomic energy, ni is the number of type-i 
atoms (i = Zn, O, Be, and Mg) and j is the number of the total 
atoms of (MO)12. It was necessary to quantify the energy gap 
 (Eg) of the lowest and highest occupied molecular orbitals in 
order to assess Favipiravir adsorption contributions to NC 
electrical characteristics (LUMO and HOMO). Natural bond 
orbital (NBO) analysis of charge was used to assess charge 
transfer between drug molecules and NCs [62]. AIMALL 
was also used to create QTAIM and better understand the 
complexes’ interactions [63].

Results and discussion

Structural and electronic characteristics of intact 
(MO)12 NCs

The intact (MO)12 and optimized Favipiravir structures 
are shown in Fig. 1. As can be observed, the intact NCs 
have six tetragons and eight hexagons with symmetry of 
Th. (MgO)12, (BeO)12, and (ZnO)12 have the angles of a 
hexagon (tetragon) of 114.2 (86.6), 111.8 (80.8), and 108.6 
(86.9) degrees, respectively. Two forms of M–O bonds exist 

(1)Ecoh =

(

Etot −
∑

i

niEi

)

∕j

Fig. 1  The optimized structures 
of Favipiravir drug and intact 
(MO)12 NCs
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in the NCs: a hexagonal double bond (d1) as well as bonds 
shared by a hexagon and a tetragon (d2). The bond sizes of 
d1 (d2) of (BeO)12, (MgO)12, and (ZnO)12, respectively, are 
1.54(1.60), 1.88(1.95), and 1.89(1.99) Å. The current study 
used the calculations of harmonic vibrational frequency 
at the level of the theory of PBE/6–31 + g(d) to guarantee 
that the structures corresponded to energy minima. On the 
surface of potential energy, the structures were discov-
ered to be real stationary points. (BeO)12, (MgO)12, and 
(ZnO)12 have harmonic frequencies of 200.6–1194.1  cm−1, 
100.6–764.2  cm−1, and 74.8–650.2  cm−1, respectively. The 
results are consistent with those of Li and coworkers [64], 
who investigated NC acetone sensitivity. The NC electro-
static potential (ESP) graphs are shown in Fig. 2, with the 
red negative regions representing relative charge buildup and 
the blue positive regions representing charge depletion.

Based on Fig. 2, the best attraction locations for nucleo-
philic agents are Be, Mg, and Zn atoms.

The top perspective for intact NCs’ frontier molecular 
orbital (FMO) is also shown in Fig. 2. As can be observed, 
the NC HOMOs were discovered to have a preferential dis-
tribution on O atoms.

As a consequence of the FMO findings, the optimum 
nucleophilic agent attraction regions of the Be, Mg, and Zn 
atoms were discovered.

The NCs were evaluated using the NBO method. The 
atomic charges of NBO on the Be, Mg, and Zn atoms were 
shown to be + 1.16, + 1.16, and + 1.32 e, respectively, indi-
cating a considerable charge transfer from the mentioned 
atoms to the O atom.  Ecoh was also computed using Eq. (1), 
proving that the expected nanoclusters could be manufac-
tured experimentally. For  Be12O12,  Zn12O12, and  Mg12O12, 
 Ecoh was determined to be − 7.25, − 5.55, and − 5.76 eV, 
respectively. According to the findings, (BeO)12 has a lower 
 Ecoh than (MgO)12 and (ZnO)12, implying that (BeO)12 
might be simpler to produce than (MgO)12 and (ZnO)12. 
For (BeO)12, (MgO)12, and (ZnO)12,  Eg was shown to be 
7.23, 3.85, and 2.13 eV, respectively. The  Eg findings were 
inconsistent with previous research [64]. The DOS findings 
are shown in Fig. 3 so that the influence of the M atom on 
the NC electronic characteristics can be checked. Large dif-
ferences emerged towards the Fermi level, as can be shown, 
due to significant interactions of M–O on both sides. In addi-
tion, the valence level for (ZnO)12 increases in energy as the 

Fig. 2  The analysis of ESP and 
the LUMO and HOMO of the 
intact (MO)12 NCs
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conduction level decreases.  Eg is significantly reduced as 
a result of this. As a result, (ZnO)12  (Eg = 2.13 eV) may be 
classified as a semiconductor nanoparticle, while (BeO)12 
 (Eg = 7.23 eV) and (MgO)12  (Eg = 3.85 eV) are often metal 
oxides that have been insulated.

