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Numerous studies have related differences in phenotype with functional hetero-
geneity in lymphocytes. Recently attention has focused particularly on the CD4+
T cell subset, since the surprising finding that murine CD4+ T cell lines could be
divided into at least two types based on their differential ability to synthesize and
secrete distinctive sets oflymphokines (1, 2) . Furthermore, this distinction is associated
with different functions, such as delayed-type hypersensitivity or help for antibody
secretion (3-7). However, the relationship between such in vitro T cell lines and
the normal CD4+ T cell population found in vivo remains unclear.

In this study, we have been able to discriminate murine CD4+ T cell subsets by
differential expression of antigenic determinants using monoclonal anti-T cell au-
toantibodies (SM3G11 and SM6C10). These antibodies were derived from hybrid-
omas made with a distinctive mouse B cell subset, Ly-1 B (8-10) . Both antibodies
react with determinants expressed on thymocytes and peripheral T cells, but not
found on B cells, myeloid cells, or erythrocytes . Application ofthese two antibodies,
together with anti-CD4 antibody in multi-color FRCS analysis and sorting experi-
ments, resolves four different CD4+ T subsets .

Studies have been carried out to examine these CD4+ T subsets, primarily for
the types oflymphokines secreted . Furthermore, we address the question ofwhether
different CD4+ T cell subsets require particular types of APC and how this might
relate to the distinct sets of lymphokines elaborated by such subsets. We present
here : (a) the response to Con A in the presence of either B cell or non-B cell acces-
sory cells; (b) lymphokine (IL-2 or IL-4) secretion induced by such activation ; and
(c) localization of the memory T cells responsible for secondary antibody formation
initiated by antigen-pulsed memory Bcells . We then discuss the significance ofdifferen-
tial expression of antigenic determinants that coincides with these distinct functions
and how the differentiation and maturation of normal CD4+ T cells might produce
such heterogeneity.
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Materials and Methods
Mice.

	

BALB/cAnNIcr mice were bred and maintained in our animal facility. 2-4-mo-old
female mice were used in most experiments, except where noted . 3-mo-old female SM/J mice
were purchased from TheJackson Laboratory (Bar Harbor, ME) and used for establishing
anti-T cell hybridomas.

Anti-T CellHybridomas andAntibody Purification.

	

Cells expressing Ly-1 and IgM on the sur-
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face (Ly-1 B) (8) were sorted from a pool ofspleen cells from five SM/J mice using the FACS .
Sorted Ly-1 B were cultured for 2 d in the presence of LPS from Escherichia coli (No . L2880 ;
Sigma Chemical Co., St . Louis, MO) and then used for cell fusion with a HATsensitive MPCII
myeloma cell line (11) . SM3G11 and SM6C10 were selected and cloned as were 13 other IgM
antithymocyte antibody-secreting hybridomas simultaneously established (12) . Ascites were
obtained by injection of hybridomas into C.B-17scid mice and purified by precipitation with
50% saturated ammonium sulfate, followed by gel filtration (Ultrogel AcA34 ; IBF Biotechnics,
Villeneuve-la-Garenne, France) . Both antibodies are IgMic, with some association of y26 H
chain contributed by MPCII .

Fluorescence Staining Reagents .

	

The hybridomas producing anti-CD4 (GK1.5), anti-CD8
(53-6), anti-CD5 (53-7), anti-B220 (RA3-6B2), anti-IgM (331.12), and anti-CD3 (145-2C11)
(13) were cultured in serum-free HB101 medium (Hana Biologics, Berkeley, CA), and secreted
antibody was purified as described elsewhere (8, 14, 15) . Purified anti-CD3 antibody (500A-
A2) (16) was provided by Dr. J . Allison (University ofCalifornia, Berkeley, CA) . The mouse
hybridomas producing anti-IgD (10-4.22) and anti-Iad (MKD6) were injected into C.B-17scid
mice and antibodies were purified from ascites (8) . Phycobiliproteins (Phycoerythrin [PE],`
phycocyanin [PC], allophycocyanin [AP]) were purified from seaweed or cyanobacteria as
described previously (17) . "Avidin D" was purchased from Vector Laboratories, Inc . (Burlin-
game, CA) . Conjugation of antibodies and avidin with either biotin, fluorescein, phyco-
biliproteins, or Texas Red have all been described previously (8, 17) .

