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Structure of an Ultrathin Oxide on Pt3Sn(111) Solved by Machine
Learning Enhanced Global Optimization**
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Abstract: Determination of the atomic structure of solid surfaces typically depends on comparison of measured
properties with simulations based on hypothesized structural models. For simple structures, the models may be guessed,
but for more complex structures there is a need for reliable theory-based search algorithms. So far, such methods have
been limited by the combinatorial complexity and computational expense of sufficiently accurate energy estimation for
surfaces. However, the introduction of machine learning methods has the potential to change this radically. Here, we
demonstrate how an evolutionary algorithm, utilizing machine learning for accelerated energy estimation and diverse
population generation, can be used to solve an unknown surface structure—the (4×4) surface oxide on Pt3Sn(111)—
based on limited experimental input. The algorithm is efficient and robust, and should be broadly applicable in surface
studies, where it can replace manual, intuition based model generation.

Introduction

The atomic structure of surfaces and interfaces critically
underpins our understanding of the performance of various
materials, from heterogeneous catalysts and electrocatalysts
to semiconductor electronics and photovoltaics. Despite the
enormous importance of such fundamental information and
the great advances in experimental instrumentation over the
past decades, structure determination for complex surface
reconstructions and ultrathin films remains a significant

challenge, and many structures remain unsolved. Surface
crystallography is labor intensive and prone to error, even
when relatively simple structures are considered; complexity,
disorder and heterogeneity can easily render such problems
intractable. This naturally hinders our ability to interpret
experiments that aim to establish structure-performance
relationships for these materials, and especially our ability
to predict and explain such relationships through quantum
chemical modelling.
The oxidation of platinum-tin alloys provides a clear

example of these limitations. Though the materials are of
importance for a variety of catalytic processes,[1–6] the
structures of oxides formed on their surfaces and the details
of metal-oxide interfaces involved remain poorly understood
at the atomic level. This is despite several attempts, using a
variety of techniques, to characterize experimentally the
well-defined oxide layers formed on single crystal
surfaces.[7–12] A promising solution is to couple experiments
closely with atomic structure prediction based on theory-
driven global optimization. Density functional theory (DFT)
based global optimization strategies have played an increas-
ing role in structure prediction efforts for more than a
decade, partly replacing labor intensive, intuition guided
strategies. For a review see Ref. [13]. The global optimiza-
tion approaches employed encompass a diverse set of
methods such as simulated annealing,[14] random structure
search,[15] basin hopping,[16] minima hopping,[17]

metadynamics,[18] parallel tempering Monte Carlo,[19] par-
ticle-swarm optimization,[20] and evolutionary strategies.[21–23]

These optimization methods have gradually improved to
handle increasingly complex problems for systems ranging
from crystals to surfaces and nanoparticles etc.[13,24]

Applicability of the global optimization methods at the
density functional theory level to larger systems is, however,
limited by the computational cost encountered. This is most
pronounced for systems involving a large number of atoms,
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as is the case for surfaces, which require inclusion of a
certain number of bulk layers.[25–27] As a solution, a new
generation of structure prediction methods[28–31] have
achieved orders of magnitude reductions in computation
time by partly replacing the expensive DFT potential with a
machine-learned approximation refined during the search.
We demonstrate here the successful application of such

a machine learning enhanced algorithm to the problem of an
oxidized platinum-tin surface. Specifically, we employ the
recently developed GOFEE algorithm[31] which can be
summarized as:
(i) Evaluate a few random structures at the DFT level.
(ii) Construct a surrogate energy landscape based on all

structures evaluated at the DFT level. The landscape is
described with a Gaussian Process Regression (GPR)
model based on a global descriptor of the structures.

(iii) Collect a sample of the most stable, yet significantly
different, structures calculated at the DFT level, see
Figure 1.

(iv) Generate multiple new structural candidates via rattle
mutations applied to the sample members.

(v) Relax the new candidates in the lower confidence
bound landscape given by ELCB=E� kσ, where E and σ
are the GPR model energy and uncertainty, respec-
tively, and where k is a constant.

(vi) Select the relaxed candidate with the lowest ELCB and
perform evaluation at the DFT level (no relaxation).

(vii) Jump to (ii).

