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Abstract: This study proposes a Computer-Aided Diagnostic (CAD) system to diagnose subjects
with autism spectrum disorder (ASD). The CAD system identifies morphological anomalies within
the brain regions of ASD subjects. Cortical features are scored according to their contribution in
diagnosing a subject to be ASD or typically developed (TD) based on a trained machine-learning
(ML) model. This approach opens the hope for developing a new CAD system for early personalized
diagnosis of ASD. We propose a framework to extract the cerebral cortex from structural MRI as well
as identifying the altered areas in the cerebral cortex. This framework consists of the following five
main steps: (i) extraction of cerebral cortex from structural MRI; (ii) cortical parcellation to a standard
atlas; (iii) identifying ASD associated cortical markers; (iv) adjusting feature values according to
sex and age; (v) building tailored neuro-atlases to identify ASD; and (vi) artificial neural networks
(NN) are trained to classify ASD. The system is tested on the Autism Brain Imaging Data Exchange
(ABIDE I) sites achieving an average balanced accuracy score of 97± 2%. This paper demonstrates the
ability to develop an objective CAD system using structure MRI and tailored neuro-atlases describing
specific developmental patterns of the brain in autism.

Keywords: autism; structure MRI; machine learning; classification; feature selection; hyper-parameter
optimization; CAD

1. Introduction

Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder
that has a strong genetic basis, and various clinical presentations. ASD is characterized by
repetitive behavior, social interaction impairments, and difficulties in verbal and nonverbal
communication [1]. The prevalence of ASD has been increasing for the last few years,
especially in children, reaching almost one in 58 as reported by the Centers for Disease
Control and Prevention in the US [2]. A significant financial, and emotional burden faces
ASD individuals and their families, as the incidence of ASD increases. Moreover, ASD
increases the pressure on the medical, social, and political life of any nation [3].

Since 1943 when Kanner published the first description of ASD, with its association
with mild to severe cognitive and behavioral problems in the absence of marked consistent
cerebral dysmorphology, has intrigued the medical and scientific world [4]. Therefore, a
fundamental goal of any neurobiological study of autism is a description of brain regions
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that are of abnormal structure or dysfunctional. Once identified abnormalities are character-
ized, better strategies for the early diagnosis and treatment of autism may follow. Therefore,
there is an urgent need for an in-vivo method to study the brain structure at an early age.

1.1. Background

Brain studies in-vivo became possible after the invention of Magnetic-Resonance
Imaging (MRI). Since the end of 1980s, when Gaffney et al. [5] and Courchesne et al. [6]
published the first study of autism using MRI, hundreds of studies have appeared in
the literature. Structural MRI (sMRI) examination is widely used to investigate the brain
morphology due to its high contrast sensitivity and spatial resolution and because it entails
no exposure to ionizing radiation; the last feature is particularly important for children and
adolescents [7].

Studies utilized different MRI modalities in order to capture the effect of ASD on
brain from different perspectives i.e., sMRI, fMRI, and/or DTI. sMRI was utilized by
studies that cared more about the geometry of the cerebral cortex and morphology of
the brain [8–10]. There are two major types of structural imaging studies depending on
the features used: (i) geometric features or (ii) volumetric features. Geometric features
are defined as 2D-surface features related to the brain cortex, such as the surface area,
circumference, curvature, and thickness [11]. Volumetric features usually refer to the
volume of the subcortical structures, such as the hippocampus, putamen, thalamus, etc. [12].

On the other hand, functional MRI (fMRI) was utilized by the studies that investigate
alterations in brain activation between ASD and typically developed (TD) groups [13]. As
with sMRI, functional imaging studies fall into two broad types: (i) task-based fMRI and
(ii) resting-state fMRI. Task-based fMRI is defined as the study of the functional activities
and cognitive behaviors of the brain based on the induced stimulus by tasks [14]. In
contrast, resting-state fMRI is defined as the study of the functional activities and cognitive
behaviors of the brain while the subject is at rest but not sleeping [14].

The third MRI submodality used in ASD studies, and the most recent, is diffusion-
tensor imaging (DTI). DTI focuses on the analysis of the structural connectivity of the
brain white matter (WM) [15]. DTI characterizes three-dimensional (3D) diffusion of water
molecules in biological tissues; it examines normative white matter (WM) development,
neurodevelopmental disorders, and neurodegenerative disorders [16,17].

The earliest theories about autism were structurally based. Maybe the most famous,
and the earliest, of all theories is the big brain [18–20]. The big brain theory assumes that
autistic subjects might have a bigger brain volume than their TD peers. Another famous
theory about autism, which is rooted in neuropathology but has implications for large-scale
anatomy, is the minicolumnar pathology in autism [21].

Furthermore, a recent review article on the post-mortem studies by Fetit et al. found
that there are consistent reduction in minicolumn numbers and aberrant myelination of
brain tissue in those with ASD [22]. For the readers who are interested in the association
between theory of mind and symptoms of ASD, the following article is recommended [23].
Consequently, in this study, we decided to focus on the sMRI submodality.

Most of the studies that were published after Gaffney et al. [5] and Courchesne et al. [6],
focused on specific structures in the brain, such as the cerebellum [24–26], the amygdala [27–29],
the hippocampus [27,30,31], and the corpus callosum [32–35]. Moreover, sMRI provides
several means by which researchers can delineate structural changes in the brains of in-
dividuals with ASD. Examples of the analytical methods used by researchers to examine
brain differences between TD brains and autistic brains are voxel-based morphometry
(VBM) and surface-based morphometry (SBM) [8].

VBM-based studies are defined as the studies that have two principal features: tissue
density and tissue volume [9]. SBM studies focus on the intrinsic topology of the cerebral
cortex. The intrinsic topology of the cerebral cortex is considered as 2-D sheet with a
highly folded and curved geometry; that topology cannot be measured directly with VBM.
Therefore, SBM provides information complementary to VBM [8].
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The proposed study is an SBM study. Thus, we will be focusing on the morphological
features of the brain. Evidence supports that several aspects of cerebral morphology are
different between autistic brains and TD brains [1,10,36,37]. Moreover, the issue with
examples of the cerebral morphology that differ between ASD brains and TD brain would
be: (i) the cortical thickness as it reflects dendritic arboziation [38], (ii) the cortical surface
area, which is linked to the number of minicolumns in the cortical layer [39], (iii) the cortical
folding pattern, which may reflect an abnormal pattern of intrinsic as well as extrinsic
connectivity [40].

Therefore, multifactorial etiologies of ASD can be examined by studying the relation-
ship among such multiple cortical features [41]. Multiple SBM studies were performed
using the morphology of the brain to find statistical differences between TD and ASD
brains [42–45]. Other studies focused on building ASD predictive models using different
machine learning (ML) algorithms [41,46–48]. In the following section, we are going to
briefly review some of those articles along with their results.

1.2. Related Work
1.2.1. Statistical Studies

Recent evidence suggests that the developmental trajectory of the cortex in ASD is
significantly different from those of TD individuals. Among statistical analysis studies,
Levitt et al. [10] proposed a 3-dimensional (3D) mapping of cortical sulcal patterns in
autism. The authors recruited 21 ASD and 20 TD subjects, all within the age of (7–13) years
old. They reported statistically significant difference in the anterior and superior shifting
of the superior frontal sulci bilaterally, anterior shifting of the right sylvian fissure, the
superior temporal sulcus, and the left inferior frontal sulcus in the autistic group relative to
the normal group.

