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Abstract: In this study, an integrative high-performance liquid chromatography coupled with
quadrupole time-of-flight tandem mass spectrometry (HPLC-QTOF) based metabolomics approach
was performed to evaluate the enantioselective metabolic perturbations in MCF-7 cells after
treatment with R-metalaxyl and S-metalaxyl, respectively. Untargeted metabolomics profile,
multivariate pattern recognition, metabolites identification, and pathway analysis were determined
after metalaxyl enantiomer exposure. Principal component analysis (PCA) and partitial least-squares
discriminant analysis (PLS-DA) directly reflected the enantioselective metabolic perturbations
induced by metalaxyl enantiomers. On the basis of multivariate statistical results, a total of
49 metabolites including carbohydrates, amino acids, nucleotides, fatty acids, organic acids,
phospholipids, indoles, derivatives, etc. were found to be the most significantly changed metabolites
and metabolic fluctuations caused by the same concentration of R-metalaxyl and S-metalaxyl were
enantioselective. Pathway analysis indicated that R-metalaxyl and S-metalaxyl mainly affected the 7
and 10 pathways in MCF-7 cells, respectively, implying the perturbed pathways induced by metalaxyl
enantiomers were also enantioselective. Furthermore, the significantly perturbed metabolic pathways
were highly related to energy metabolism, amino acid metabolism, lipid metabolism, and antioxidant
defense. Such results provide more specific insights into the enantioselective metabolic effects of chiral
pesticides in breast cancer progression, reveal the underlying mechanisms, and provide available
data for the health risk assessments of chiral environmental pollutants at the molecular level.
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1. Introduction

The extensive application of pesticides in agriculture, individual households, and in public spaces
leaves pervasive residue in the environment and exposes both humans and animals to direct and
indirect sources, including via food consumption; lawn, garden, and household use; and occupational
exposure [1,2]. Several pesticides are known to be associated with cancer development in experimental
and epidemiological studies of farmers as well as pesticide manufacturing workers [3–6]. Although the
mechanisms of cancer development induced by pesticide exposure are not clear, some potential
mechanisms are DNA damage, immune response abnormality, oxidative stress chronic inflammation,
and chromosome aberration [7–10]. Given the widespread applications and pervasive residue associated
with pesticides, there is a need to be vigilant in surveillance of potential cancer impacts on humans.
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Metalaxyl [N-(2,6-dimethylphenyl)-N-(methoxyacetyl)-D,L-alaninemethylester, 57837-19-1] is
a systemic fungicide with curative actions against oomycetes and water mold fungi in plants [11].
Its effectiveness comes from specific inhibition of RNA polymerase-1 activity and uridine incorporation
into RNA process [12]. Given its broad spectrum of activity, metalaxyl is not only used on food crops
but also on non-food and residential crops including tobacco, trees, ornamental plants, and lawns.
Metalaxyl has an asymmetric carbon atom and consists of two enantiomers, which possess similar
physicochemical properties in non-chiral environments and different activities in biological systems
(Figure 1) [13]. Although metalaxyl is classified as a low-toxicity pesticide, it is mobile, persistent,
and readily leached in soils. Metalaxyl residue was detected in groundwater, which poses a great threat
to human and animal health [9]. Studies demonstrated cytogenetic effects of metalaxyl on human and
animal chromosomes in vitro [14]. Furthermore, cocarcinogenic potential and nephrotoxicity were
also reported in mice [15,16].
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possible mediators of hPXR-related drug resistance in breast cancer [24]. Thus metalaxyl exposure 
may significantly affect the metabolome of MCF-7 cells through activating hPXR. 
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Breast cancer is one of the most common cancers in women and the American Cancer Society
estimates that in 2016 breast cancer will have accounted for 29% of all new cancer cases diagnosed in
women in the USA [17,18]. It is widely recognized that the development of cancer is the combined
results of genetic predisposition and environmental factors. There is considerable evidence to show
that cumulative and sustained estrogen exposure is a key promoter of breast tumor proliferation [19].
Although metalaxyl is not classified as an estrogen disrupter, studies have demonstrated that it
has cytotoxicity, nephrotoxicity, cell transformation, and cocarcinogenic activity in mice [20–22].
Furthermore, metalaxyl has the ability to activate human pregnane X receptor, which is highly related
to breast cancer cell metabolism [23]. Human pregnane X receptor (hPXR) is a primary transcription
factor of CYP3A4 and an efflux transporter of multi-drug resistance gene (MDR1). Activation of
hPXR will lead to upregulated expression of CYP3A4 and MDR1, which are two possible mediators of
hPXR-related drug resistance in breast cancer [24]. Thus metalaxyl exposure may significantly affect
the metabolome of MCF-7 cells through activating hPXR.