Immunofuorescence Staining, Analysis, and Sorting.

	

Staining for multicolor analysis was per-
formed as described previously (8, 18) . Data analysis and cell sorting were carried out using
a FACStar plus (Becton Dickinson Immunocytometry Systems, Mountain View, CA) equipped
with two lasers, the second laser being a tunable dye laser. The FACS was equipped with
appropriate filters and compensators for collecting four-color immunofluorescence together
with forward and right angle light scatter. Data were collected in list mode on a Micro VAX
II computer (Digital Equipment Co., Maynard, MA) using the DESK software developed
by Mr. W. Moore in Dr. L . A . Herzenberg's laboratory, Stanford University, Stanford, CA.
Techniques of multicolor FACS analysis (18) and data manipulation (19) have been described
elsewhere . Cells were typically sorted at rates of7,000 cells/s into microcentrifuge tubes . Reanal-
ysis of the sorted cells show >99% purity for T cell subsets .

Bioassayfor Lymphokine Secretion .

	

The growth factor-dependent cell line HT-2 (20) was ob-
tained from D. Hansburg (Fox Chase CancerCenter) and maintained in RPMI 1640 medium
supplemented with 10% FCS (Gibco Laboratories, Grand Island, NY), 50 gM 2-ME, and
2 % culture supernatant from Con A-stimulated rat spleen cells . Bioassay for lymphokine
(IL-2 and IL-4) secretion was determined by the MTT assay as described by Mosmann (21),
with slight modification . 104 HT-2 cells were used per well and the development of color was
read using an ImmunoReader NJ2000 (InterMed, Tokyo, Japan) equipped with a 570-nm
sample filter and a 650-nm reference filter. Serial dilutions of supernatant of Con A-stimu-
lated mouse spleen cell culture provided a standard where 50% of maximum growth was
determined to be 1 U in 0 .1 ml . Anti-IL-4 (11B11) (22) containing ascites was a generous
gift of Dr. J . Ohara (NIH, Bethesda, MD) . The anti-IL-2 (S4B6) cell line established by
Mosmann (1), was obtained from H. C . Morse (National Institutes ofHealth, Bethesda, MD),
adapted to growth in HB101 medium, and antibody was purified as described previously.

Con A Stimulation of T Cells .

	

CD4' T cell subsets were sorted from spleen after three-
color immunofluorescence staining. In particular, sample tubes containing stained cells were
kept on ice while sorting . As B lymphocyte accessory cells, RA3-6B2' (B220, reference 23)
CD4- cells of typical small lymphocyte size (determined by forward light scatter) were sorted
as a population enriched for nonactivated cells . This is based on the fact that activation of
B cells induces a decrease and eventual loss of expression of the 6B2 determinant from the
B220 molecule (Hayakawa, K., and R . R . Hardy, unpublished observations) . As non-B ac-
cessory cells, either cells in the peritoneal cavity showing large forward and right angle light
scatter measurements (large granular fraction) or Thy-1 - B220- cells from spleen were used .

Abbreviations used in this paper: AP, allophycocyanin ; KLH, Keyhole limpet hemocyanin ; PC,
phycocyanin ; PE, phycoerythrin .
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5 x 10 4 of these sorted accessory cells were cultured (without treatment) in microtiter wells
(No . 3598 ; Costar, Cambridge, MA) together with 10 5 cells of selected T cell subsets and
Con A (No. C5275 ; Sigma Chemical Co.) at 5 ug/ml in 200 ul of RPMI 1640 + 10% FCS
+ 2-ME (culture medium) for 2 d .
Secondary Antibody Response.

	

BALB/c mice were immunized with 100 wg of Keyhole limpet
hemocyanin (KLH ; Pacific Bio-Marine Laboratories, Inc ., San Rafael, CA) on alum with
109 of heat-inactivated Bordetella pertussis vaccine . More than 3 mo after immunization, spleen
cells were used for memory B cell and T cell sorting . Spleen cells were incubated with KLH
(1 gg/ml) simultaneously with the process of immunofluorescence staining (at 4°C for 30
min for each step) ; then the B220' (IgM, IgD)- cell fraction (15) was sorted and used as
a population enriched for antigen (KLH) pulsed-memory B cells . In parallel, spleen cells
from the same primed mice were stained using three-color immunofluorescence for sorting
CD4' T cell subsets . 10 4 KLH-pulsed B220' (IgM, IgD) - cells and 105 cells of selected T
cell subsets were cocultured in 200 ul culture medium for 7-14 d .