The authors suggested that those findings indicate delayed maturation in autistic
subjects’ brain regions, which are involved in diverse functions, including memory, emotion
processing, language, and eye gaze, which is consistent with delayed myelination patterns
seen on MRI in ASD. Nordahl et al. [36] tested the abnormalities in cortical shapes using a
SBM across a range of ASD with age between 7.5 years old to 18 years old. The authors
subdivided the ASD subjects into three groups: low-function ASD, high functioning ASD,
and Asperger’s syndrome. The authors reported that the low-functioning ASD group had a
prominent shape abnormality centered on the pars opercularis of the inferior frontal gyrus.

The high-functioning ASD group had bilateral shape abnormalities similar to the
low-functioning group but smaller in size and centered more posteriorly, in and near the
parietal operculum and ventral postcentral gyrus. The Asperger’s syndrome subjects had
bilateral abnormalities in the intraparietal sulcus. Moreover, they reported that all the
abnormalities located in the cortex are identified across all ages; however, they were more
pronounced in the children. The authors concluded that these findings are consistent with
the evidence of an altered trajectory or multiple trajectories of early brain development
in autism, and this study identified several regions that may have abnormal patterns of
connectivity as a result of the altered trajectories in individuals with autism.

Studies of cortical thickness support the hypothesis that altered trajectory or trajecto-
ries of early brain development are localized in particular regions within the ASD brain.
Nunes et al. [37] proposed a longitudinal study utilizing Autism Brain Imaging Data
Exchange (ABIDE) I and ABIDE II data sets. The authors explored the age-related changes
in cortical thickness in TD and ASD population within age range 6–30 years old. They re-
ported that there are no overall group differences in cortical thickness (CT) across the entire
age ranges; however, the ASD and TD populations differed in terms of age-related changes.

Those changes were located primarily in the frontal and temporal-parietal areas. They
concluded that the most reliable feature for localizing atypically developed brain areas in
ASD is the linear slope of CT (curvature). Khundrakpam et al. [1] proposed a study to
solve the inconsistent evidence of cortical abnormalities in ASD. They utilized the ABIDE I
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dataset as it solves the problem of small sample size. After applying quality control and a
specific inclusion criterion, the authors included 560 subjects out of 1100 available subjects.

The authors computed age-specific differences in the cortical thickness in ASD and the
relationship of any such differences to the symptom severity of ASD. The authors reported
an increased cortical thickness in ASD, primarily left lateralized, from six years onwards,
with differences diminishing during adulthood. These data highlight the dynamic nature
of morphological abnormalities in ASD and highlight the importance of studies across
brain development (ages) to understand the altered regional trajectories compared to
TD individuals. The readers who seek additional information about the neural circuits
associated with ASD are advised to read the review article by Benjamin E Yerys and John D
Herrington [49].

1.2.2. Machine Learning/Predictive Studies

In addition to statistical analysis studies, other studies attempted to classify ASD
using classical ML models. Dekhil et al. [46] utilized features from both sMRI and fMRI
modalities. Morphological features included from the sMRI module were the (i) surface
area, (ii) volume, (iii) thickness, (iv) curvature, and (v) folding index. For the fMRI module,
the features included were the Person correlation coefficients between time courses of
different brain regions. For both modalities, the Desikan–Killiany (DK) atlas was utilized
to parcellate brain regions. The authors utilized 185 subjects obtained from the National
Database for Autism Research (NDAR).

The authors reported 75% classification accuracy using fMRI data only, 79% clas-
sification accuracy using sMRI data only, and 81% when fusing both features together.
Elnakieb et al. [50] proposed a similar framework to diagnose ASD using DTI imaging.
Elnakieb et al. successfully achieved a maximum accuracy of 99% with five-fold cross-
validation while working on five ABIDE II dataset sites that provide DTI imaging data.
Yassin et al. [48] proposed different ML to perform multi-class classification among TD,
ASD, and schizophrenia subjects, and a binary classification between each pair of classes.

They had a sample size of 36 ASD, 106 TD, and 64 schizophrenia subjects. They
extracted CT, subcortical structure volumes, and surface area. The classification was per-
formed by support vector machine (SVM), logistic regression (LR), random forest (RF),
decision tree (DT), K-nearest neighbors (KNN), and adaptive boosting (AB) classifiers. The
authors reported 69% accuracy for the multi-class classification, 75% for ASD vs. schizophre-
nia classification, 75.8% for ASD vs. TD classification, and 70.6% for schizophrenia vs. TD
classification. The authors concluded that SVM, and LR were the best performing classi-
fiers. Cortical thickness and subcortical volume-based classification had better performance
across different diagnostic labels and classifiers when compared with the surface area.

Ecker [41] proposed a ML model utilizing a set of five morphological features including
both volumetric features (concavity, curvature, fold index) and geometric features (surface
area, CT) at each spatial location on the cortical surface. A total of 20 TD and 20 ASD
subject were recruited for the study. The authors reported accuracy of 85% using SVM.
For additional information regarding utilizing ML with MRI modalities to diagnose ASD
and other disorders, such as Alzheimer’s, the reader is advised to read the following
articles [47,51].

1.3. Summary of the Aims and Limitations of the Work

In this study, we propose a comprehensive ML model to detect imaging markers
for autism and then utilize these imaging markers to train a set of linear and non-linear
classifiers to distinguish between ASD and TD. The main motivations behind using solely
morphological features that are extracted from the brain cortex while neglecting the subcor-
tical structures are (i) the segmentation of subcortical structures is more challenging and
prone to error more than the cortex segmentation, and (ii) most of the significant findings
in the literature are achieved by utilizing the SBM methods. The proposed model defines a
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global neuro-atlas annotating all the brain regions associated with ASD among all subjects
of the data set, as well as a local neuro-atlas for each site independently.

Neuro-atlases are built via employing sophisticated a machine-learning algorithm
utilizing different classifiers, recursive feature elimination with cross-validation (RFECV)
using four different classifiers (SVM with linear kernel (LSVM), RF, LR with l1-norm (Lg1),
and LR with l2-norm (Lg2)). Eventually, a training step via three linear and five non-linear
classifiers. Furthermore, the proposed model utilizes features extracted only from the brain
cortex, such as the curvature, CT, surface area, and volume. In this study, we attempted to
avoid the limitations existed in the aforementioned literature, such as working on a small
sample size [41,48], or neglecting the heterogeneity of the ASD [13,46].

Furthermore, as it was previously mentioned that age is a significant confounding
variable on ASD, we adjusted our data to account for the effect of age on the extracted
brain features. Consequently, in the proposed study, we are utilizing the ABIDE I data
set [52], which comprises 1112 subjects collected from different sites/hospitals in the US. In
this work, we are answering the question of whether a site-based classification, i.e., local
model, would improve the classification accuracy over a one ML model for the whole set.
Moreover, we study if there would be any common features between the selected features
from each site, and the selected feature from the global model.

In order to answer the aforementioned questions, two implementations were carried
out for the proposed model: (i) on each site of the ABIDE I dataset separately to find
local the local neuro-atlas of each site, and (ii) on the whole dataset to find the global
global neuro-atlas for the whole autism spectrum represented by the available subjects.
The main contribution of the proposed work can be summarized as follows: (i) building
a comprehensive ML pipeline to find morphological features and brain regions that are
correlated with autism, (ii) finding the anomalous neuro-circuits caused by autism (e.g.,
neuro-atlases) , and (iii) investigating a global ML model that can be used to diagnose ASD
subjects with different demographics and scanning parameters.

2. Materials and Methods

A comprehensive ML pipeline is proposed in this study to select morphological
features and brain regions that relates to ASD. The ML pipeline starts with downloading
the sMRI volumes of ASD and TD subjects provided by ABIDE I dataset [53], then the
preprocessing of the sMRI volumes is performed by Freesurfer V.6.0 [54–57]. Preprocessing
consists of three stages, which are: (i) intensity normalization, (ii) skull stripping, and (iii)
brain segmentation. Each of the aforementioned stages comprises a set of substages, which
are going to be briefly discussed in the following sections. After preprocessing, features
are extracted in the form of two numerical representation for each morphological feature
for each brain region. A data matrix, and a target vector are created and passed to feature
selection algorithm to select the candidate imaging markers. Reduced data matrix based on
the candidate imaging markers, and the target vector are then passed to the ML algorithms
to select the best ML model that can be used for classifying ASD and TD subjects.