To further understand biological systems’ response to metalaxyl enantiomers exposure,
a metabolomics profile was adopted to create a full picture of cell metabolic perturbations.
Metabolomics is an important branch in the area of “omics” research, which is defined as the systematic
study of multiparametric metabolic responses of organisms to perturbations such as diseases,
environmental factors, genetic variations, and other stimuli [25–27]. Over the past decades, there has
been an increased interest in cellular metabolism, which is regarded as a possible means of cancer
treatment, especially after the vital finding of upregulated glucose consumption and lactate production
in cancer cells under aerobic conditions by Otto Warburg in the 1930s [28]. Altered metabolism
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helps cancer cells sustain a higher proliferation rate even in suboptimal environments, resist certain
cell signals, and also prevent immune response. Therefore, alterations in cellular metabolism are
expected as one of the vital hallmarks in cancer development [29]. Some major metabolic alterations
including enhanced fatty acids synthesis, upregulated utilization of the pentose phosphate pathway,
increased production of lactate, altered utilization of the tricarboxylic acid (TCA) cycle, and reduced
transport of pyruvate into mitochondria were identified in cancer cells [30]. Therefore, the emerging
field of metabolomics may provide insights into integrated perturbed metabolic profile in cancer
research and help us find key biomarkers, which may act as a reliable clinical tool for cancer diagnostic
screening and therapy [31].

The aim of this study was to evaluate the enantioselective metabolic perturbations induced
by metalaxyl enantiomers in MCF-7 cells using a high-performance liquid chromatography
coupled with quadrupole time-of-flight tandem mass spectrometry (HPLC-QTOF) based untargeted
metabolomics approach. HPLC-QTOF based metabolomics profile, multivariate pattern recognition,
metabolites identification, and pathway analysis were determined in MCF-7 cells after R-metalaxyl
and S-metalaxyl treatments, respectively. To our best knowledge, this is the first enantioselective study
of metabolic alterations induced by metalaxyl enantiomers in breast cancer cells using metabolomics
techniques. Such results may contribute to explaining the enantioselective metabolic and toxic effects
of chiral pesticides in breast cancer progression, revealing the underlying mechanisms, and providing
available data for health risk assessments of chiral environmental pollutants.

2. Results and Discussion

2.1. Assessment of the Stability and Reproducibility of the HPLC-QTOF Method

Quality control (QC) samples were obtained by pooling metalaxyl enantiomer-treated cell samples
and prepared using the same protocol as sample preparation. For the stability of HPLC-QTOF system,
QC sample was injected randomly during the sequence analysis. As for the reproducibility of the
sample preparation, 1000 µL of a mixed control sample was split into five parts with 200 µL each and
treated with the same preparation protocol. A blank sample (ultrapure water), prepared in the same way
as the other samples, was injected every five samples to minimize the carry-over between sample analyses.

The results for system stability and preparation method reproducibility are shown in Figure S1.
We examined coefficient of variation (CV) values of 1061 mass variables that were detected in 70% of
QC data. As shown in Figure S1, more than 90% of QTOF variables had CV <20%, and <4% had CV
>30%, indicating excellent system stability. For reproducibility, more than 80% of QTOF variables had
CV <20%, and <7% had CV >30%, which also implied good reproducibility. Such results indicate that
the established analytical method is highly stable and reproducible, and could be employed to analyze
large-scale cell samples in metabolomics experiments.

2.2. Multivariate Pattern Recognition Analysis

In order to investigate the global metabolites changes in MCF-7 cells after metalaxyl enantiomer
exposure, Principal component analysis (PCA) was employed to analyze the QTOF data set first.
PCA is an unsupervised multivariate data analysis method often adopted to visualize grouping
trends and outliers in data. Principle component 1 (PC1) versus component 2 (PC1) of MCF-7 cells
in positive, negative, and both modes are shown in Figure 2. Good separation between metalaxyl
enantiomer-treated groups and the control group were displayed in PC1 and PC2 plots of PCA,
suggesting that metalaxyl enantiomers significantly disturbed the MCF-7 cell metabolome after seven
days of consecutive exposure. The fitness and prediction capabilities of PCA modes were evaluated by
R2X(cum) and Q2(cum), respectively. Figure 2 also showed Q2X(cum) and Q2(cum) of PCA in different
modes. Q2 in the positive, negative, and both modes were all over 0.5, displaying the excellent
predictive capability. In addition, metabolome changes induced by R-metalaxyl and S-metalaxyl
were also clearly separated, which means R-metalaxyl and S-metalaxyl have enantioselective effects
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on MCF-7 cell metabolite profiling. Moreover, cells treated with a single enantiomer at different
concentrations (10 and 50 µM) were clearly separated, indicating that the metabolome change
attributable to different treated concentrations was also different. To further identify the metabolites
that account for the PCA separation, supervised PLS-DA was employed to construct the mode based
on HPLC-QTOF ion peak areas of cell metabolites. Representative PLS-DA plots of treated groups
and the control group are shown in Figure 3. R-metalaxyl- and S-metalaxyl-treated groups are clearly
separated with the control group. Moreover, the R-metalaxyl-treated group and S-metalaxyl-treated
group also displayed a clear separation, which means the metabolite changes induced by the two
enantiomers were enantioselective. Generally, R2X, R2Y, and Q2Y were adopted to assess the quality of
the PLS-DA mode. Without a high R2Y, it is impossible to obtain a high Q2Y and a robust model was
linked to a Q2 > 0.4 [32]. As shown in Figure 3, the parameters of R2X, R2Y, and Q2Y were acceptable
for single negative and positive mode datasets, and the combination of two datasets also displayed an
excellent prediction, with R2Y = 0.986 and Q2Y = 0.948.
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Figure 2. PCA score plots based on QTOF data sets of MCF-7 cells treated with different concentrations
of metalaxyl enantiomers. � Control, N S-metalaxyl (10 µM), N S-metalaxyl (50 µM), • R-metalaxyl
(10 µM), • R-metalaxyl (50 µM). (A) Positive mode, (R2X = 0.656, Q2 = 0.552); (B) negative mode,
(R2X = 0.715, Q2 = 0.629); (C) negative + positive mode, (R2X = 0.783, Q2 = 0.685).
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Figure 3. The PLS-DA score plots based on QTOF data sets of MCF-7 cells treated with different
concentration of metalaxyl enantiomers. � Control, N S-metalaxyl (10 µM), N S-metalaxyl (50 µM),
• R-metalaxyl (10 µM),NR-metalaxyl (50 µM). (A) Positive mode, (R2X = 0.829, R2Y = 0.982, Q2 = 0.913);
(B) negative mode, (R2X = 0.816, R2Y = 0.99, Q2 = 0.957); (C) negative + positive mode, (R2X = 0.803,
R2Y = 0.986, Q2 = 0.948).