Specific IgG anti-KLH antibody secretion at 7 and 14 d ofculture was measured by ELISA
assay as described elsewhere (15, 24) . For detection of IgG1 or IgG2a antibody, biotinated
(Bi-) rabbit anti-mouse IgG1 purified from serum purchased from Bethyl Laboratories (Mont-
gomery, TX) or Bi-monoclonal anti-Igh-1a (20-8 .3, reference 25) were used, followed by alka-
line phosphatase-conjugated avidin . Anti-KLH secondary antiserum in BALB/c mice from
14 d after boost was used as standard . The amount of anti-KLH antibody in the culture
supernatant is expressed as units, 1 U is activity at a 1 :105 dilution of standard antiserum .

Results
CD4' T Cell Subsets in Spleen Revealed by SM3G11 and SM6C10 Anti-T Cell Autoanti-

bodies. Two hybridomas, SM3G11 and SM6C10, established from SM/j Ly-1 B cells
were selected for their secretion of antithymocyte autoantibody. They recognize de-
terminants expressed both on thymocytes and peripheral T cells ofall mouse strains
tested, including BALB/c mice (Hayakawa, K., and R. R. Hardy, manuscript in
preparation) .

However, they each have a characteristic expression on thymocytes as demonstrated
by fluorescence staining analysis . SM3G11 stains 20% ofthymocytes, whereas SM6C10
stains most thymocytes (90%), which suggests that they react with different anti-
genic determinants (3G11, 6C10) (Fig . 1 a, left) . Using three- and four-color FAGS
analysis, subpopulations were revealed based on the correlated expression of 3Gll
and 6C10 . In the thymus, most cells expressing undetectable (or low) levels of CD3
(immature thymocytes) show high levels of 6C10 expression with only a small per-
centage expressing low levels of 3G11 (Fig. 1 a, middle) . On the other hand, cells
expressing high levels of CD3 (mature thymocytes) express 3G11 and show a de-
creased and more heterogeneous level of 6C10 (data not shown) . In particular, the
mature CD4' CD8- cells in thymus can be divided into four different populations
based on expression of these determinants (Fig . 1 a, right) .
We have compared CD4' cells in spleen (and lymph node) with the most ma-

ture fraction of CD4' CD8- cells in thymus and find a similar distribution, al-
though the subsets are more distinct in spleen (Fig . 1 b, left) . Furthermore, the cor-
related expression of these determinants on CD8' spleen cells is different from the
expression on CD4' cells, with most CD8' cells expressing neither determinant
(Fig . 1 b, middle) . Finally, spleen cells lacking CD3 expression (non-T cells) do not
express these determinants (Fig . 1 b, right) . In addition, 6C10 and 3Gll are not ex-
pressed to any appreciable extent on erythrocytes or bone marrow cells (data not
shown) . Therefore, we conclude that among lymphoid, erythroid, and myeloid cell
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FIGURE 1 .

	

Distribution of 3G11- and
6C11-expressing cells in the thymus and
spleen. 3-mo-old BALB/c mice were
used for immunofluorescence staining
analysis . (a) Thymocytes were stained
with two different four-color combina-
tions. For the first two panels, FL-
SM6C10, Bi-3G11 plus TRavidin, PE-
anti-CD3(500A), and a mixture ofAP
anti-CD4 and AP-anti-CD8 were
used . For the right panel, FL-SM6C10,
Bi-3G11 plus TR-avidin, AP-anti-
CD4, and PE-anti-CD8 were used .
CD4*,CD8- cells constitute 901o of
thymus . (b) Spleen cells were stained
with the four-color combinations de-
scribed for the upper right panel thy-
mocyte analysis ; CD4' (CD8- ) or
CD8' (CD4- ) cells are shown. For
analysis of CD3- cells in spleen, cells
were stained with a three-color com-
bination : FL-SM6C10, Bi-SM3G11
plus PC-avidin, and PE-anti-CD3 .
6010 - 3G11', 6C10'3G11', 6C10'
3G11 -, 6C10 - 3G11 - cell fractions in
CD4' cells are 31, 46, 13, and 10%,
respectively. 40% of CD8' cells do
not express either determinant .

lineages, the expression of3G11 and 6010 is T lineage restricted and is preferentially
found on CD4' cells .