The whole pipeline is automated with Python 3.7 [58]. We utilized pandas as the
data manipulation package [59], numpy and scipy for numerical analysis and matrices
operations [60], scipy for performing statistical tests [61], nibabel for reading and writing
Freesurfer files [62]

Figure 1 demonstrates the general block diagram of the proposed model for each of
the global model, and the local model. For the global model, the proposed block diagram is
applied only one time over the whole dataset. On the other hand, for the local model, the
proposed block diagram is applied on each independent site. Results of both the global
model, and each site of the local models are analyzed and compared to each other. Each
site’s results using the local model answers the research question about findings of local
imaging markers. Similarly, the global model answers the research question about finding
global imaging markers for the all the subjects included in the dataset. In the following
sections, each of the main blocks in both models is discussed in detail.
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2.1. Dataset

ABIDE I is a famous publicly available dataset. Using ABIDE I achieves two-fold
advantages: (i) It facilitates replicating the results, since it is publicly available. (ii) It
comprises a large sample size, which adds more significance to the findings. ABIDE I
contains sMRI and resting-state fMRI data acquired on individuals with ASD and TD
individuals from 17 independent sites (please see the Supplementary Material S1) . ABIDE
I includes 1112 subjects divided into 530 subjects with ASD, and 573 subjects with TD.

The original studies included in ABIDE received approval from each participating
site’s Institutional Review Board (IRB). All sites diagnosed autism using the Autism Diag-
nostic Interview-Revised (ADI-R), or Autism Diagnostic Observation Schedule (ADOS).
Moreover, each site provided basic phenotypic data on each subject, including age, sex,
and intelligence Quotient (IQ). For more details about ABIDE, refer to [52].

2.2. Pre-Processing

Preprocessing is a crucial requirement to eliminate the between-subjects variability
that may stem from data acquisition, different scanners, artifacts, or partial volume effects.
Moreover, brain MRI scans usually contain non-brain tissues as it is shown in Figure 1.
FreeSurfer performs multiple steps on each sMRI volume to extract the morphological
features. Those steps are intensity normalization, brain extraction and skull stripping, brain
segmentation and area labeling, tessellation of the gray-white matter boundary, surface
inflation and spherical atlas registration, and eventually cortical surface parcellation to the
Desikan–Killiany (DK) atlas.

It is worth noting that the main assumption behind the preprocessing is that as long
as FreeSurfer succeeds in extracting the morphological features of the cerebral cortex and
parcelate them to DK, then confounding variables relevant to the MRI scanner wont be ma-
jor concern. This assumption is based on the fact that FreeSurfer outputs the morphological
features in their physical unit e.g., mm, mm2, mm3.

Figure 1. Overview of the proposed system starting from acquiring MRI volumes up to the diagnosis.

2.2.1. Intensity Normalization

Variations in both intensity and contrast across sMRI images, resulting in the corrup-
tion of the sMRI images, are typically due to magnetic susceptibility artifacts and RF-field
inhomogeneities. This corruption is undesirable for any segmentation procedure, which
utilizes intensity information in order to classify voxel data into different tissue types [63].
To correct the aforementioned corruption, the following procedure of 11 steps is repeated
with iterating oversteps from (viii)–(x).

The procedures are: (i) Construct a set of histograms from overlapping slices parallel
to the x-y Cartesian plane in the magnetic co-ordinate system. (ii) Smooth the resulting
histograms using a fairly broad Gaussian window. (iii) Use a peak-finding algorithm to
determine the mean white matter intensity. (iv) Discard the outliers from the array of
the detected mean white matter intensities. (v) Fit a set of cubic splines to the resulting
coefficients of the valid slices. (vi) Use the splines to interpolate the coefficients for each
point along the z axis. (vii) Adjust each intensity value by the coefficient at its z coordinate.
(viii) Find all points in the volume that are at the center of a 5× 5× 5 neighborhood of
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intensity values that all lie within 10% of the white matter peak. (ix) Build a Voronoi
diagram and set all voxels unassigned in step (viii) to the correction value of the nearest
control point. (x) Perform a few iterations of “soap-bubble” smoothing. (xi) Scale the
intensity at each voxel in the volume by the computed correction field [64].

The results are shown in Figure 1, the visual transformation of the brightness level
between the preprocessing step and the normalization step is to reduce the variance of
brightness for the same tissue inter-subjects due to different data acquisition methods. For
more mathematical and implementation details, the reader is referred to [64,65].

2.2.2. Brain Extraction or Skull Stripping

Brain extraction of skull stripping is the process of automatically strip the skull (or
any non-brain tissue) from the intensity normalized image. In order to remove the skull
and any non-brain tissue, a tessellated ellipsoidal template is deformed into the shape of
the inner surface in the skull. Two kind of forces drive the deformation process: (i) An
MRI-based force, and (ii) A curvature reducing force.

The MRI-based force is designed to drive the template outward from the brain. It is
calculated based on nonlocal information obtained by sampling the MRI data along the
surface normal to each vertex of the template tessellation. The curvature reducing force
enforces a smoothness constraint on the deformed template, which can be seen as encoding
a priori knowledge about the smoothness of the inner surface of the skull [64]. The result of
this step is illustrated in Figure 1.

2.2.3. Brain Segmentation & Area Labeling

The segmentation process is a two-step procedure: (i) A preliminary classification is
performed based solely on the intensity information, and (ii) This volume is examined and
the regions that contain more than one tissue type are marked for further processing [64].
After segmentation, a 3D surface reconstruction and brain parcellation to an anatomical
atlas is performed on the segmented volume. The 3D surface reconstruction is performed
via 2 steps: (i) tessellation of the gray-white matter boundary as described in [54,66], and
(ii) surface inflation and spherical atlas registration as described in [54,65].

Brain parcellation to an anatomical atlas, which is the Desikan–Killiany (DK) atlas,
is described in [57]. DK atlas parcellates the brain into 68 cortical labels, 34 for each
hemisphere. The results of the segmentation and the DK atlas parcellation are shown in
Figure 1. For more detailed information on each of the aforementioned preprocessing steps,
the reader is referred to the following publication [53].

2.3. Feature Extraction

There are two outputs of FreeSurfer, which are (i) a set of volumes for each subject
describing each step of the pipeline (normalization, skull stripping and segmentation) as
shown in Figure 1, and (ii) surfaces parcellated to DK atlas and containing the morphologi-
cal features values at each point on a predefined mesh grid created on the brain, as shown
in Figure 2.

In this study, we utilized the following morphological features to represent the brain
of each subject: (i) surface area (Sa), (ii) volume (V), (iii) thickness (Th), and (iv) curvature
(c) (see Figure 2). It is worth noting that Th is calculated as the closest distance from the
gray/white matter boundary to the gray/CSF boundary at each vertex on the tessellated
surface [67], while c is measured as the average of the reciprocal of the principal radii [57].

For each of those features, we calculated the median value (MV), inter-quartile range
(IQR), and MV± IQR within each brain region parcellated to the DK atlas. There are
two reasons behind choosing MV− IQR and MV + IQR to represent each morphological
feature of each brain region: (i) the distribution of morphological features’ values within
each brain region is not necessary Gaussian as it is shown in Figure 3, and (ii) to include
lower and upper bound that each morphological feature can possess within a specific brain
region while excluding the outliers.
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DK atlas parcellates the brain into 68 brain regions; 34 brain regions on the left
hemisphere, and 34 brain regions on the right hemisphere. Therefore, each subject is
represented by a vector of 68 brain regions× 4 features× 2 = 544 elements of a feature vector.