2.3. Metabolite Identification

To determine the metabolites that are responsible for metalaxyl enantiomer intervention,
each R-metalaxyl- and S-metalaxyl-treated group was compared with a control group by PLS-DA
analysis. The variable importance in the project (VIP) value derived from the PLS-DA mode is an
important parameter for each independent variable. Higher VIP scores are considered more relevant
in classification. In this study, the VIP value of each peak was calculated to identify its contribution to
the classification. On the basis of the VIP threshold (VIP > 1) and the student’s t test p value (p < 0.05),
a total of 49 metabolites (35 from the negative mode and 14 from the positive mode) were finally
identified (Table 1). These significant changed metabolites were amino acids, nucleotides, fatty acids,
carbohydrates, phospholipids, indoles, derivatives, and so on. R-metalaxyl- and S-metalaxyl-treated
(10 µM) groups induced 27 and 36 endogenous metabolite increases, and five and eight metabolites
decreased, respectively. High concentration (50 µM) caused 29 and 35 endogenous metabolites to be
upregulated, and six and eight metabolites to be downregulated, respectively. Such results indicated
that metabolic profiling changes caused by the same concentration of R-metalaxyl and S-metalaxyl
were enantioselective. Furthermore, some metabolites changed with the treated concentration, such as
histidine, lactate, glucose, alanine, succinate, citrate, and arginine (Figure 4).
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Table 1. Significant changed metabolites induced by R-metalaxyl and S-metalaxyl in MCF-7 cells. C, Control group; L, Low-dose group; H, High-dose group.

No. Mode Compounds Mass
S-Metalaxyl L vs. C S-Metalaxyl H vs. C R-Metalaxyl L vs. C R-Metalaxyl H vs. C

Class
VIP a FC b Trend c VIP FC Trend VIP FC Trend VIP FC Trend

1 Negative Lactate 72.0213 1.14 3.55 ↑ <1 2.80 ↑ <1 2.28 ↑ <1 1.66 ↑ Hydroxy acids and derivatives
2 Negative Propionate 74.0368 1.17 1.92 ↑ <1 2.22 ↑ 1.13 1.42 ↑ 1.09 1.38 ↑ Carboxylic acids and derivatives
3 Negative Glycine 75.0322 1.18 3.64 ↑ 1.16 3.55 ↑ 1.17 3.44 ↑ 1.19 3.91 ↑ Carboxylic acids and derivatives
4 Negative Alanine 89.0474 1.17 2.19 ↑ 1.16 2.53 ↑ 1.17 2.30 ↑ 1.19 2.72 ↑ Carboxylic acids and derivatives
5 Negative Serine 105.0420 1.15 1.62 ↑ 1.13 1.62 ↑ 1.11 1.49 ↑ 1.17 1.73 ↑ Carboxylic acids and derivatives
6 Negative Proline 115.0624 1.23 1.21 ↑ 1.57 1.26 ↑ <1 1.29 ↑ 1.06 1.20 ↑ Carboxylic acids and derivatives
7 Negative Guanidineacetate 117.0419 1.18 2.55 ↑ 1.16 2.45 ↑ 1.18 2.22 ↑ 1.19 2.75 ↑ Carboxylic acids and derivatives
8 Negative Succinate 118.0259 1.18 1.85 ↑ 1.15 1.60 ↑ 1.12 1.34 ↑ 1.08 1.24 ↑ Carboxylic acids and derivatives
9 Negative Glutaconate 130.0256 1.16 2.11 ↑ 1.12 2.12 ↑ 1.15 1.96 ↑ 1.12 2.17 ↑ Carboxylic acids and derivatives