Responsiveness to Con A in the Presence of Two Types ofAccessory Cells.

	

To investigate
any preference for a particular type of accessory cell among the CD4' subsets, three
fractions (I, II, III) were sorted, as shown in Fig. 2 a. Since activation of CD4'
T cells by the mitogen Con A is completely dependent on accessory cells (26), con-
tamination of Ia' non-T cells obscures the accessory cell dependence in this system,
and we found such cells only in fr. IV (Fig . 2 b) . After we specifically sorted to de-
plete this fraction of la' cells, no activation by Con A occurred unless accessory
cells were added to these fractions (data not shown). All fractions express readily
detectable levels of CD3 on their surface (Fig . 2 c) .
The four CD4' T cell fractions were examined for their responsiveness to Con

A. Either B cells from spleen (B220 [6B2] + B cells) or non-B cells (principally peri-
toneal nonlymphoid cells enriched for large granular cells ; or B220 - Thy-1 - cells
from spleen) were used separately as accessory cells . Activation of T cells was mea-
sured by secretion of growth factors using a bioassay with the growth factor-depen-
dent cell line HT2 . In fact, such supernatant growth factor activity (for HT-2 cells)
could always be detected if there were metabolically active cells (as measured by
the MTT assay) growing in the T cell culture as the result of their activation during
the 2-d Con A stimulation (data not shown) .
The results, as summarized in Table I, showed a differential response by 6C10+

or 3G11' cells depending on the source of accessory cells . When non-B cells were
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FIGURE 2. The four CD4* T cell subsets . Spleen cells were
stained with FL-SM6C10, Bi-SM3G11 plus PE-avidin, and PC-
anti-CD4 . Regions for the sorting gates for Fr. I, Fr. II, and Fr.
III are boxed (a) ; all cells are also gated as CD4* . Percentages
of cells sorted as Fr. I, Fr. II, Fr. III were 23, 26, and 9% of total
CD4' cells ; these percentages reflect 70, 50, and 70% of the total
cells in each fraction . The amounts of staining reagents used did
not significantly decrease staining compared with any reagent used
alone. Fr. IV (8% of CD4* cells) was obtained by staining with
FL-anti-Ia, a mixture of SM6C10 and SM3G11, followed by
PE-anti-IgM, and PC-anti-CD4 and then sorting CD4' but FL- ,
PE- cells (b) . These Fr. IV cells express CD3 (c, dashed boxed) .
Arrows point out infrequent cells (1-2% of CD4' cells) that are
CD4',Ia*,CD3 - found in the 6C10 - 3G11 - cell population . Com-
parison between b and c suggests some inhibition ofthe 3G11 and
6C10 mixture staining by anti-CD3 antibody.

used as accessory cells, 3G11' cells (Fr. I, Fr. II) responded better than 3G11 - cells
(Fr. III, Fr. IV). Furthermore, a notable difference was seen between Fr. I and Fr.
III . Although Fr. III responded less well to Con A in the presence of non-B cells
compared with another two fractions, they also could respond in the presence of
B cells (although the B cell-dependent Con A response was generally weaker) . In
contrast, Fr. I, which was activated well by Con A together with non-B cells, failed
to respond (or responded only weakly) if B cells were used as accessory cells at the
limiting number used in this experiment (see ratio Fr. I/III in Table I) . Fr. II, which
expresses both 3G11 and 6C10, responded in both assays and is not functionally dis-
criminable . Curiously, Fr. IV cells, which lack expression of both of these deter-
minants, showed the least response under either condition despite the fact that they
expressed CD3 . Inclusion of la' cells found in the CD4' cell fraction in Fr. IV did
not improve its responsiveness to Con A (data not shown) .
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TABLE I