Figure 2. Morphological features extracted from brain surfaces by freesurfer.
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and MV± IQR within each brain region parcellated to the DK atlas. There are two reasons
behind choosing MV− IQR and MV + IQR to represent each morphological feature of
each brain region: (i) the distribution of morphological features’ values within each brain
region is not necessary Gaussian as it is shown in Figure 3, and (ii) to include lower and
upper bound that each morphological feature can possess within a specific brain region
while excluding the outliers. DK atlas parcellates the brain into 68 brain regions; 34 brain
regions on the left hemisphere, and 34 brain regions on the right hemisphere. Therefore,
each subject is represented by a vector of 68 brain regions × 4 features × 2 = 544 elements
of a feature vector.

Figure 3. Distribution of the Sa values within different brain regions.

ABIDE I comprises 17 different sites with total number of 1112 subjects after perform-
ing quality control, and removing all subjects with bad brain segmentation, at which the
data were collected. Thus, the data are heterogeneous, and it is invalid to assume blocking
for all confounding variables while working on the whole dataset. Therefore, we proposed
two exclusion criteria: (i) exclusion criterion for subjects, and (ii) exclusion criterion for
sites. The exclusion criterion for subjects is simply done by removing the subjects with
missing feature values. The exclusion criterion for sites depends on how balanced each
site is. In other words, after applying subjects’ excluding criterion, if we find a site where

Figure 3. Distribution of the Sa values within different brain regions.
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ABIDE I comprises 17 different sites with total number of 1112 subjects after per-
forming quality control, and removing all subjects with bad brain segmentation, at which
the data were collected. Thus, the data are heterogeneous, and it is invalid to assume
blocking for all confounding variables while working on the whole dataset. Therefore,
we proposed two exclusion criteria: (i) exclusion criterion for subjects, and (ii) exclusion
criterion for sites.

The exclusion criterion for subjects is simply done by removing the subjects with
missing feature values. The exclusion criterion for sites depends on how balanced each
site is. In other words, after applying subjects’ excluding criterion, if we find a site where
the ratio ASD:TD, or its reciprocal TD:ASD, exceeds 0.6, we discard that site.There is a
trade-off between removing all the subjects of the unbalanced sites, or raise the unbalanced
threshold. Empirically, we found that 0.6 would be a reasonable ratio, given that we utilize
balanced accuracy score to evaluate the system performance, to assume balance and include
as many sites as possible in the study.

The rationale behind the site’s exclusion criterion is to avoid including too many
subjects of one class that have been collected with certain criterion without having their
corresponding subjects from the other class that possess the same collection criterion, i.e.,
trying to avoid introducing more heterogeneity due to the subject’s exclusion criterion.

Table 1 shows the summary statistics of the data set after applying both exclusion
criteria, subject’s exclusion criteria and site exclusion criteria. Total number of five sites
have been discarded, which are: KKI, SDSU, NYU, SBL, and USM, representing a total of
305 subjects. Over the whole data set, there is no statistically significant difference between
ASD and TD group (chi = −0.0271, p = 0.869).

Furthermore, there is no statistically significant difference between the age of each
group (t = −0.5438, p = 0.5867). However, there is a statistically significant difference
between the gender within each group; for TD group, chi-square test was conducted over
the gender distribution (χ2 = 84.188, p < 0.001), and for the ASD group, the chi-square
test was conducted over the gender distribution (χ2 = 94.010, p < 0.001). At the end of
this step, a data matrix is created as follows:

D =


f1,1 f1,2 · · · f1,544
f2,1 f2,2 · · · f2,544
...

...
. . .

...
f664,1 f664,2 · · · f664,544

, y =


y1
y2
y3
...

y664


where D is the data matrix with size 664 subjects ×544 features; each row represents the
feature vector of a specific subject. fi,j denoted the feature value j of subject i, and yi
denoted the diagnosis of subject i. It is worth mentioning that D is the data matrix for the
global model.

For the local model, we created 12 data matrices (DL) such that DL = {dt : dt ∈
RM,544 & 1 ≤ t ≤ 12} each corresponding to one of the sites; dt denotes the data matrix
corresponding to site t. Each dt has the size of M× 544 such that M denotes the number of
subjects within site t; sequentially, yt denotes the diagnosis vector corresponding to site t,
and yL denotes the set containing all the yt for all sites.

dt =


f1,1 f1,2 · · · f1,544
f2,1 f2,2 · · · f2,544

...
...

. . .
...

fM,1 fM,2 · · · fM,544

, yt =


y1
y2
y3

...
yM

, DL =


d1
d2
d3

...
d12

, yL =


y1
y2
y3

...
y12


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Table 1. ABIDE data phenotypical information summary after sites’ preprocessing.

Site Total
ASD TD

n Age (Min, Max) n Age (Min, Max)

Caltech 37 19 (17.5, 55.4) 18 (17, 56.2)

CMU 27 14 (19, 39) 13 (20, 40)

Leuven 63 29 (12.1, 32) 34 (12.2, 29)

MaxMun 51 23 (7, 58) 28 (7, 46)

OHSU 26 12 (8, 15.2) 14 (8.2, 11.9)

Olin 34 19 (11, 24) 15 (10, 23)

Pitt 56 29 (9.33, 35.2) 27 (9.4, 33.2)

Stanford 38 19 (7.5, 12.9) 19 (7.7, 12.4)

Trinity 47 22 (12, 23) 25 (12, 25.6)

UCLA 95 53 (8.36, 17.94) 42 (9.2, 17.7)

UM 134 61 (8.5, 18.6) 73 (8.2, 28.8)

Yale 56 28 (7, 17.7) 28 (7.6, 17.8)

Total 664 328 336

2.4. Feature Adjustment & Normalization

As it has been mentioned in the literature that there is an effect of age on ASD brain
morphology [68], morphological features have been adjusted, for the effect of both age and
sex, in the proposed work. Adjusted metrics of regional V and Sa were calculated using
cortical growth curves from Coupé et al. [69]. Denote by Vs(a) the mean volume of cortical
grey matter in individuals of sex s and age a. Then each regional volume Vr is replaced by
its age-relative, adjusted metric V′r = Vr/Vs(a). Similarly, each regional surface area Sr is
converted to an adjusted metric S′r = Sr/Vs(a)2/3 [69].

The feature vector corresponding to every subject contains the MV− IQR and MV + IQR
of each morphological feature for every region. We consider MV− IQR and MV + IQR to
be the lower bound, and the upper bound of every morphological feature for every brain
region respectively. Morphological features don’t share the same units of measurement; for
instance, surface area is measured in mm2, while V is measured in mm3. Consequently, we
anticipate having different ranges of values, which might adversely affect the performance
of the classifiers [70].

In this study, we utilized minimum–maximum normalization between 0 to 1 as it is one
of the most common normalization methods used for biomedical data [71]. Consequently,
each column in the data matrix D is normalized between 0 to 1 using the Equation (1).

f̃i,j =
fi,j −mini{ fi,j}

maxi{ fi,j} −mini{ fi,j}
(1)

where f̃i,j and fi,j denote the normalized feature value j and the original feature value
j corresponding to the subject i, and min ( f j) and max ( f j) correspond to minimum and
maximum values of the feature vector j respectively. The output normalized matrix is
denoted by Dn for the global model, and dtn for the local model where 1 ≤ t ≤ 12.