10 Negative 3-Methyl-2-oxovalerate 130.0623 <1 3.10 ↑ 1.03 4.01 ↑ <1 3.93 ↑ <1 3.53 ↑ Keto acids and derivatives
11 Negative Creatine 131.0582 1.17 2.76 ↑ 1.16 3.03 ↑ 1.17 3.45 ↑ 1.19 3.05 ↑ Carboxylic acids and derivatives
12 Negative Aspartate 133.0371 1.21 2.14 ↑ 1.23 2.24 ↑ <1 2.25 ↑ <1 2.47 ↑ Carboxylic acids and derivatives
13 Negative Muconate 142.0237 3.50 0.82 ↓ 4.12 0.75 ↓ 4.9 0.70 ↓ 4.1 0.76 ↓ Fatty acids and conjugates
14 Negative Glutamine 146.0685 1.66 4.84 ↑ 1.62 4.87 ↑ <1 5.10 ↑ <1 5.34 ↑ Carboxylic acids and derivatives
15 Negative Glutamate 147.0524 1.14 0.67 ↓ 1.14 0.65 ↓ 1.15 0.59 ↓ 1.16 0.66 ↓ Carboxylic acids and derivatives
16 Negative Methionine 149.0503 1.12 2.52 ↑ 1.01 2.32 ↑ <1 1.56 ↑ 1.12 2.54 ↑ Carboxylic acids and derivatives
17 Negative 4-Imidazolone-5-propionate 156.0523 1.15 3.19 ↑ 1.16 4.79 ↑ 1.14 4.65 ↑ 1.14 2.84 ↑ Imidazoles
18 Negative 2-Aminomuconate 157.0353 1.12 0.58 ↓ 1.13 0.42 ↓ 1.14 0.46 ↓ 1.14 0.44 ↓ Carboxylic acids and derivatives

19 Negative Benzoate 157.9976 4.06 1.81 ↑ 3.71 1.72 ↑ 3.65 1.80 ↑ 3.39 1.71 ↑ Benzene and substituted
derivatives

20 Negative 3-Phosphonopyruvate 167.9816 1.10 1.88 ↑ <1 1.33 ↑ 1.06 1.42 ↑ 1.05 1.87 ↑ Organic phosphoric acids
and derivatives

21 Negative Glyceraldehyde-3-phosphate 169.9970 1.14 0.05 ↓ 1.13 0.08 ↓ 1.15 0.09 ↓ 1.13 0.14 ↓ Carbohydrates and
carbohydrate conjugates

22 Negative Aconitate 174.0157 1.94 1.93 ↑ 1.25 1.77 ↑ <1 1.91 ↑ <1 1.86 ↑ Carboxylic acids and derivatives
23 Negative N-acetylaspartate 175.0478 2.36 3.78 ↑ 2.35 3.93 ↑ 1.28 4.62 ↑ 1.39 3.94 ↑ Carboxylic acids and derivatives

24 Negative Glucose 180.0629 1.98 2.15 ↑ 1.71 1.92 ↑ 1.11 2.45 ↑ <1 2.01 ↑ Carbohydrates and
carbohydrate conjugates

25 Negative Tyrosine 181.0728 1.18 2.68 ↑ 1.16 2.97 ↑ 1.17 2.80 ↑ 1.18 2.86 ↑ Phenylpropanoic acids
26 Negative N-Acetyl-L-glutamate 189.0632 1.76 0.11 ↓ 1.71 0.13 ↓ <1 0.09 ↓ <1 0.16 ↓ Carboxylic acids and derivatives
27 Negative 3-Dehydroquinate 190.0404 <1 2.64 ↑ 1.22 4.38 ↑ <1 4.33 ↑ <1 2.37 ↑ Alcohols and polyols
28 Negative Citrate 192.0268 3.26 7.09 ↑ 3.56 8.97 ↑ 2.31 6.23 ↑ 2.98 8.37 ↑ Carboxylic acids and derivatives
29 Negative Galactonate 196.0571 1.14 0.24 ↓ 1.12 0.14 ↓ 1.13 0.24 ↓ 1.08 0.25 ↓ Hydroxy acids and derivatives
30 Negative Pantothenate 219.1099 2.04 11.52 ↑ 1.97 11.39 ↑ 1.07 13.02 ↑ <1 10.04 ↑ Carboxylic acids and derivatives

31 Negative N-Acetyl-D-glucosamine 257.0662 1.07 2.29 ↑ 1.03 2.27 ↑ <1 2.01 ↑ <1 2.41 ↑ Carbohydrates and
carbohydrate conjugates

32 Negative Acetylcarnosine 306.0308 <1 0.95 ↓ 1.66 0.82 ↓ <1 0.77 ↓ <1 0.91 ↓ Carboxylic acids and derivatives
33 Negative dUMP 344.0442 1.24 0.73 ↓ 1.1 0.76 ↓ <1 0.76 ↓ <1 0.72 ↓ Pyrimidine nucleotides
34 Negative dGDP 427.0289 1.12 3.95 ↑ 1.11 4.07 ↑ <1 4.16 ↑ <1 3.91 ↑ Purine nucleotides
35 Negative dGTP 506.9954 1.95 2.51 ↑ 1.95 2.60 ↑ <1 2.37 ↑ <1 2.56 ↑ Purine nucleotides
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Table 1. Cont.