Details of the descriptor, the model, the sampling
method, and the setup for the DFT calculations are given in
the methods section of the Supporting Information.
The GOFEE method accomplishes a massive increase in

efficiency while maintaining accuracy at the ab initio level
mainly through two measures: Firstly, all local relaxations
are done in an inexpensive machine learned landscape
rather than in the expensive DFT landscape. Secondly, by
selecting the most promising candidate based on comparing
the relaxed lower confidence bounds, the ELCB’s, of all
relaxed candidates, the method is driven by the uncertainty
estimates from the surrogate model. It thereby effectively
performs a Bayesian selection with (minus) ELCB being the
acquisition function and with configurational space being
represented discretely by the relaxed candidates.[31]

In its original formulation, the GOFEE method has an
evolving population of structures, which is implemented by
deciding at every iteration if a new candidate, just evaluated
at the DFT level, should replace one member of the
population. In the present work, the population is replaced
with a sample drawn from the set of all structures evaluated
at the DFT level. The sample indeed plays the role of a
population, but differs in that it assesses all DFT data in
every iteration and in having potential to change faster than
an evolving population. The conceptual difference between
a population and a sample-based approach is sketched in
Figure 1a, b.
The scheme for obtaining the sample is illustrated in

Figure 1c, based on an actual search for the optimal
structure of a 2D Sn3O6 cluster. The sample is generated

from the full set of structures evaluated by DFT so far, after
exclusion of those more than a fixed energy ΔE above the
current lowest-energy structure. The remaining structures
are represented in feature space using the same global
descriptor as in the GPR model. They are subsequently
divided using the k-means+ + clustering algorithm,[32] which
arranges them into families sharing similar characteristics.
The sample is finally generated by selecting the lowest-

Figure 1. a), b) A one-dimensional energy landscape (blue) is sampled
at some select points (grey points) and a GPR model (yellow) is
established. a) With an evolving population, locally optimal data points
(arrows) being sufficiently different will constitute the population and
not necessarily represent all data. b) With a clustering-based sample
scheme enforcing locally optimal data points (arrows) to be drawn
from different clusters (colored points) a more representative sample
of data is obtained. Using such a sample thus has potential to evolve
more exploratively compared to a population based search. In this
example, descendants from the data drawn from the red cluster are
expected to more easily evolve into the right part of the energy
landscape. c) Illustration of the sample generation scheme based on
data from a GOFEE search for 2D Sn3O6 nano-clusters with Nsample=5.
First, the current set of DFT evaluated structures are represented in a
feature space and are subsequently clustered using the k-means+ +

algorithm, to identify groups of related structures. The sample is then
created by selecting the most stable structure from each group.
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energy member of each family, promoting convergence to
multiple local structural minima. A comparison of the
performance difference between a population-based and a
k-means sample-based GOFEE approach is given in the
Supporting Information, Figure S1.
Aside from one previous study,[33] where clustering was

employed to modify the fitness function used for deciding
which population members to extract for offspring creation,
we are not aware of other work applying clustering to
improve population diversity in evolutionary algorithm
based atomistic structure search. Clustering has successfully
been used to promote diversity in other fields.[34–36] In these
works, however, clustering was applied only to the very
recent search history and much of the data accumulated
during the search was thus left unused. The current
approach, in contrast, retains the entire search history and
thus utilizes all available data. This ensures structural
diversity during the search, further improving reliability, and
enables identification of the targeted surface structure
among global optimum structures found for a range of
compositions. A number of applications of clustering for
visualization of data for materials and molecules have also
been suggested. For a review of the topic, see Ref. [37].

Results and Discussion

The system under consideration here is the (111) surface of
Pt3Sn, the structure of which is shown in Figure 2a. This
surface has been identified as having particular relevance
for electrocatalytic reactions,[38] and serves as a useful
model for realistic materials. Oxidation of this surface
results in formation of a well ordered oxide with (4×4)
periodicity relative to the underlying face centered cubic
metal lattice. Scanning probe microscope (SPM) images of
the oxide (Figure 2) show an array of protrusions, 3 per

unit cell, in a chiral arrangement suggesting the symmetry
of plane group p3.
Attempts at structure determination for this phase have

been made using several techniques, including scanning
tunneling microscopy (STM), low energy electron diffraction
(LEED), X-ray photoelectron spectroscopy and diffraction
(XPS/XPD) and low energy ion scattering (LEIS),[10,11] and
further attempts have been made to characterize very
similar tin oxide phases formed by deposition and oxidation
of Sn on Pt(111).[7,9] Though it has been established that the
structure is terminated by tin and oxygen,[11] the tin in the
structure shows an XPS binding energy very close to that of
tin in the alloy, hindering characterization of tin in the oxide
and leading to the suggestion that most of the tin in the
structure is in fact still alloyed with platinum, in a so-called
“quasimetallic” state.[9] The dominance of only three
protruding atoms—of unknown type—per unit cell in
scanning probe micrographs and the absence of other
features that would guide the construction of atomic models
has further hindered structure determination by direct
deduction.
For the GOFEE based structure search, we assumed a