Favipiravir adsorption on the (MO)12 NCs

Energetic evaluation

The current study looked at a range of configurations to find 
the most stable adsorption on the NC surface, such as plac-
ing Favipiravir oxygen, nitrogen, and fluorine atoms at vari-
ous positions, such as the tops of Mg, Zn, O, and Be atoms, 
as well as the tetragonal and hexagonal ring centers.  Eads, the 

shortest NC-drug distance, and the most stable electronic 
configurations are shown in Fig. 4. Based on Fig. 4, the opti-
mized-geometry Favipiravir has the maximum propensity 
for O and M atom interaction. This is in line with the ESP 
and FMO findings. The interaction distances of the Favipira-
vir/Be12O12, Favipiravir/Zn12O12, and Favipiravir/Mg12O12 
complexes are also shown in Fig. 4. As can be observed, 
the interaction distances between Favipiravir/Zn12O12 and 
Favipiravir/Mg12O12 are quite short. As a consequence, it is 
safe to assume that chemisorption will take place.

The adsorption energies of (BeO)12, (ZnO)12, and 
(MgO)12 were shown to interact with Favipiravir 

Fig. 3  DOS diagrams for the intact (MO)12 NCs

Fig. 4  The most stable electronic configurations of the adsorbed Favi-
piravir on (MO)12 NCs’ surface
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at − 30.22, − 34.80, and − 34.98  kcal/mol, respectively. 
Since Favipiravir adsorptions onto (ZnO)12 and (MgO)12 
have great adsorption energy levels, the Favipiravir molecule 
is chemisorbed onto the nanocluster. The lower interaction 
lengths between the drug O and H atoms and the nanocluster 
O and M atoms explain this. As a consequence, it can be 
stated that (MgO)12 and (ZnO)12 are more suitable for Favi-
piravir adsorption. These results are in good agreement with 
the ESP, NBO, and FMO reactivity patterns. The largest 
positive charge on the M atom as the best attraction site of 
the nucleophilic agent is represented by the  Eads maximum 
level of Favipiravir/(MO)12.

The current study looked at the influence of a solvent 
on Favipiravir adsorption onto NCs in aqueous conditions. 
The polarizable continuum model was used to quantify the 
influence of water as the solvent (ε = 78.4). According to the 
results of  Eads, the complexes were compared in aqueous and 
gaseous phases (Table 1). As can be observed, the energy 
levels in both phases are fully negative, indicating that the 
complexes are stable. The greater the possible solubility of 
the NC to affect the Favipiravir-NC interaction, the larger the 
absolute amount of negative adsorption energy in the aque-
ous phase. The DOS data are shown in Fig. 5 to validate the 
impacts of Favipiravir on NC electronic characteristics. As 
shown in Fig. 6, (MgO)12 and (ZnO)12 displayed minor post-
Favipiravir adsorption modifications in LUMO and HOMO. 
As a result,  Eg stayed almost unaltered. The valence (con-
duction) level of Favipiravir/(BeO)12, on the other hand, rose 
(reduced). As a consequence, the  Eg of (BeO)12 was smaller 
than that of its immaculate equivalent.

UV–Vis spectra

At the level of the theory of PBE/6–31 + g(d), the UV–Vis 
spectrum of both pure NCs and Favipiravir-nanocluster com-
plexes were measured. Table 2 lists the important transitions 
(i.e., the greatest oscillator strengths (f)). Based on Table 2, 
the greatest adsorption wavelengths of the intact (BeO)12, 
(ZnO)12, and (MgO)12 were determined to be 294.72, 
372.36, and 411.45 nm, respectively. The greatest oscilla-
tor strengths were 0.1241, 0.0032, and 0.0035, respectively. 
The majority of adsorption wavelength peaks are explained 
by HOMO → LUMO transitions. The intact NC adsorption 
bands dropped to higher wavelengths when Favipiravir was 

adsorbed onto them. Thus, it is possible to deduce that the 
electronic spectrum of the complexes experiences a redshift 
to higher wavelengths. The most significant redshift was 
seen in Favipiravir/(BeO)12 (126 nm).

AIM analysis

AIM is a capable tool for determining the interactions 
between molecules. AIM can identify the bond critical 
points (BCPs) between interactive systems using topologi-
cal variables. The improved Favipiravir/NC complexes are 
shown as molecular graphs in Fig. 6. Based on Table 2, at 

Table 1  Comparison of the values of Eads (kcal/mol) obtained in the 
solution and gas phase for the complexes of Favipiravir/(MO)12

Molecule Gas phase Solution

Favipiravir/Be12O12  − 30.22  − 41.11
Favipiravir/Mg12O12  − 34.98  − 46.65
Favipiravir/Zn12O12  − 34.80  − 47.75

Fig. 5  DOS diagrams for Favipiravir/(MO)12 compounds
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BCPs, the computed values of ρc for the complexes range 
from 0.0341 to 0.0762 a.u. The ∇2ρc values also range from 
0.0542 to 0.145 a.u. The ρc values are raised when Mg and 
Zn atoms replace the NC’s M atom (Table 3).