No. Mode Compounds Mass
S-Metalaxyl L vs. C S-Metalaxyl H vs. C R-Metalaxyl L vs. C R-Metalaxyl H vs. C

Class
VIP a FC b Trend c VIP FC Trend VIP FC Trend VIP FC Trend

36 Positive Valine 117.0779 1.27 1.57 ↑ 1.15 1.43 ↑ 1.23 1.41 ↑ 1.06 1.50 ↑ Carboxylic acids and derivatives
37 Positive Pyroglutamate 129.0416 1.08 0.64 ↓ <1 0.81 ↓ <1 0.87 ↓ 1.11 0.56 ↓ Carboxylic acids and derivatives
38 Positive 3-Hydroxy-L-proline 131.0677 1.28 7.63 ↑ 1.41 8.39 ↑ 1.41 8.44 ↑ 1.26 7.58 ↑ Carboxylic acids and derivatives
39 Positive Leucine/Isoleucine 131.0932 1.82 2.98 ↑ 1.72 2.78 ↑ 1.33 2.48 ↑ 1.81 2.87 ↑ Carboxylic acids and derivatives
40 Positive Glutarate 132.0521 1.07 3.59 ↑ 1.07 3.61 ↑ 1.04 3.60 ↑ 1.11 3.68 ↑ Carboxylic acids and derivatives
41 Positive Histidine 155.0674 <1 3.47 ↑ 1.04 4.96 ↑ <1 3.07 ↑ 1.06 4.94 ↑ Carboxylic acids and derivatives
42 Positive Phenylalanine 165.0773 1.43 2.05 ↑ 1.23 1.77 ↑ 1.07 1.61 ↑ 1.56 2.18 ↑ Phenylpropanoic acids
43 Positive Arginine 174.1099 2.13 6.52 ↑ 1.86 5.83 ↑ 2.3 6.99 ↑ 1.75 5.55 ↑ Carboxylic acids and derivatives
44 Positive 3-Indolebutyrate 203.1137 1.75 5.98 ↑ 1.79 6.25 ↑ 1.83 6.68 ↑ 1.7 5.51 ↑ Indoles and derivatives
45 Positive Tryptophan 204.0874 1.07 2.41 ↑ <1 2.23 ↑ <1 1.91 ↑ 1.2 2.68 ↑ Indoles and derivatives
46 Positive Propionyl-L-carnitine 217.1288 <1 1.50 ↑ <1 1.44 ↑ 1.1 1.72 ↑ 1.02 1.57 ↑ Fatty acid esters
47 Positive Glycerophosphocholine 257.1003 1.98 10.24 ↑ 1.98 10.24 ↑ 2.29 11.71 ↑ 2.08 10.77 ↑ Glycerophospholipids
48 Positive Glutathione 307.0812 3.54 1.98 ↑ 3.49 1.97 ↑ 3.63 2.01 ↑ 3.36 1.94 ↑ Carboxylic acids and derivatives
49 Positive UDP-N-acetylglucosamine 607.0766 1.25 4.12 ↑ 1.23 4.07 ↑ 1.21 4.03 ↑ 1.21 4.04 ↑ Pyrimidine nucleotides

a VIP represents variable importance in the project value derived from PLS-DA mode; b FC represents fold change; c ↑ represents up-regulated trend and ↓ represents
down-regulated trend.
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2.4. Biological Pathway Analysis

Metabolomics profiling can reveal not only the individual metabolite alteration but also provide a
comprehensive view of the metabolic processes induced by toxic environmental compounds. In this
study, metalaxyl enantiomer-induced metabolic perturbations were further evaluated at the metabolic
pathways level on the basis of these different metabolites. The MetaboAnalyst 3.0 was employed to
reveal the most significantly affected pathways induced by metalaxyl enantiomers. R-metalaxyl mainly
affected seven pathways, including Glycine, serine and threonine metabolism, D-Glutamine and
D-glutamate metabolism, Glutathione metabolism, Pantothenate and CoA biosynthesis, Arginine and
proline metabolism, -TCA cycle- and Phenylalanine metabolism. Whereas, S-metalaxyl mainly caused
10 pathway perturbations, including Glycine, serine and threonine metabolism, D-Glutamine and
D-glutamate metabolism, Glutathione metabolism, Alanine, aspartate and glutamate metabolism,
Histidine metabolism, Arginine and proline metabolism, Phenylalanine, tyrosine and tryptophan
biosynthesis, Pantothenate and CoA biosynthesis, -TCA cycle-and Phenylalanine metabolism.
Such results implied that the pathways perturbed by metalaxyl enantiomers were also enantioselective.
In addition, Figure 5 indicates that metabolic pathways changes caused by the same concentration of
R-metalaxyl and S-metalaxyl are also enantioselective. Such perturbed pathways are highly related to
energy metabolism, amino acid metabolism, lipid metabolism, and antioxidant defense (Figure 6).
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2.5. Amino Acid Metabolism