Differential Accessory Cell Effect Comparing Fr. I and Fr. III in
Con A Activation

Spleen cells from 2-4-mo-old BALB/c were stained and CD4' T cell fractions were obtained
as described in Fig. 2 . Non-B cells were sorted from peritoneal washout cells or cells lacking
FL-anti-B220 and PC-anti-Thy-1 staining from spleen (see Materials and Methods) . B cells
were obtained from spleen as small sized FL-anti-B220' and PC-anti-CD4 - cells . 10 5 T cell
subset and 5 x 10 4 accessory cells were cultured for 2 d . Results showing levels of growth fac-
tor activity in the supernatant between fractions are expressed vertically and data from individual
experiments are shown horizontally .

Distinctive Lymphokine Secretion.

	

Proliferation ofthe HT 2 cell line can be induced
by either IL-2 or IL-4 (1) . We sought to determine the presence of each growth factor
in culture supernatant by using mAbs reactive with these two lymphokines . A mix-
ture of B cells and peritoneal granular cells was used as an accessory cell population
in this experiment to avoid any possible preferential induction of lymphokines due
to accessory cell difference . The result (Fig. 3) showed that different lymphokines
are secreted by Fr. I and Fr. III . Fr. I secretes IL-2 but not IL-4, whereas Fr. III
secretes IL-4 but not IL-2 . As was also the case with accessory cell dependence, Fr.
II did not show restricted lymphokine secretion. The majority of activity from Fr.
II was due to IL-2 and this was found when either B cells or non-B cells were used

FIGURE 3 .

	

IL-2 secretion from Fr. I and IL-4 secre-
tion from Fr. III . Fr. I or Fr. III T subsets (10 5 cells)
were cultured with Con A and a mixture of B cells
and peritoneal non-B cells (104 cells each) . Growth
factor activity was measured with the HT-2 cell line
in the presence or absence of antibody to IL-2 (10
pg/ml) or IL-4 (1 :300 of ascites) . Data from a 1 :3
dilution ofFr. I supernatant is also shown to confirm
the distinctive inhibition seen with Fr. III .

CD4'
T subset

Accessory
cells Growth factor secretion

U/ml
Fr . I Non-B cells 414 113 160 70 76 162
Fr . II 672 142 160 152 157 273
Fr . III 57 40 53 32 64 ND
Fr. IV ND ND <1 <1 ND 9
Ratio units I/III 7 3 3 2 1
Fr . I B cells <1 6 2 <1 17 7
Fr . II 2 17 ND 19 50 37
Fr . III 20 20 187 11 53 ND
Fr . IV ND ND <1 <I ND 6
Ratio units I/III <0 .1 0 .3 <0 .1 <0 .1 0 .3
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in separate experiments (Fig . 4) . Whereas IL-2 was readily found, IL-4 was not de-
tectable in the supernatant of unseparated CD4' cultured cells (data not shown) .

Helper T Cells Responsible for Secondary Antibody Response are 6C10+. As we have pre-
viously reported, the secondary antibody response is initiated by the presentation
of antigen by memory B cells that express surface Ig with high affinity for antigen
(15) . Such memory B cells in long-term KLH-primed mice are enriched in the
B220+ cell fraction that lacks surface IgM and IgD (Ig isotype-switched cells ; ref-
erence 15). Thus, use of this cell fraction, B220+ (IgM, IgD)-, provides an ex-
perimental system where the interaction between isotype-switched memory B cells
and T cells can be investigated .

Spleen cells from KLH-immunized mice were incubated with antigen (KLH) at
4°C (pulsed), then B220+ (IgM, IgD)- cells were sorted and cocultured with CD4'
T cell subsets from primed mice. As shown in Table 11, 6010+ fractions (II, III)
showed helper activity resulting in IgG1 antibody secretion whereas the 6C10- frac-
tion (1) did not.
Use of aged long-term primed mice in the secondary antibody formation system

revealed the most distinctive result . Splenic CD4' cells in old mice (>8 mo) also
comprise four T cell subsets similar to those shown in Fig. 2, although there is rela-
tive increase in the level of Fr. III (from 10 to 35% among CD4' cells) and a de-
crease of Fr. I (from 35 to 15%), leaving Fr. II and Fr. IV relatively constant . Similar
frequencies were observed in comparisons oflong-term primed and unprimed aged
mice (data not shown) . In these old mice, Fr. III responded most strongly to nonspecific
activation by Con A in the presence of B cells (Table III) .