2.5. Building Neuro-Atlas

To implement a Computer-Aided Diagnosis System (CAD) for accurate diagnosis of
autism, we have to use a neuro-atlas tailored to the specific developmental patterns of the
brain in autism. Unfortunately, there is no general purpose brain atlas in the literature that
we can use in our CAD system; thus, developing an atlas for autistic subjects that shows
the areas and imaging markers that are associated with autism is the main motivation
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behind this work. To achieve this goal, we used the modern tools of machine learning (e.g.,
Recursive Feature Elimination via Cross Validation (RFECV)) to select the most significant
features and their corresponding areas that are correlated with autism spectrum disorder.

Since RFECV is one of supervised feature selection algorithm, we have to split the
data into k-folds, k = 10 in our case (as shown on Figure 4, and for each fold (i) train
a predetermined classifier using the training set, (ii) evaluate the performance of the
trained classifier on the validation set, (iii) save the classifier’s score on the validation set,
(iv) find the least significant feature according to the trained classifier, (v) remove the least
significant feature from the model, and (vi) repeat the whole process until you end up with
only one feature.

Again, repeat the whole process for each fold, calculate the average performance of
the k − f old cross-validation (CV) when: using all features to train the classifier; using
all features but one, and so forth, to the point of classification on a single feature. Find
the number of the features at which the classifier has the maximum performance score,
assuming it is N f features. N f is the optimum number of features to be selected.

Perform the whole algorithm again over all the subjects to find the most N f significant
features. The algorithm is discussed in detail in Algorithm 1. For further details regarding
the algorithm and its implementation, the reader is suggested to read Guyon et al. [72] and
Pedregosa et al. [73], respectively.

Figure 4. The flowchart of The RFECV algorithm.

To build a neuro-atlas for autism, ABIDE I dataset and RFECV are utilized to select
those significant brain regions along with their morphological features. For both the local
model and the global model, RFECV is run with four different classifier architectures,
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which are RF, least absolute shrinkage and selection operator (LASSO), RIDGE regression
(RIDGE), and SVM with linear kernel, resulting in four different models.

Those four models represent two major categories of features’ sets: (i) A feature set that
forms a feature space, where the subjects are non-linearly separable as much as possible,
and (ii) A feature set that forms a feature space, where the subjects are linearly separable as
much as possible. The first category corresponds to the features’ set selected by RFECV+RF,
and the second category corresponds to the features’ sets selected by RFECV+LASSO,
RFECV+RIDGE, RFECV+SVM.

Each of the RFECV models is performed with 10-fold CV; such that we iterate over all
the 544 features, removing one feature at a time, perform 10-fold CV on the current sample,
and calculate the average balanced accuracy score. The balanced accuracy score was
introduced in 2010 to solve the optimistic estimate occurs when a biased classifier is tested
on an imbalanced dataset [74]. The balanced accuracy score is defined by Equation (2):

score =
1
2
(

TP
Pos

+
TN
Neg

) (2)

where score denotes the balanced accuracy score, TP denotes the true positive classified
by the model, Pos denotes the total number of positive cases in the sample, TN denotes
the true negatives classified by the model, and Neg is the total number of negative cases in
the sample.

Algorithm 1: RFECV
Input: Feature data matrix (D) with size M subjects ×N features, and target vector

(y) with size M× 1
Output: Selected feature data matrix (Dselected) with size M subjects ×N f selected

features
Let D be the data matrix comprises M rows, and N columns; let y be the target
vector of length M such that y ∈ {0, 1}

Split D, y into k1 folds. i.e., D f = {D1, D2, ..., Dk1}&y f = {y1, y2, ..., yk1} such that
Di ∈ R bM/k1c×N & Di ∈ D; yi ∈ R bM/k1c & yi ∈ {0, 1}

Initialize empty vector of vectors cross_val_scores
foreach (Di, yi) ∈ (X f , y f ) do

Dtrain = D f − Di; ytrain = y f − yi
Dtest = Xi; ytest = yi
Initialize empty vector f eats_scores
while columns(Dtrain) > 1 do

Train the classifier using Dtrain, ytrain
Calculate the balanced accuracy score of the trained classifier using

Dtest, ytest
Push the calculated score, in step 4.4.2, f eat_score
Sort features based on importance
Discard the least Important feature column from Dtrain & Dtest

end
Push feats_scores list in cross_val_scores list

end
Let N f be the number of features corresponding to the maximum average score
across cross-validation sets

Let Dselected be D
while columns(Dselected) > N f do

Train the classifier using Dselected, y
Sort features based on importance
Discard the least Important feature column from Dselected

end
return Dselected such that Dselected ∈ RM×N f
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For the site-based model, RFECV is performed on each site separately. The selected set
of features is then extracted for each site to have a new data matrix with number of columns
less than or equal to the original number of columns. For the global model, RFECV is
performed only one time on the normalized data matrix Dn, and the selected set of features
is calculated and then extracted from Dn. At this point, we assume that the selected features
from each site are the imaging markers candidate for ASD subjects collected from that site
i.e., local imaging markers, while the selected features from Dn in the global model are the
global markers candidates that define the ASD subjects in the whole dataset.

In the case of the global model, the input to the RFECV step is Dn and the output is Sn
where the size of Sn is 664×M such that M ≤ 554. In the case of the site-based model, the
input to the RFECV step is 12 dn (normalized data matrices of each site), and the output is
skn where the size of skn is N ×M such that N is the number of subjects within site k, and
M ≤ 544.

Eventually, a global neuro-atlas is created using the whole data set, and a local neuro-
atlas is created for each site. We claim that the globla neuro-atlas, as well as, the local
neuro-atlases can be used as a guide for future analysis of ASD or ABIDE I dataset.

2.6. ML Classifiers

Having the imaging markers candidates, they should be placed under test to see
how good they are at separating the two classes. A set of eight different ML classifiers
representing both linear and non-linear hypotheses is selected to test the local, and the
global imaging markers candidates. The utilized eight ML classifiers are split into two
main divisions: (i) linear classifiers, and (ii) non-linear classifiers. The linear classifiers set
comprises LR, LSVM, and passive aggressive. The non-linear classifiers set comprises RF,
SVM with radial basis function (SVM-RBF), eXtra Gradient Boost trees (xgboost), Gaussian
Naive Bayes (GNB), and neural network (NN) shallow and deep.

To optimize the hyper-parameters of each classifier, the data matrix is reduced ac-
cordingly to the results of RFECV algorithm. The data is split five fold. For each of the
predefined classifiers, the hyper-parameters and their ranges, where the search will be
conducted, are defined in the Supplementary Material S2, and then a nested for-loop for
each classifier. For each hyper-parameter value of that classifier, a five-fold CV is performed,
and the results of each fold are saved.

Eventually, the hyper-parameters that corresponds to the maximum CV average score
is saved as the optimum parameters. The results of the highest performed classifiers are
saved with their hyper-parameter values. The performance metric for each classifier is set
to the balanced accuracy score. The detailed algorithm is shown in Algorithm 2.

2.7. Personalized Diagnosis

We propose a personalized map per subject to show the affected brain regions and
to gage the probability of a diagnostic difference when comparing autistic individuals to
control. We define a personalized map as a set of scores associated with a set of features
denoting the importance of a particular feature in diagnosing a subject as TD or ASD. In a
previous work [13], we created a personalized map for ABIDE I dataset using both fMRI and
sMRI features. However, in the proposed work, we are introducing a personalized map for
ABIDE I dataset using only sMRI morphological features. The motivation behind creating
the personalized map for only the sMRI morphological features is the high performance of
the proposed pipeline.

A personalized map is created for each local model. The personalized maps are easily
created with classifiers that either associate weights to the input features, such as linear
classifiers, or place the input features in a tree schematic that denotes the importance of
each feature based on the level of the feature. However, since NN is the used classifier for
the local models, it is difficult to determine which input feature contributes the most to the
classification decision and which input feature contributes the least.