(4×4) periodic unit cell and a substrate consisting of
bulklike Pt3Sn(111). The approximate numbers of Sn and O
atoms to be placed on this substrate were chosen by
assuming that the (4×4) phase consists of a Sn2+ oxide
monolayer of some sort. Here inspiration was taken from
bulk SnO and SnS, which are composed of van der Waals
sheets, with Sn2+ in 4-fold and 3-fold coordination, respec-
tively. Supported on Pt3Sn(111), such sheets would exhibit
tin densities between 8 and 13 atoms per (4×4) unit cell.
With this density range in mind and supposing somewhat
higher coverages of oxygen compared to tin due to
presumed oxygen affinity of tin in the substrate, we selected
16 combinations, with 9–12 Sn and 11–14 O per cell. The
Sn :O composition of the (4×4) phase is hence not deduced
from experiment, but rather the structure search algorithm

Figure 2. a) Scanning tunneling micrograph showing the (4×4) oxide phase partially covering the Pt3Sn(111) surface. Inset is a ball model of the
metal surface showing the unit cell dimensions of the alloy surface and the surface oxide. b) Conductive non-contact atomic force micrographs of
the (4×4) phase showing the tunnel current and frequency shift acquired simultaneously.
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is being applied to a range of Sn :O combinations, and
afterward subjected to thermodynamic analysis and compar-
ison with experimental data to identify a likely candidate.
Figure 3 summarizes the results of the GOFEE search

performed for each of the 16 Sn :O compositions. The most
stable structures found are depicted in Figure 3a and
estimates of the free energies of the different structures
under the conditions of the experiment are shown in
Figure 3b. Importantly, a distinct minimum of these free
energies is present for the Sn11O12 structure represented by
the darkest blue color in Figure 3b.
For each composition considered the search was re-

peated four times from independent starting configurations
to check for consistency. For all but three compositions
(Sn9O11, Sn9O13 and Sn9O14), the same minimum-energy
structures were found in all four runs of the search. Most of
the structures found exhibit a common feature: a minority of
Sn atoms protrude from the surface and show a lateral
spacing of �5–6 Å, consistent with SPM images of the (4×
4) and related phases. The remaining Sn atoms are at the
metal interface, with O atoms forming a layer in between.
One of the 16 structures found exhibits the p3 symmetry
expected from experiment: that with a composition Sn11O12,
with three protruding Sn atoms, 8 Sn atoms at the interface,
and 12 nearly coplanar O atoms in between. This structure is

the very same that was found to be the most stable
according to the free energy diagram, Figure 3b. The
structure is further illustrated in Figure 3c.
Surface X-ray diffraction (SXRD) confirms this structure

and enables further refinement. Figure 4a shows fits to
measured rod profiles following structure refinement with
the theory-based Sn11O12 structure as the starting point. The
fits to the experimental rod profiles are excellent, and the
in-plane structure factors calculated for the relaxed model
reproduce the experimental ones as well (Figure 4b). During
refinement, the overlayer atoms moved toward the surface
by 0.1–0.2 Å, consistent with the well-known underbinding
of the employed DFT functional, but the final structure is
otherwise nearly identical to that produced by the search
algorithm. Simulated AFM images for the structure (Fig-
ure 4c) also show good agreement with experiment, exhibit-
ing the characteristic chiral pattern with three protrusions
per unit cell, corresponding to the three protruding Sn atoms
in the structure.
The (4×4) phase can be described as a Sn2+ surface

oxide—a contiguous two-dimensional network related to
SnO, but with a structure strongly influenced by bonding
with the metal substrate. The basic structural element is Sn
in 3-fold oxygen coordination, with a strongly asymmetrical
pyramidal geometry. This geometry differs somewhat from