Furthermore, as Table IV shows, helper activity for secondary antibody secretion
was restricted to Fr. III (6C10 + 3G11 - ) and only this group showed activation and
proliferation by microscopic survey. The possibility of a functional effect by SM3G11
and SM6C10 antibodies at the amounts used in the staining was unlikely, since, as
Table IV (Exp. 2) shows, simple positive and negative fractionation based on staining
with either antibody alone agrees with the data when they were used simultane-
ously. Data in Table IV (Exp . 2) demonstrate that help for secondary IgG secretion
is not present in the fraction lacking 6C10 which shows that Fr. IV lacks this activity
in addition to Fr. I . Finally, this helper activity was not restricted to IgG1 secretion .

FIGURE 4.

	

Inhibition of Fr. II supernatant by anti-
IL-2 or anti-IL-4 suggests that both lymphokines are
secreted . Fr. II cells were cultured with Con A to-
gether with either peritoneal non-B cells or B cells,
and 2-d supernatant was tested for the presence of
IL-2 or IL-4. Compared with the data using Fr. I
supernatant (where no inhibition with anti-IL-4 and
complete inhibition with anti-IL-2 was constantly
seen in several experiments), marginal inhibition
(ti5-20%) by anti-IL-4 was found. Inhibition .by
anti-IL-2 varied from 70 to 100%.
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TABLE II

A Secondary IgG Antibody Response Did Not Occurfrom Fr . I Cells

KLH-pulsed B cells

B220'(IgM, IgD) -

Spleen cells from KLH primed mice were incubated with KLH, FL-anti-B220,
and a mixture of Bi-anti-IgM and Bi-anti-IgD at 4'C in medium containing
0 .1 % azide, washed, and then incubated with PC-avidin to reveal the biotin
reagents . The sorting region for B220' (IgM, IgD) - cells, corresponding to
1-2% of spleen cells, has been shown in a previous paper (15) . CD4' T cell
subsets were sorted from primed mice . Cells stained with PC-anti-CD4', but
not with FL-anti-la were used as total unseparated CD4' T cells . 10 4 KLH-
pulsed B cells and 105 CD4' T cells were cultured to elicit antibody secretion .
Antibody secretion was not detectable if the B cells were not preincubated with
antigen, or in any culture containing only B or only T cell fractions . Numbers
represent the mean of duplicate cultures ; intersample deviation was always with-
in 10% .

Activation of Fr. III resulted in both IgG1 and IgG2a antibody secretion from isotype-
switched memory B cells .

Discussion
Four functionally distinct subpopulations of murine CD4+ T cells are separated

by differential expression of determinants recognized by a pair of mAbs. Two ofthese
subsets (Fr. I, Fr. III), which express these determinants in a mutually exclusive
manner, exhibit distinctive functions. Both fractions can be induced to proliferate
in the presence of accessory cells by the addition ofthe T cell mitogen ConA. How-
ever, after such activation, one subset, Fr. I, secretes IL-2 but not IL-4 into the su-
pernatant. In contrast, nonspecific activation by Con A of the other subset, Fr. III,
results in IL-4 but not IL-2 secretion. This latter subset, in turn, includes memory

TABLE III

Fr. III Sortedfrom Old Mice Responds Well to Con A Stimulation
in the Presence of B Cells

T cell subsets were sorted from the spleen of 9-12-mo-old BALB/c mice . B cells
were sorted from 3-mo-old mice . Results are shown for two representative ex-
periments .