Diagnostics 2022, 12, 165 14 of 28

Algorithm 2: ML-train with hyper-parameter optimization.
Input: Feature data matrix and target vector
Output: trained classifier object (c)
Let X be the data matrix comprises M rows, and N f selected columns from RFECV;
let y be the target vector of length M such that y ∈ {0, 1}M

Split X, y into k folds. i.e., X f = {X1, X2, . . . , Xk} & y f = {y1, y2, . . . , yk} where

Xi ∈ RbM/kc×N f and yi ∈ {0, 1}bM/kc

Let C be the set of the R classifiers utilized in the study such that
C = {c1, c2, . . . , cR}

For each ci ∈ C let Hi be the tuple of associated hyper-parameters
For each Hi let vi,j denote the range of allowable values of element j
foreach ci ∈ C do

foreach HP_seti ∈ {Hi × vi} do
foreach (Xi, yi) ∈ (X f , y f ) do

Set the hyper-parameters of classifier ci to the values in HP_seti
Train classifier ci using (Xtrain, ytrain)
Calculate the balanced accuracy score of ci using Xtest, ytest Save the
trained classifier ci and it is corresponding balanced accuracy score

end
Save the calculated average balanced accuracy score of all the iterations
along with the corresponding HP_seti

end
Save the maximum of all average balanced accuracy scores and the
corresponding HP_seti, along with classifier ci

end
foreach ci ∈ C do

return the maximum score and the corresponding HP_seti
end

Local interpretable model-agnostic explanations (LIME) [75] is a novel explanation
technique that explains the prediction of any classifier. The main idea behind LIME is that
it builds linear models around the predictions of an opaque model to explain it. LIME is
used to explain the classification decisions made by four different local models We have
used LIME to explain the decisions of four local models on two random subjects within
each of the four sites. Afterward, we visualize the scores representing the contribution of
each feature in the classification decision.

3. Results

In this section, the results for each site are demonstrated in terms of (i) autism imaging
local markers (AILM) for each site, and (ii) the balanced accuracy score of the trained ML
when using the AILM. The balanced accuracy scores of the trained ML models are meant to
validate the AILM selected via one of the proposed feature selection models (RFECV+lg1,
RFECV+lg2, RFECV+svm, RFECV+rf). In order to measure the significance of our findings,
we compare the accuracy of the proposed pipeline in classifying ASD to the results of
Katuwal et al. [76] study. Katuwal et al. utilized ABIDE I dataset to provide a site-based
diagnosis using RF, SVM, and Gradient Boosting Machine (GBM) classifiers.

In addition to the results of the local model, we applied the proposed on the whole
dataset to find, what we have called, autism imaging global markers (AIGM). Similar to
local model, AIGM are put to test to study how discrimintive they are at classifying ASD.
However, for the global model we do not only compare the results with another study, but
also, we compare the results with the proposed model without performing feature selection
i.e., using 544 features.
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Therefore, for the global model the two comparisons performed are (i) compare the
performance, utilizing balanced accuracy score, of the proposed model to the performance
of the same model while excluding the feature selection step, and (ii) comparing to the
results of Sabuncu et al. [77]. Sabuncu et al. performed univariate and multivariate
methods to classify ASD subjects within ABIDE I dataset. The authors performed five-fold
cross validation and used SVM, Neighborhood approximation forest (NAF), which is a
variant of random forest, and relevance voxel machine (RVM) classifiers.

Sabuncu et al. used a different set of features as well; however, the highest classification
accuracy was achieved using the cortical thickness values sampled onto the fsaverage5
template, provided by Freesurfer, and smoothed on the surface with an approximate
Gaussian kernel of a full-width-half-max (FWHM) of 5 mm.

Autism Local Neuro-Atlases: RFECV with the four classifiers is applied on each
independent site, and the set of features corresponding to the maximum balanced accuracy
score is selected. To compress the data visualization into four subplots similar to the
case of the global model, we visualize only the optimum number of features selected by
each RFECV model along with the highest achieved balanced accuracy score. Figure 5
demonstrates the number of selected features corresponds to the maximum balanced
accuracy score achieved when utilizing each RFECV model on every site of the dataset.

Figure 5. Number of selected features vs. the maximum balanced accuracy score achieved using
these features when applying RFECV using the four core classifiers, using the local model.

ML local models: almost perfect cross-validation results are achieved when using
the local-atlases selected by RFECV+lg2, as it showed the highest performance in case
of the global model, as well as in case of sites-based model, the highest number of sites
with balanced accuracy score above 0.65 is achieved with RFECV+lg2 algorithm. Results
are compared with Katuwal et al. [76] in Table 2. The proposed pipeline has achieved
better accuracy as shown in Table 2. Although Katuwal et al. selected, for some sites, a
smaller number of features, the proposed pipeline has outperformed their method in terms
of accuracy.
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Personalized diagnosis: Figure 6 visualizes the results of applying LIME on eight
different subjects from four different sites. brain regions with gray color represents brain
regions that are not selected as candidates of the local neuro-atlas for that site. Brain regions
with deep blue color contribute heavily toward classifying the subject to be ASD and it gets
milder as the color moves from blue towards green.

On the other hand, brain regions with a deep red color contribute heavily toward
classifying the subject to be TD and it gets milder as the color moves from the red color
to the green color. All the subjects shown in Figure 6 are correctly classified by their
corresponding local models.

Figure 6 indicates that the local models classify subjects based on the majority voting
of the classifications per brain region. However, we cannot assume that using each brain
region solely for classification and aggregating their decisions would yield the same results.
We assume that each of the local neur-atlas creates a multidimensional space at which the
highest possible accuracy of classification of ASD is achieved, and it is hard to achieve the
same accuracy by utilizing each feature independently from the others.

Table 2. Comparison between the proposed pipeline and previous results from the literature.

Site
Katuwal et al. [76] Results Proposed Pipeline

Number of Selected
Features

Accuracy (%) # of Selected
Features

Accuracy (%)

Caltech 5 97 217 100

CMU 1 94 18 100

Leuven - - 20 91.5± 5

MaxMun - - 151 97.5± 1

OHSU 12 77 3 100

Olin 1 86 60 100

Pitt - - 16 100

Stanford - - 7 100

Trinity - - 18 100

UCLA 2 64 55 82.2± 5

UM 3 72 59 97.2± 1

Yale 2 75 21 100

Autism Global Neuro-Atlas: The high accuracy obtained using the local model has
encourage us to try to find a global model. To achieve this goal, we performed the same
feature selection criteria on the whole data set to determine the autism global neuro-atlas.
Figure 7 demonstrates the optimum number of the selected features using each of the
four RFECV models. The number of features selected on each trial is represented on the
horizontal axis. On the other hand, the average performance of the five-folds, when RFECV
utilized that specific number of features, is represented on the vertical axis. The optimum
number of features corresponding to the maximum average balanced accuracy score is
denoted by a vertical red line.

The features set containing that optimum number of features is then utilized to train
the ML models of the following step in the pipeline. The results demonstrated in Figure 7
are as follow. RFECV+lg1 selected only one feature, RFECV+lg2 selected 207 features,
RFECV+rf selected 2 features, and RFECV+lSVM selected 11 features. It is worth noting
that all the selected features are already included in the RFECV+lg2 set. The selected
features’ set, representing the global neuro-atlas, is found in Supplementary Materials S1.
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Figure 6. Personalized diagnosis.