Amino acids and their metabolites are critical to life and play a variety of roles in metabolism.
Besides their roles as building blocks of polypeptides and proteins, some amino acids including
proline, arginine, glutamine, tryptophan, cysteine, and leucine are critical for growth, maintenance,
immunity, and reproduction in organisms. Lots of studies also indicate that the abnormal metabolism
of amino acids impairs development and growth, perturbs whole body homeostasis, and even
causes death. Thus, physiological concentrations of amino acids and their metabolites are relatively
constant and highly regulated at the molecular level. In the present study, cell metabolomics results
revealed that amino acid metabolism were significantly perturbed due to metalaxyl enantiomers
exposure, including Glycine, serine and threonine metabolism, Alanine, aspartate and glutamate
metabolism, D-Glutamine and D-glutamate metabolism, Phenylalanine metabolism, Arginine and
proline metabolism, Tryrosine metabolism, and so on. Metalaxyl caused increased levels of alanine,
tyrosine, phenylalanine, serine, tryptophan, glycine, proline, glutamine, arginine, methionine and
decreased levels of glutamate, and N-acetylglutamate. These amino acids regulate specific pathways
and have different functions in cell metabolism. Much evidence also shows that amino acids including
alanine, glutamine, glutamate, lysine, phenylalanine, and glycine also participate in specific cell
metabolism, cell signaling, and oxidative stress [33–35].

Glycine, produced in the mitochondria, has been demonstrated as an indicator of cancer cell
proliferation in a previous investigation [36]. In this study, the concentration of glycine increased after
metalaxyl enantiomer treatments, which implies that metalaxyl enantiomers may promote MCF-7 cell
proliferation. Alanine can regulate gluconeogenesis to ensure glucose production through inhibiting
L-type pyruvate kinase [37,38]. Moreover, alanine is also a known product of glucose and glutamine in
cancer cells associated with β-nicotinamide adenine dinucleotide phosphate (NADPH) production.
Therefore, increased levels of alanine and glucose may imply upregulated gluconeogenesis and
glycolysis in MCF-7 cells after metalaxyl exposure. In cancer cells, glutamine can be utilized for the
production of lactate and act as a carbon source and an amino acid for protein synthesis. Once taken
up by the cell, much of the glutamine is generally converted to glutamate. It is interesting to point out
that metalaxyl enantiomer treatment in MCF-7 cells leads to an increase in glutamine and a decrease in
glutamate, which may be caused by upregulated glutamine synthesis and downregulated glutamine
metabolism. To sum up, metalaxyl enantiomers can significantly perturb amino acid metabolism in
MCF-7 cells in an enantiomer-specific way.

2.6. Energy Metabolism

Significant changes of many metabolites involved in energy metabolism, including glucose, lactate,
alanine, citrate, aconitate, and succinate, were observed in MCF-7 cells after metalaxyl enantiomer
exposure. These metabolites are highly related to energy metabolism pathways such as the TCA cycle,
pyruvate metabolism, and glycolysis metabolism. The prominent perturbations of energy metabolism
induced by metalaxyl enantiomers were increased levels of TCA cycle intermediates, including citrate,
aconitate, and succinate in MCF-7 cells. Citrate, aconitate, and succinate are the main intermediates
of the TCA cycle and play important roles in energy metabolism. Although other factors cannot
be excluded, the increased levels of citrate, aconitate, and succinate indicated that the activities of
mitochondrial enzymes involved in the TCA cycle were significantly affected in MCF-7 cells after
metalaxyl enantiomer exposure, resulting in the fluctuation of energy metabolism. Furthermore,
the increased levels of citrate and aconitate induced by R-metalaxyl and S-metalaxyl were almost
the same, while succinate increased about 1.2-fold and 1.8-fold after R-metalaxyl and S-metalaxyl
exposure, respectively. This notion suggests that R-metalaxyl and S-metalaxyl have enantioselective
effects on TCA cycle.

In addition, the levels of pantothenate, lactate, and alanine, which are highly related to pyruvate
metabolism, were all increased. Pyruvate metabolism has been reported as one of the major alterations
in breast cancer cells. Rather than importing pyruvate into mitochondria, cancer cells generally convert
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pyruvate into lactate. The key factor affecting pyruvate metabolism is pyruvate dehydrogenase (PDH),
which is highly regulated by pyruvate dehydrogenase kinase (PDK). Inhibition of PDH will decrease
transportation of pyruvate into the mitochondria through its oxidation into acetyl-CoA and lead to an
increased level of lactate in the cytoplasm [30]. Therefore, the increased level of lactate may be caused
by the inhibition of PDH through activating PDK, resulting in decreased transportation of pyruvate
into the mitochondria and enhanced conversion of pyruvate to lactate in MCF-7 cells. Furthermore,
some gluconeogenic amino acids, including phenylalanine, histidine, methionine, glutamine, tyrosine,
and alanine, were all increased, which may imply promoted gluconeogenesis after metalaxyl exposure.