Figure 3. a) Minimum energy structures found by the search algorithm for various compositions of Sn and O on Pt3Sn(111). b) Calculated free
energies for the different structures under the experimental conditions (10� 5 mbar, 600 °C), relative to the Sn11O12 structure. c) Model of the lowest-
energy Sn11O12 structure, corresponding to the observed (4×4) phase.
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that found in bulk SnO, a layered material composed of
buckled SnO sheets where Sn adopts a 4-fold pyramidal
geometry. The trigonal pyramidal geometry found here is
nevertheless typical of Sn2+, as seen in halides and in tin(II)
sulfide, and attributed to the occupation of a stereoactive
lone pair orbital derived from the Sn 5 s state. This geometry
has also been observed or predicted in oxidic phases,
including layered, mixed-valence Sn3O4,

[40] in polyoxometa-
late clusters,[41] and in the surface layers of reduced SnO2-
(101)[42] and SnO2(110).

[26]

Bonding between Sn in the oxide layer and Pt in the
substrate is also typical of Sn2+. The strength of these bonds
is reflected in outward buckling of surface Pt (opposite to
the clean Pt3Sn(111) surface, where outward buckling of Sn
is observed[43]), and in contracted Pt� Sn bond lengths similar
to what is found in organometallic clusters.[44,45] The solution
of the structure of the well-ordered (4×4) phase thus yields
the likely generalization that strong interfacial Pt-Sn2+

bonding is a characteristic feature of Pt/SnO interfaces. The

particular structure found here results from optimization of
these bonds at the (111) surface, constrained by preferred
Sn� O bond geometry.
Although these structural features can be rationalized

rather easily in hindsight, the structure itself could not be
directly deduced from experiment or guessed based on
chemical intuition, primarily due to its multi-layered
arrangement and relatively low symmetry. An automated
search method based on theory can, however, be used to
generate physically plausible structural candidates for
comparison with experiment, leading to the correct structure
model. This methodology depends on a search algorithm
that is both efficient and reliable. Our strategy utilizes the
full history of the evolutionary search both to accelerate
structure evaluation and to maintain a sufficiently diverse
population so that premature convergence is avoided. With
this we take a step towards optimal search algorithms in
which all components leverage the available data to
maximum benefit.

Figure 4. a) Measured (black) and fitted (blue) X-ray diffraction rod profiles for the (4×4) phase. b) Reciprocal space map showing the measured
and calculated in-plane X-ray structure factors for the (4×4) phase. Dashed lines and arrows indicate the (2×2) unit cell of the ordered alloy
surface used as a reference. c) Simulated AFM frequency-shift image of the Sn11O12 structure, based on DFT calculations.[39]
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The (4×4) surface oxide on Pt3Sn(111) is relatively
complex, but it nevertheless represents a rather ideal case,
where quantitative diffraction measurements can be used to
verify the result of the structure search. In general, surfaces
can exhibit considerable degrees of disorder, with various
coexisting phases and minority structures that cannot be
characterized in detail by averaging techniques. The combi-
nation of scanning probe microscopy with theoretical
simulations is often the only viable methodology in these
cases, resulting in considerable uncertainty and occasionally
gross misinterpretation. A reliable global optimization
method like GOFEE can enable surface studies of this type
to be conducted with much greater confidence.
Broad application of this approach, however, will also

require the ability to characterize larger-scale features like
defects and superstructures. For this, the search algorithms
must be able to scale toward hundreds of atoms, resulting in
drastically more demanding searches due to the combinato-
rial scaling of the configuration space and the increased cost
of DFT evaluations. This will require even more effective
data utilization in search strategies, where the efforts
presented in this work, along with recent advances in
transferable machine learning potentials[46–48] and reinforce-
ment learning protocols[49] may pave the way for such
scalable approaches. Avenues for continued progress in
search methodologies are thus foreseen to ensure improved
thoroughness and efficiency of automated structural search
methods.

Conclusion

Surface structure determination is a notoriously difficult
problem due to the limitations of experimental techniques
and the high cost of accurate theoretical modeling. In this
work we have demonstrated how a machine learning driven
search algorithm can be used to overcome such limitations,
through the characterization of an experimentally observed
(4×4) surface oxide on Pt3Sn(111). For this application, we
further introduced in the evolutionary search method a shift
from an evolving population to a k-means based sample.
The latter leverages the full history of structures visited in
the search and appears highly robust and efficient for the
present system.

Supporting Information

Methods, Figures S1 to S4, Table S1.
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