Figure 7. The number of selected features vs. the balanced accuracy score when applying RFECV
with different classifiers. The red vertical line labels the number of features corresponding to the
maximum balanced accuracy score.
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ML global model: the balanced accuracy scored is calculated for each of the four
selected features’ set utilizing all of the eight classifiers. Figure 8 demonstrates the mean
and std. deviation over the five-fold cross-validation when using the optimum hyper-
parameters of each classifier. The highest balanced accuracy score, marked as red dot
on the figure, is achieved when using the features (global neuro-atlas) selected with lg2
classifier and utilizing NN (0.716± 0.024) The optimum hyper-parameters used for NN
are as follows: loss function is Cross-Entropy, solver for weight optimization is stochastic
gradient descent, learning rate is set to be adaptive, l2 penalty (regularization term) is
0.0001, activation function is hyperbolic tangent function (Tanh).

Figure 8. The highest testing balanced accuracy score ± standard deviation achieved by each of the
optimized classifiers with applying RFECV with the core classifiers. The red dot labels the classifiers
with the highest mean testing accuracy over the five-folds cross-validation.

Similarly, for the null hypothesis, the same hyper-parameter optimization has been
carried out for the eight classifiers, except that all the 544 were utilized without performing
any feature selection. Figure 9 demonstrates the balanced accuracy score calculated for
each of the optimized eight classifiers. The highest achieved score, marked as a red dot on
the figure, is achieved with XGB classifier (0.597± 0.04). A summary of the global model
results is shown in Table 3.
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Table 3. The classification accuracy score of the Sabuncu et al. study, and the proposed model with
and without RFECV, along with the classifier used to achieve the score for each model and the number
of features included in each model.

Sabuncu et al. [78]
Results

Proposed Pipeline
without RFECV Proposed Pipeline

Accuracy 0.59± 0.02 0.597± 0.04 0.716± 0.02

Classifier RVM XGB NN

# of features 20484 544 207

Figure 9. The highest testing balanced accuracy score, plus or minus one standard deviation, achieved
by each of the optimized classifiers without applying any feature selection algorithms.The red point
labels the classifiers achieving the highest performance.

4. Discussion

In this section, we discuss the global and local neuro-atlases. We cover the common
findings between the proposed study and previous literature. We focus on two aims:
(i) creating a discriminative model using a set of morphological features extracted from
sMRI volumes of the brain of ASD and TD subjects, and (ii) defining global and local
neuro-atlases that can be used to define ASD; consequently, those atlases can be used to
understand the underling neurophysiology of the disorder.

We define a discriminative model as a ML classifier that is trained using a set of
features that best discriminate ASD and TD in the current dataset. In this study, we
introduced two different models: (i) the global model that aims to classify ASD and TD in a
heterogeneous dataset, (ii) the site-based model/local model that aims to classify ASD and
TD in a less heterogeneous dataset based on demography.

4.1. Analysis of the Relation between Global and Local Models

The RFECV algorithm is performed on the data matrix using four different classi-
fiers: Lg1, Lg2, SVM, and RF. Each model selects the set of features that maximizes the
classification’s balanced accuracy score via 10-fold CV process. Those sets of features are
considerd as local neuro-atlases for ASD within each site. The algorithm is performed only
one time in case of the global model, while it is performed 12 times on each site in case of
the local model.
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The main motivation behind estimating a global model is the promising results of the
local model. The discriminative set of features is determined at the ML step where a set of
linear and non-linear classifiers are trained on the selected features set. The set of features
corresponding to the maximum balanced accuracy score via five-fold CV is said to be the
discriminative feature set (neuro-atlas) for either the global model, or for a specific site.

In the case of global model, RFECV+lg2 with 207 morphological features correspond-
ing to a balanced accuracy score of (0.715± 0.024) is set to be the model that has selected the
discriminative set of features. The 207 features can be found in Supplementary Materials 1.
Table 4 shows the RFECV model corresponding to the maximum classification balanced
accuracy score of a five-fold CV process, along with the size of the selected features’ set
and the number of common features with the global model.

Common features are anticipated between the global model and local models since
the global model can be thought of as something “similar” to the aggregation of the local
models. However, this raises the question about whether any of the mutual features are
repeated within multiple sites as well as the global model.

Table 4. Summary statistics of the selected features using the local model.

Site # of Features # of Mutual Features with
the Global Model

Caltech 217 74

CMU 18 5

Leuven 6 4

MaxMun 14 7

OHSU 79 32

Olin 60 26

Pitt 16 8

Stanford 7 1

Trinity 18 5

UCLA 7 2

UM 54 23

Yale 21 9

Across all the 544 features, the highest number of selections to be given for a feature
is five times i.e., a feature is selected by the global model and four different local models.
We selected the features that are nominated by the global model as well as at least three
different local models in order to study them to be candidate imaging markers. Table 5
demonstrates the morphological features, the hemisphere, and the brain regions with the
highest frequency of selection among sites in a decreasing order.

A total number of 16 features met the aforementioned criteria. Among those 16 fea-
tures, the distribution of the morphology is as follows: (i) surface with five occurrences,
(ii) curvature with four occurrences, (iii) volume with four occurrences, and (iv) thickness
with three occurrences. There are eight brain regions from the left hemisphere and eight
brain regions from the right hemisphere. The most frequent brain regions among the
16 most common are the Middle Temporal Gyrus and Transverse Temporal Gyrus. The
unique selected brain regions are shown on brain template image in Figure 10.
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Figure 10. Visualization of the most frequent brain regions to be selected by RFECV+LG2.

Table 5. The most frequent morphological features and brain regions to be selected by RFECV+lg2
discriminative model.

Morphological Feature Hemisphere Brain Region

Curvature Left Middle Temporal Gyrus

Volume Left Middle Temporal Gyrus

Volume Left Transverse Temporal Gyrus

Surface area Right Transverse Temporal Gyrus

Curvature Left Frontal Pole

Curvature Right Rostral Anterior Cingulate

Curvature Right Transverse Temporal Gyrus

Thickness Left Middle Temporal Gyrus

Thickness Left Rostral Middle Frontal Gyrus

Thickness Left Superior Temporal Gyrus

Volume Right Lateral Occipital Sulcus

Volume Right Posterior Cingulate Cortex

Surface area Left Superior Frontal Gyrus

Surface area Right Banks of Superior Temporal Sulcus

Surface area Right Pars Orbitalis

Surface area Right Pars Orbitalis

4.2. Detected ASD Neurocircuits

The development of a CAD system for the early diagnosis of autism must include
central features that correspond to the effect of the increasing neuropil within a brain
region. Through these experimental approaches, structural MRI parameters related to
the expanding neuropil are relevant to defining ASD neurocircuits. The effect of the local
diagnosis identifies ASD related brain regions, which fit into the Research Domain Criteria
(RDoC) neural circuits and are similar circuits predictive of ASD diagnosis at 24 months.
Neurocircuits detected in the proposed work is shown in Table 6.

RDoC-defined language and social neural circuits are overly represented in the mor-
phological data. Middle Temporal Gyrus has been found to be associated with autism
volume of left Middle Temporal Gyrus [79,80], functional connectivity of left and right
Middle Temporal Gyrus [78,81]. Transverse Temporal Gyrus has been found to possess
significant difference between ASD and TD in terms of magnetic mismatch field evoked by
voice stimuli in 3- to 5- year-old subjects [82].
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Superior Temporal Gyrus is found to be possess a greater gray matter volume in
ASD subjects who show drive to assess or construct rule-based systems [83], a diminished
functional connectivity between cerebellum in ASD subjects of ABIDE I dataset [84], other
functional connectivity differences, occurred in superior temporal gyrus, between ASD
and TD subjects in three age cohorts <12, 12–19, and >20 years old [85], more different
morphological alterations have been reported for superior temporal gyrus in different
studies [79,86–88]. Banks of Superior Temporal Sulcus are found to demonstrate less
developmental trajectory of the surface area [89], and an increased thickness of the right
Banks of Superior Temporal Sulcus [90].