CD4'
T subset Accessory cells

Growth factor
secretion
U/ml

Fr. I B cells <1 <1
Fr. II 20 10
Fr. III 70 50

CD4' T subsets
IgGI

Exp . 1
anti-KLH

Exp . 2
U

+Unseparated 95 ND
+ Fr . I (6C10-3G11+) <2 <3
+Fr . II (6C10'3G11') 110 1,500
+Fr . III (6C10'3G11 - ) 135 1,060
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TABLE IV

In Aged Long-Term Primed Mice, Fr . III Alone Contributes to the
Secondary IgG Response

B cells and T cell subsets were sorted from spleens of 10-mo-old BALB/c mice
that had been primed with KLH 8 mo earlier. In Exp . 2, spleen cells were simul-
taneously stained with PC-anit-CD4, SM6C10 (or SM3G11) plus PE-anti-IgM,
and FL-anti-la . la- CD4' T cells were then separated into 6C10 (or 3G11)'
fractions showing PE-anti-IgM staining and 6C10 (or 3G11)- cells that lacked
PE-anti-IgM staining.

T cells capable of inducing large amounts of IgG secretion from memory B cells,
whereas the former subset lacks such activity.
Our finding explains why murine CD4' T cell lines can be classified into two

subsets (1) based on their differential secretion of certain lymphokines . Data suggest
that this division actually reflects CD4' T subsets present in the normal CD4'
population in mice . That is, Thl clones are similar to the Fr. I CD4' subset and
Th2 clones are similar to the Fr. III CD4' subset . However, our results further dem-
onstrate that many CD4' cells (40%) in vivo apparently do not belong exclusively
to either distinctive subset and raise the question as to how these populations may
be related in differentiation and maturation of T cells . As yet, the developmental
relationships between the CD4' subsets that we have defined is unclear.
A major question remaining is whether Fr. II consists of a single homogeneous

population of cells or alternatively is a mixed population composed of cells com-
mitted to either Fr. I or Fr. III. Because ofits intermediate function and lymphokine
secretion, we might speculate that Fr. II could represent either the uncommitted
precursor before maturing into two distinctive functional populations (I or III) or
else an intermediate stage between Fr. I and Fr. Ill. Activation of Fr. II resulted
predominantly in IL-2 secretion compared with very slight IL-4 secretion (-9 :1) .
Since using B accessory cells did not increase IL-4 secretion and still induced IL-2
secretion, some cells in this fraction do not exhibit the exclusive functions found
with Fr. I or Fr. III. Although inhibitory effects on IL-4 secretion by other lym-
phokines might complicate the picture, we suggest that Fr. II likely contains cells
functionally distinct from either I or III .

Furthermore, it remains to be determined whether the four distinctive CD4' T
cell subsets that we have observed are related to the "maturation" ofT cells that may

Exp . KLH pulsed B cells CD4* T subset
Anti-KLH

IgGl IgG2a
U

1 B220' (IgM, IgD) - + Unseparated 540 320
+Fr.I (6C10- 3G11*) <1 <1
+Fr . II (6Cl0'3G11`) <1 <1
+ Fr . III (6C10'3G11 - ) 510 430

2 B220' (IgM, IgD)- + Unseparated 1,160 410
+6C10- <1 <1
+ 6C10' 1,020 880
+3G11 - 1,020 630
+3G11` <4 <4
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naturally occur in mice . We found that whereasmemory Tcells responsible for anti-
body secretion were present in both Fr. II and 111 2-5 mo after priming, they were
limited exclusively to Fr. III in aged long-term primed mice . If this change is related
to maturation of T cells, it suggests that such maturation is accompanied by pheno-
typic changes. Phenotypic changes of determinants expressed on CD4' T cells
during maturation have previously been suggested primarily by work with human
CD4+ subsets (27, 28). Two determinants, CD45R (highest molecular weight form
ofcommon leukocyte antigen) andCDw29, have been used to delineate such subsets.
These determinants are predominantly expressed in a mutually exclusive fashion
on peripheral CD4' cells. Recent work suggests that one of these subsets (expressing
CD45R alone) is the precursor of the other (expressing CDw29 alone) and that this
transition results from activation (27) . Admittedly, these observations found in humans
introduce further complications for CD4' T cell subsets in terms of distinctive lym-
phokine secretion in relation to distinctive cell surface phenotype.
The fractionation of CD4' T cells and the observation of their differential ac-

cessory dependence provides a new perspective for the study of T cell activation .
Activation of CD4' T cells absolutely requires la' APC or Ia' accessory cells in
certain nonspecific stimulation systems such as Con A. It is puzzling that regardless
oftheir la levels, resting B cells show poor accessory function in several experimental
systems when compared with other la' non-B cells (29) . Although there has been
accumulating evidence demonstrating that resting B cells can act as APC (30), some
T cell lines fail to respond with B accessory cells (30) . Most explanations for this
behavior have focused on the concept ofan impairment in B cells, such as biochem-
ical differences in the la molecules (31), ability to process antigen (32), or cytokine
secretion as compared with non-B accessory cells (33) . However, our data using
different CD4 subsets suggest a further possibility ; that is, T cell effector differences
may distinguish between B cells and non-B cells as accessory cells .