We also found an increased level of creatine in MCF-7 cells after metalaxyl enantiomers exposure.
The major function of creatine is to support energy production in the phosphorylation process.
Interestingly, studies reported that creatinine and creatine kinase were considered oxidative stress
indicators in breast cancer patients after chemotherapy treatment [39]. Therefore, the upregulated
level of creatine clearly implies the alteration of oxidative stress and energy metabolism in MCF-7
cells after metalaxyl enantiomer exposure. Taking all these results together, metalaxyl enantiomers
significantly perturbed energy metabolism in MCF-7 cells and the degrees affected by two enantiomers
were enantioselective.

2.7. Lipid Metabolism and Antioxidant Defense

Based on metabolomics results, the upregulated glycerophosphocholine and related amino
acids clearly reflected the perturbation of lipid metabolism after metalaxyl enantiomer exposure.
Glycerophosphocholine (GPC) is known to be an important endogenous compound required for
cell and mitochondrial membranes, neurotransmitter synthesis, methylation-dependent biosynthesis,
lipid transportation, and bile acid secretion [40–42]. In addition, GPC is a vital constituent of the
cell membrane and lipoprotein phospholipid, which play important roles in the integrity of the cell
membrane and lipid metabolism. Evidence shows that GPC metabolite deficiency contributes to
various disorders in humans, including fatty liver development, liver steatosis, hepatocarcinogenesis,
and mitochondrial dysfunction [43–45]. GPC can not only sustain choline and its metabolites’
homeostasis but also protects cells and their organelles from oxidative stress and inflammation [46–49].
In this study, the level of GPC increased after R-metalaxyl and S-metalaxyl exposure, possibly induced
by the high demand of membrane synthesis for cell proliferation after metalaxyl enantiomer exposure.

Another interesting finding is the increased level of glutathione (GSH) after metalaxyl exposure.
As the most abundant thiol-containing compound in the cell, GSH plays vital roles in intracellular
signaling and antioxidant defense. Total GSH concentration varies significantly in different cell types
and can be regulated by external factors including heavy metals, glucose concentration, and exposure
to reactive oxygen species. Cancer cells are often protected from excessive damage by reactive oxygen
species (ROS) through the simultaneous upregulation of innate protective antioxidant pathways and
the generation of reduced glutathione [50]. As a result, the increased GSH induced by metalaxyl
enantiomers clearly suggests the enhancement of antioxidant defense in MCF-7 cells, which may be
beneficial to promote proliferation of breast cancer cells.

3. Materials and Methods

3.1. Chemicals and Materials

Racemic metalaxyl (rac-metalaxyl) standard (purity ≥ 98.0%) was obtained from the Institute for
Control of Agrochemicals, China Ministry of Agriculture (Beijing, China). S-metalaxyl and R-metalaxyl
were prepared via high-performance liquid chromatography (HPLC) (Agilent, Santa Clara, CA, USA)
with a semi-preparative chiral column containing cellulose-tris-(3,5-methylphenylcarbamate)-based
chiral stationary phase (CDMPC-CSP). Water was purified with a Milli-Q Element system from
Millipore (Billerica, MA, USA). HPLC grade methanol, acetonitrile, ammonium acetate, and acetic
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acid were purchased from Merck Chemicals (Beijing, China). All other chemicals and solvents were
analytical grade and purchased from commercial sources.

3.2. Cell Culture Procedures and Metabolite Extraction

The MCF-7 cell line was purchased from the China Center for Type Culture Collection (CCTCC)
and cultured in DMEM High Glucose supplemented with 2 mM glutamine, 25 mM glucose, 100 g/mL
penicillin/streptomycin, and 10% fetal bovine serum (FBS). Cells were seeded onto 150mm plates
and the medium was changed every second day until the confluency reached 80%, at which time
they were washed with PBS and incubated in DMEM medium containing metalaxyl enantiomers for
seven consecutive days. The new medium with metalaxyl enantiomers was also changed every second
day. Two concentrations (10 and 50 µM) were selected for S-metalaxyl and R-metalaxyl treatments
separately and seven replicate samples were collected for each treatment. After washing the cells with
PBS three times, the number of living cells was counted using a Neubauer counting chamber under
a light microscope and protein content was analyzed by the kits at the end point. Cold extraction
solvent methanol:choloroform (9:1) was added to quench the cellular metabolism. The cells were
detached using a cell scraper and the cell suspensions were transferred into tubes and centrifuged.
Finally, the supernatants were collected and dried under a vacuum using Eppendorf Concentrator plus
(Eppendorf, Germany). Then they were reconstituted in 500 µL 60% acetonitrile/40% water solvent
containing 5 mM ammonium acetate and 0.2% acetic acid. All samples were purified with 0.22 µm
filters before HPLC-QTOF analysis.