Reward learning, attentional, social, and executive function RDoC defined neural
circuits are also impacted and classify individuals as ASD or TD. The frontal pole has been
found to have a decreased thickness in the left hemisphere for the ASD subjects in the age
of (9.2 ± 2.1 years) [91]. Rostral Anterior Cingulate has found to demonstrate abnormally
increased activation on specific visual tasks in fMRI and reduced fraction anisotropy in the
white matter [92], and cortical thickness alteration [45].

Rostral Middle Frontal Gyrus is found to be the most important feature for classifi-
cation in a dataset of children older than 6 years old [93], the volume of rostral middle
frontal was found to be the only statistically significant difference between ASD and TD
group with the age of 33 ± 9.1 year-old [94].

Lateral Occipital Sulcus is found to have a negative slope of relationship between
local gyrification index and age greater in ASD than TD; moreover, a negative correlation
between the local gyrification index and cortical thickness if found to be less in magnitude
in ASD than TD [95].

A study focusing on finding brain regions that can be targeted by noninvasive brain
stimulation (NIBS), for ASD treatment labeled the Lateral Occipital Cortex as a potential
target for NIBS [96]. Similarly, the social function associated circuits involving the Posterior
Cingulate Cortex are found to possess irregularly distributed neurons, and there is an
increased density of neuron in the underlying white matter in the same region [97].

Furthermore, in an fMRI study, the ASD group showed weaker connectivity between
the posterior cingulate cortex and superior frontal gyrus, stronger connectivity between
posterior cingulate cortex and both the right temporal lobe and right Para hippocampal
gyrus. Poorer social functioning in the ASD group was correlated with weaker connectivity
between the posterior cingulate cortex and the superior frontal gyrus [98].

Banks of Superior Temporal Sulcus was found to demonstrate less developmental
trajectory of the surface area [89] and an increased thickness of the right Banks of Superior
Temporal Sulcus [90].

The proposed pipeline is anticipated to achieve better results than those in the lit-
erature because of the way that the morphological feature values are aggregated is less
prone to outliers, RFECV implementation with more than one classifier to cover as many
assumptions on the relationship between the features and the target as possible while
selecting the features, performing hyper-parameter optimization using grid search on eight
classifiers to achieve the optimum results given the selected set of features. All the codes
utilized in the proposed pipeline implementation are available upon request.

Table 6. The brain regions linked to RDoC Neural Circuits, Behavioral/Cognitive Domains of the
ADOS, and ASD Structural Diagnosis.

Component RDoC Neurocircuit ADOS Domain Anatomical Correspondence

Restricted Interest Reward Learning/Habit RRB Frontal Pole

Attention Ventral/Dorsal Attention Total Rostral Middle Frontal Gyrus

Lateral Occipital Sulcus
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Table 6. Cont.

Component RDoC Neurocircuit ADOS Domain Anatomical Correspondence

Language Receptive/Expressive SA

Middle Temporal Gyrus

Transverse Temporal Gyrus

Pars Orbitalis

Superior Temporal Gyrus

Superior Temporal Sulcus

Social Affiliation & Attachment SA Frontal Pole

Social Self Aware SA Superior Frontal Gyrus

Posterior cingulate gyrus

Social Understanding the Mental States of Others SA Rostral ACC

Superior Temporal Sulcus

Executive Function
Working Memory SA Superior Frontal Gyrus

Rostral Middle Frontal Gyrus

Performance Monitoring SA Rostral ACC

5. Limitations and Conclusions

In the proposed study, we designed and implemented a ML pipeline to identify neuro-
atlas of ASD. The proposed pipeline includes data preprocessing, feature extraction, feature
normalization and age adjustment, feature selection via four different RFECV models,
and classification using hyper-parameter optimization of linear and non-linear machine
learning models.

The most discriminative set of features (neuro-atlases) is formed using RFECV+lg2
model. The resultant neuro-atlases are used to train a set of linear, and non-linear classifiers.
The highest balanced accuracy score is achieved by NN for both the global model and the
local model with average balanced accuracy score of 71.6± 2% and 97± 2%, respectively.
The most common features among the global model and each site of the local model are
then analyzed to create ASD neurocircuits.

The two main steps that helped in achieving the high results are: (i) Building neuro-
atlases via RFECV and (ii) Hyperparameter optimization of the classifiers. We could not
ignore the threat of overfitting especially for the sites that achieved 100% accuracy with
big number of features compared to the number of subjects within those sites. Neverthe-
less, we followed every machine learning experimentation best practices to the best of
our knowledge.

We split out data into five folds, training with four folds and testing with the rest. We
evaluated models based on the average performance of the ML model on the five splits.
We achieved 100% accuracy. However, and as it was stated in the discussion section, we
believe that within each of the ABIDE I dataset sites, there is some sort of homogeneity
between the subjects. This homogeneity is not only demographic but rather homogeneity
of the disorder itself, and therefore we believe that, for the case of Caltech, and other sites, a
couple of hundred of cortical morphological features were able to capture all of the autism
patterns within those specific sites.

Consequently, this is why we decided to perform the neuroatlas analysis to study
whether there are any connections, i.e., neurocircuits, within those couple of hundreds of
cortical features that were able to capture 100% of the variance within those specific sites.
Further validation should be done, and we are looking forward to this in our next study.

The overall structural mapping of cognition and behaviors to distinct neuroanatomical
and functional linked neural circuits is more likely to not only diagnosed but map a cluster
of ASD individuals whose behaviors and characteristics are more similar than different.
The proposed pipeline is anticipated to achieve better results than those in the literature
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because of the way that the morphological feature values are aggregated is less prone
to outliers.

RFECV implementation with more than one classifier will also cover as many assump-
tions on the relationship between the features and the target as possible while selecting
the features while performing hyper-parameter optimization using grid search on eight
classifiers to achieve the optimum results given the selected set of features. All the codes
utilized in the proposed pipeline implementation are available upon request.

Neuroimaging is an attractive non-invasive technology to facilitate the definition
of relationship between genes, environment, and behaviors in ASD. While this study’s
numbers, design, mitigation of age/sex, pre-processing, etc. lend credence to these results,
the truth is that the use of sMRI and fMRI data is still a challenge as large datasets from
typically developed children from infancy through 8 years of age are still lacking. The
current sample size does identify brain regions implicated infants who are at high risk for
ASD suggesting that this approach is scalable for use in larger more heterogeneous groups
of ASD populations.

The higher accuracy of ASD classification in this study also reinforces this hypothesis.
Ultimately, the proposed system should provide a complete map explaining what linked
brain regions are affected, to what extent impairments are more severe and could, thereby,
be very useful to a treating physician/provider from a clinical point of view.

We hypothesize the difference in the balanced accuracy score of the global model and
the local model is due to the high heterogeneity of the disorder. This hypothesis is based on
the number of common features among the sites of the local model, as well as the number
of features selected for both the global and local model. Consequently, for future work, we
are planning to do the following: (i) incorporate the ABIDE II dataset along with ABIDE I
and (ii) partition subjects based on behavioral traits in order to subdivide ASD into more
types of “homogeneous ASD” where subjects share more traits.

Eventually, we proposed a personalized diagnosis method in which we describe the
phenotype of each subject in terms of the local imaging markers values. The outcome of
this step is a personalized model that describe the affected brain regions, which made the
classifier decide a specific subject to be ASD. We hypothesized that the affected brain region,
giving their feature values, might be correlated with a brain physiological anomaly that
might be causing a specific autistic behavior. Thus, by recognizing those affected brain
regions, a personalized treatment can be assigned for each subject to help with autistic
traits moderation.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/diagnostics12010165/s1, Supplementary Material S1: The complete
definition of all sites, Supplementary Material S2: Hyper-parameters range of each classifier.
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