Although specialization of CD4' T cells for particular types of APC has been
suggested by earlier work with T cell lines (6, 30), it was not clear whether such
distinction exists among normal CD4' T subsets . We found here that the ability
of B cells or non-B cells to act as accessory cells is not uniform when subsets of
CD4' T cells were examined separately. That is, when non-B cells are used as ac-
cessory cells, Fr. I shows considerably better activation by Con A than Fr. III . How-
ever, when B cells are used as accessory cells, Fr. III responds as well or better, but
Fr. I responds only poorly (or fails to respond) . Therefore, two Tcell subsets exhibit
differential accessory dependence .
We consider this finding that B cell-dependent Con Astimulation activates Fr. III

(and Fr. 1I), carries significant implications in consideration of the secondary anti-
body response . This response is rapid and is initiated by the administration ofsmall
amounts of antigen when compared with the primary response . In earlier work we
have suggested that specific antigen presentation by long term memory B cells is
the essential event in the initiation of CD4' T cell activation which, in turn, in-
duces differentiation and secretion of the memory B cells. The frequency of such
specific memory B cells, particularly with high affinity, must be low (on the order
of 10-3 to 10-4 as estimated by the frequency of antigen binding cells, reference 15).
Thereby, a preference by this antigen-specific memory T cell population for B cell
antigen presentation would guarantee that the T cells would indeed be activated
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appropriately. Consequently, particular lymphokines secreted from T cells after ac-
tivation will likely be important in the expansion and differentiation ofantigen-specific
memory B cells as was found on resting virgin B cells (34, 35).
Theobservation of different accessory cell interactions associated with differential

expression of the two determinants described here is intriguing. Although extensive
studies have been carried out on theTCR and its associated molecules (CD3) (36),
the mediator of the elusive accessory cell signal for T cell activation is not well un-
derstood. Considering the importance of molecules that mediate adhesion ofT cells
and APC, it is not unreasonable to expect that differential expression of 3G11 and
6C10 might be associated with the restriction of the initiation of T cell activation .
Among several determinants reported that show heterogeneous expression on CD4+
cells (in human, rat, and mouse; references 37-41), expression of 3G11 and 6C10
seems to be uniquely T lineage restricted . The relationship of these determinants
to others described previously awaits further biochemical characterization of 6C10
and 3G11 . Such studies are currently underway.

Summary
We have used two monoclonal anti-murine T cell autoantibodies (SM3G11 and

SM6C10) and multi-color immunofluorescence staining to resolve splenic CD4+
cells into four populations. Two of these populations (Fr. I and Fr. III, 35% and
10% of CD4' cells) show mutually exclusive expression of these determinants and
exhibit distinct functions . Fr. III secretes IL-4, but not IL-2 when activated by Con
A, and includes memory T cells responsible for secondary antibody formation . In
contrast, Fr. I secretes IL-2 but not IL-4 in response to Con A, and does not con-
tribute to the secondary antibody response . Furthermore, these two fractions ex-
hibit differential accessory cell dependence . Whereas Fr. III responds with B cells
(and also non-B cells) as accessory cells in Con A-induced activation, Fr. I requires
non-B cells . However, we found that many CD4+ cells (Fr. 11, 40% of CD4+ cells)
express both determinants and are not distinguishable with regard to lymphokine
secretion, accessory cell effect, and memory T cell activity. Curiously, the fraction
expressing neither determinant (Fr. IV, 10 01o of CD4+ cells) is unresponsive to ex-
perimental conditions used here . We discuss the possible relationships between these
T cell subsets and the implications of differential expression of these determinants .
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