3.3. HPLC-QTOF Analysis

The HPLC-QTOF analysis was conducted on an Agilent 1200 series HPLC system coupled with
an electrospray ionization (ESI) source and Agilent 6510 QTOF mass spectrometry (Agilent, USA).
In all cases, 10 µL of extracted sample was injected into a reversed-phase column (ACQUITY BEH
C18, 150 mm × 2.1 mm, 1.7 µm, Waters, Milford, CT, USA) equipped with a guard cartridge system.
The flow rate was 0.3 mL/min and the column temperature was maintained at 40 ◦C. The mobile
phase was composed of solvents A (10% acetonitrile/90% H2O containing 5 mM ammonium acetate
and 0.2% acetic acid) and B (90% acetonitrile/10% H2O containing 5 mM ammonium acetate and 0.2%
acetic acid). The gradient conditions for both modes were identical and are shown in Table S1 in the
Supplementary Materials.

Data were collected in the positive and negative electrospray modes in separate runs with full scan
mode ranges from m/z 60 to 1000. The capillary voltages were 3800 and −4000 V for positive mode
and negative mode, respectively, with a scan rate of 1.03 scans per second. The nebulizer gas flow rate
was 10 L/min; the pressure was maintained at 45 psi and the temperature at 325 ◦C. Reference masses
121.0509, 922.0098 (positive mode) and 119.0363, 966.0007 (negative mode) were used for continuous
and online mass calibration throughout the analyses. All samples were injected in one randomized
sequence and kept in the LC auto-sampler maintained at 4 ◦C.

3.4. Data Treatment

The resulting data files were cleaned of unrelated ions and background noise by the Molecular
Feature Extractor (MFE) tool in the MassHunter Qualitative Analysis Software (Agilent, USA). The MFE
is a compound-finding technique that can extract individual compound features from QTOF-MS
chromatogram even when chromatograms are complicated and compounds are not well resolved.
Lastly, MFE can output a list of all possible compound features extracted from full scan QTOF data.
The MassHunter Mass Profiler Professional Software B.02.00 (Agilent, USA) was used to align and
filter off extracted features. We selected metabolites with absolute abundance over 5000 counts and
with a minimum of two ions. Metabolites from different samples were aligned using a retention time
window of 0.1% (0.15 min) and multiple charge states were not selected. Common features represented
in at least 80% of all samples were analyzed and corrected for individual bias.
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3.5. Biological Pathway Analysis

The major perturbed biological pathways were analyzed based on the significantly changed
metabolites in MCF-7 cells after metalaxyl enantiomer exposure. In this study, metabolic pathway
perturbations were conducted by MetaboAnalyst 3.0 (http://www.metaboanalyst.ca/) and related
metabolic pathway profiles were determined based on the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway database (http://www.kegg.jp/kegg/pathway.html).

3.6. Statistical Analysis

Metabolite differences between metalaxyl-treated cell samples and control samples were evaluated
using student’s t test analysis. Multivariate data analysis was conducted with the SIMCA-P software
package (V11.0, Umetrics, Sweden). Principal component analysis (PCA) was conducted based on
QTOF datasets to generate an overview for group clustering and to search for possible outliers.
Partial least-squares discriminant analysis (PLS-DA) was employed to explore the significant changed
metabolites and group clustering based on QTOF datasets. Significantly changed metabolites
were identified based on student’s t test (with p < 0.05) and variable influence on project score
(VIP > 1). Accurate masses of significant changed features were further identified by Mass Profiler
Professional Software (Agilent, USA) and also confirmed against HMDB (http://www.hmdb.ca),
METLIN (https://metlin.scripps.edu), KEGG (http://www.kegg.jp), and LIPID MAPS (http://www.
lipidmaps.org) database.

4. Conclusions

In the present study, the enantioselective metabolic perturbations in MCF-7 cells induced by
metalaxyl enantiomers were evaluated using HPLC-QTOF-based metabolomics. Our results indicated
that metabolic profiles of MCF-7 cells were significantly altered in both metalaxyl enantiomer-treated
groups compared with control group. Furthermore, the endogenous metabolite changes and
pathway fluctuations induced by metalaxyl enantiomers were enantioselective. HPLC-QTOF-based
metabolomics demonstrated that metalaxyl enantiomers mainly disrupted amino acid metabolism,
energy metabolism, lipid metabolism, and antioxidant defense. Our study illustrates that QTOF-based
metabolomics is very sensitive and suitable for monitoring the systematic metabolic effects of metalaxyl
enantiomer exposure in MCF-7 cells, which can provide integrative information for the enantioselective
effects of chiral pesticides in breast cancer progression, reveal the underlying mechanisms, and provide
available data for the health risk assessment of chiral environmental pollutants at the molecular level.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/1/142/s1.
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