The high charge densities of the O–H and M–O bonds, 
as well as a positive ∇2ρc, are suggested by the electron 
density features of the complexes. As a consequence, the 
electrostatic properties of O–H and M–O bonding may be 
stated to be reasonable. Indeed, a partly covalent connection 
is represented by a positive ∇2ρc and negative HC, while 

an electrostatic interaction is represented by a positive HC. 
Thus, the studied compounds showed positive ∇2ρc and 
negative HC, indicating polar covalent Be-O, Zn–O, and 
Mg-O bonds.

Based on Table 2, the Favipiravir/(MgO)12 and Favip-
iravir/(ZnO)12 complexes showed high values, indicating 
strong Be-O, Zn–O, and Mg-O interactions. The Eads, FMO, 
and ESP findings accord with the AIM findings of these 
complexes.

Conclusions

The Favipiravir drugs’ adsorption onto fullerene-like (MO)12 
NCs was investigated in this work. A study of the NC’s 
adsorption energies revealed that (MgO)12 and (ZnO)12 
could significantly increase Favipiravir drugs’ adsorption 
on the NCs. Favipiravir/Be12O12 (30.22 kcal  mol−1), Favip-
iravir/Zn12O12 (34.80 kcal  mol−1), and Favipiravir/Mg12O12 
(34.98 kcal  mol−1) were rated in order of drug adsorption 
degrees. As a result, Favipiravir attachment to (MgO)12 and 
(ZnO)12 might be simple, increasing Favipiravir loading 
efficiency. In addition, the QTAIM assessment was used to 

Fig. 6  Molecular diagram of 
Favipiravir/(MO)12 compounds. 
Bond pathways are shown by 
the lines

Table 2  The estimated maximum value of absorption wavelength 
(λ), the transition of dominant contribution for the intact (MO)12 and 
Favipiravir/(MO)12 and complexes, and oscillator strengths (f)

complexes λ (nm) f0 Major contribution

Be12O12 168.21 0.0024 HOMO → LUMO (71%)
Favipiravir/Be12O12 294.72 0.1241 HOMO → LUMO (74%)
Mg12O12 300.31 0.0049 HOMO → LUMO (71%)
Favipiravir/Mg12O12 411.45 0.0035 HOMO → LUMO (76%)
Zn12O12 348.98 0.0093 HOMO → LUMO (70%)
Favipiravir/Zn12O12 372.36 0.0032 HOMO → LUMO (75%)

Table 3  The Laplacian of 
electron density (∇2ρ), electron 
density (ρ), total electron energy 
density (H) in a.u., potential 
energy density (V), kinetic 
energy density (K), and at BCPs 
in the Favipiravir-adsorbed 
compounds by AIM analysis

Complexes BCP ∇2ρ ρ K(r) V(r) H(r) K(r)/׀V(r)׀

Favipiravir/Be12O12 Be18-O35 0.431 0.0601  − 0.0067  − 0.0944  − 0.0067 0.0709
O2-H37 0.109 0.0341 0.0010  − 0.029  − 0.0010 0.0344

Favipiravir/Mg12O12 Mg6-O35
O14-H36

0.269
0.154

0.0360
0.0522

 − 0.0110
0.0032

 − 0.0452
 − 0.0451

 − 0.0110
 − 0.0032

0.2433
0.0709

Favipiravir/Zn12O12 Zn17-O35
O8-H37

0.319
0.145

0.0762
0.0470

0.0251
0.0025

 − 0.1303
 − 0.0413

 − 0.0251
 − 0.0025

0.1926
0.0605
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look at the interactions between molecules. The Eads, FMO, 
NBO, and ESP reactivity patterns were shown to be in excel-
lent agreement with the QTAIM data. The electrostatic prop-
erties of the system with the biggest positive charge on the 
M atom and the largest Eads were shown to be the best. This 
system was shown to be the best attraction site for nucleo-
philic agents. The findings show that (MgO)12 and (ZnO)12 
have great carrier potential and may be used in medication 
delivery. However, more in vivo research is needed to con-
firm these findings.
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